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This study was conducted to evaluate the effects of dietary mixed selenium [MSe: inorganic 
selenium (ISe) + organic selenium (OSe)] levels on the growth performance, blood 
parameters, and fecal microbiota of weaned pigs. In a randomized complete block design 
(block = initial body weight), 156 weaned pigs were allotted to three dietary treatments 
(4 pigs per pen; 13 replicates per treatment) for 42 days. Dietary treatments included (1) 
a non-Se-fortified diet based on corn and soybean meal (CON), (2) CON + 0.15 ppm ISe 
and 0.15 ppm OSe (MSe3), and (3) CON + 0.25 ppm ISe and 0.25 ppm OSe (MSe5). Pigs 
fed both MSe diets showed no effects on growth performance or diarrhea frequency 
compared with those fed the CON diet. However, pigs fed MSe3 and MSe5 had higher 
serum interleukin-6 (p = 0.021, linear p = 0.011) on day 7 and higher Se concentrations 
(p = 0.002, linear p = 0.001) on day 42 than those fed the CON. In addition, pigs fed 
different levels of MSe exhibited quadratic (p = 0.054) and linear (p = 0.069) effects on 
the number of white blood cells and hematocrit on day 42 compared with those fed 
CON, respectively. Moreover, the MSe3 group had higher total protein concentration 
(p = 0.049, quadratic p = 0.026) on day 42 than the CON group, and the MSe5 group 
had lower blood urea nitrogen concentration (p = 0.094, linear p = 0.033). There were 
no differences in alpha diversity indices of fecal microbiota among dietary treatments. 
However, beta diversity indices based on the Bray–Curtis dissimilarity were clustered 
differently (r2 = 0.56, p = 0.001) among dietary treatments. Pigs fed the MSe5 diet 
showed an increase in the relative abundance of phylum Bacteroidetes [false discovery 
rate (FDR) adjusted p = 0.004], families Barnesiellaceae (FDR adjusted p = 0.006) and 
Veillonellaceae (FDR adjusted p = 0.006), genera Barnesiella (FDR adjusted p = 0.023) 
and Megasphaera (FDR adjusted p = 0.023), and species Barnesiella intestinihominis 
(FDR adjusted p = 0.016) and Megasphaera elsdenii (FDR adjusted p = 0.019) compared 
with those fed the CON diet. In conclusion, dietary MSe modulated the systemic health 
parameters and fecal microbial community in weaned pigs.
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Introduction

Dietary selenium (Se), as an essential nutrient trace mineral, plays 
an important role in biological functions and is vital in animal feed. 
However, insufficient nutritional Se in swine feed can lead to white 
muscle disease and mulberry heart disease, while excessive 
supplementation can lead to anemia, hair loss, and organ damage (1, 
2). In addition, excessive Se excretion can be  linked to ecological 
pollution (3), which should be  considered for sustainable swine 
production. Thus, the dietary Se content in swine feed was suggested 
by the National Research Council and Food and Drug Administration 
to be 0.15 to 0.30 ppm and not greater than 0.30 ppm, respectively, 
considering the requirements of pigs (4, 5). Dietary Se is noted for its 
antioxidant properties along with vitamin E. The diverse physiological 
effects of Se, including antioxidation and redox regulation against 
reactive oxygen species (ROS), are mediated by selenoproteins (SePs) 
and also play important roles in thyroid hormone metabolism and 
reproduction and muscle function (6, 7). Previous studies have shown 
that supplementation of dietary Se improves the immune system and 
reduces intestinal inflammatory responses due to its antioxidant 
effects, which are beneficial for the growth and health of pigs (8, 9). 
Therefore, to prevent Se deficiency or selenosis and achieve optimal 
growth and health of pigs, additional dietary Se supplementation to 
their feed beyond that obtained from feed ingredients and feeding in 
adequate amounts are necessary.

Dietary Se, provided by supplementing it to animal feed according 
to their nutritional requirements, is in inorganic (ISe) and organic (OSe) 
forms. Ingested dietary ISe or OSe is absorbed in the small intestine and 
transported (ISe, passive transport via the diffusion process; OSe, active 
transport via amino acid pathway) to the liver through the bloodstream 
and then redistributed to other tissues in the body after producing SePs 
in the liver (4, 10). Finally, Se is excreted in feces (mainly OSe) or urine 
(mainly ISe) through filtration and utilization of Se to protect the cell 
membranes in performing kidney functions (2, 11). Differences in the 
metabolic pathways in the body depending on the Se form result in 
different bioavailability and biological effects. Swine nutritionists have 
conducted studies comparing the effects of different sources and levels 
of dietary Se. At selenosis levels (over 5 ppm), dietary ISe caused more 
severe and rapid clinical signs than dietary OSe, with OSe inducing less 
severe effects than ISe as the addition level increased (1). In addition, 
dietary OSe was more efficient than dietary ISe in utilization and 
retention in tissues and blood (1, 2, 12). However, economic factors are 
important in swine production, and dietary ISe is widely used in pig 
feed because it is more efficient in supply and cost than dietary OSe (13). 
Interestingly, mixed Se (MSe: ISe + OSe) feeding in poultry has been 
suggested to improve production performance and health compared 
with individual Se feeding (14, 15). However, research on the effects of 
dietary MSe on the growth and health of pigs is unclear. Moreover, 
although tissues and blood indicators that reflect the Se status of the 

body are well known (2, 11), the effects of dietary Se on the gut 
microbiota and microbial indices in pigs are limited. Although weaned 
pigs are prone to gut microbial imbalance due to weaning stress, dietary 
Se supplementation can enhance gut health by promoting the growth 
of beneficial bacteria such as Lactobacillus and suppressing potentially 
harmful bacteria such as Escherichia coli (16, 17). These effects indicate 
that supplementing the weaner diet with MSe may help modulate gut 
microbiota, supporting the overall health of pigs. Therefore, this study 
aimed to evaluate the effects of different levels of dietary MSe on growth 
performance, diarrhea frequency, blood parameters, and fecal 
microbiota of weaned pigs. In addition, to support the effects of different 
levels of dietary MSe on weaned pigs, we set the maximum supplemental 
MSe level at 0.5 ppm to minimize adverse effects while providing 
effective recommendations.

Materials and methods

Animal ethics

The protocol for this study was reviewed and approved by the 
Institutional Animal Care and Use Committee of Chungnam National 
University, Daejeon, South Korea (approval #: 202012A-CNU-168).

Experimental design, animals, and diets

In a randomized complete block design [block: initial body weight 
(BW)], newly weaned pigs [n = 156; (Landrace × Yorkshire) × Duroc; 
initial BW = 7.85 ± 1.11 kg; 28 days old] were randomly allotted to one 
of three dietary treatments (4 pigs per pen; 13 replicate pens per 
treatment). Dietary treatments were (1) a non-Se-fortified diet based on 
corn and soybean meal (CON), (2) CON +0.15 ppm ISe and 0.15 ppm 
OSe (MSe3), and (3) CON +0.25 ppm ISe and 0.25 ppm OSe (MSe5). 
The non-Se-fortified diet was formulated according to the nutritional 
requirements of weaned pigs (5), except for Se (Table 1). The Se products 
were obtained from commercial suppliers (ISe, sodium selenite, 
1,000 ppm, Daone Chemical Co., Ltd., South Korea; OSe, Se-yeast, 
1,000 ppm, Alltech Korea, Co., Ltd., South Korea). To determine the Se 
concentration in the feed, all diet samples were digested in a digestion 
block (N-Biotek, South Korea), allowed to react with 
2,3-diaminonaphthalene solution, and then analyzed using the 
fluorometric method (18) with a fluorescence spectrometer (RF-6000, 
Shimadzu Co., Kyoto, Japan), as reported by the Association of Official 
Agricultural Chemists (AOAC) (method 996.16) (19). The analyzed Se 
contents in the CON, MSe3, and MSe5 groups were 0.086, 0.261, and 
0.456 ppm, respectively. The pigs had free access to mash feed and water 
during the 42-day experimental period. The pigs were housed in pens of 
the same size, and ambient temperature (25–28°C), humidity (50–60%), 
and lighting (12-h intervals) were automatically controlled.

Data and sample collection

The individual BW of pigs and feed residual in the feeder were 
estimated at the end of the study to measure the average daily gain, 
average daily feed intake, and gain to feed ratio on a pen basis. The 
fecal score was checked daily for the first 2 weeks with a score of 1 to 

Abbreviations: AST:ALT, aspartate transferase to alanine aminotransferase ratio; 

BUN, blood urea nitrogen; EDTA, ethylenediaminetetraacetic acid; ISe, inorganic 

selenium; LDA, linear discriminant analysis; LEfSe, linear discriminant analysis 

effect size; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular 

hemoglobin concentration; MSe, mixed inorganic and organic selenium; OSe, 

organic selenium; PCoA, principal coordinate analysis; ROS, reactive oxygen 

species; Se, selenium; SeP, selenoprotein.
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5 (1 = normal feces, 2 = moist feces, 3 = mild diarrhea, 4 = severe 
diarrhea, and 5 = watery diarrhea) by 2 independent researchers (20). 
The diarrhea frequency was calculated by counting pen days with a 
pen diarrhea score of 4 or higher. Blood samples were collected from 
one pig per pen randomly selected from six replicate pens using 10 mL 
tubes (BD Vacutainer Systems, Franklin Lakes, NJ, United States) with 
or without ethylenediaminetetraacetic acid (EDTA) (21) via the 
jugular vein of the pigs on days 7, 14, and 42. The collected blood 
samples in non-EDTA tubes were centrifuged at 3,000 rpm for 15 min 
at 4°C to obtain serum samples, which were then stored at −80°C for 
subsequent blood analysis. On the last day of the study, fecal samples 
were collected from one pig per pen randomly selected from six 
replicate pens using 15 mL conical tubes via rectal stimulation with a 
sterile swab and stored at −80°C for microbiota analysis (22).

Blood analyses

The blood samples collected in the EDTA tubes were analyzed for 
the number of white blood cells, red blood cells, hemoglobin, hematocrit, 
platelet, mean corpuscular volume, mean corpuscular hemoglobin, and 
mean corpuscular hemoglobin concentration using an automated 
hematology analyzer (scil Vet abc hematology analyzer, scil Animal Care 
Company, Altorf, France). Serum samples for Se concentration analysis 
were digested in a digestion block (N-Biotek, South Korea), allowed to 
react with 2,3-diaminonaphthalene solution, and analyzed using a 
fluorescence spectrometer (RF-6000, Shimadzu Co., Kyoto, Japan) based 

on the fluorometric method (23) according to the AOAC (19). Other 
serum samples were thawed at room temperature and analyzed for 
immune responses (cortisol, tumor necrosis factor-α, transforming 
growth factor-β1, interleukin-1β, and interleukin-6) and biochemical 
parameters [total protein, calcium, inorganic phosphorus, magnesium, 
total cholesterol, triglyceride, glucose, albumin, creatinine, blood urea 
nitrogen (BUN), aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), and AST to ALT ratio (AST:ALT)] using 
enzyme-linked immunosorbent assay kits (R&D System Inc., 
Minneapolis, MN, United  States) with a microplate reader (Epoch 
microplate spectrophotometer, BioTek Instruments Inc., Winooski, VT, 
United  States) (24) and a clinical autoanalyzer (Toshiba Acute 
Biochemical Analyzer-TBA-40FR, Toshiba Medical Instruments, Tokyo, 
Japan) with a specific kit (Wako Pure Chemical Industries, Osaka, Japan) 
(25), respectively. All serum analyses were performed in duplicate using 
appropriate blood volumes according to the manufacturer’s instructions.

Fecal microbiota analysis

Fecal samples were analyzed at a biotechnology company 
(Macrogen Inc., Seoul, South Korea). After extraction of the total 
DNA from 200 mg of fecal samples using a QIAamp Fast DNA Stool 
Mini Kit (QIAGEN, Hilden, Germany), DNA concentration and 
purity were checked using a NanoDrop ND-1000 spectrophotometer 
(NanoDrop Technologies, DE, United States). The V3–V4 regions of 
the 16S rRNA gene were amplified using the Bakt 341F-805R primers 
to construct an amplicon library. Pair-end sequences using the MiSeq 
platform (Illumina, San Diego, CA, United States) were merged using 
FLASH v. 1.2.11. To perform preprocessing and clustering, the 
CD-HIT-OTU program of CD-HIT v. 4.5.4 was used to eliminate 
sequencing errors by identifying and removing low-quality reads, 
ambiguous reads, and chimeric reads. The remaining reads then 
clustered into OTUs at a 97% identify cutoff (26). Taxonomic 
assignment was performed using BLAST+ v. 2.9.0 with reference to 
the NCBI 16S microbial database. QIIME was performed to analyze 
gut microbial community comparisons based on OTU abundance and 
taxonomy information. Microbial alpha diversity indices (observed 
OTUs, Chao1, Shannon, and Simpson) and beta diversity indices 
[principal coordinate analysis (PCoA) plots based on the Bray–Curtis 
dissimilarity] were measured for richness and evenness within 
samples and differences in the community among samples, 
respectively. Microbial data were normalized by data scaling using the 
total sum scaling before statistical comparison.

Statistical analyses

Data were analyzed using the MIXED procedure of SAS software 
(v. 9.4; SAS Institute Inc., Cary, NC, United States) with a randomized 
complete block design (block: initial BW). The experimental unit was 
the pen. The statistical model for growth performance, blood profiles, 
immune responses, and blood biochemical parameters included 
dietary treatments as the main effect and block as a random effect. 
Treatment means were calculated using the LSMEANS statement, and 
means were separated using the PDIFF option in the PROC 
MIXED. Contrast statements were used to evaluate the linear and 
quadratic effects of dietary MSe levels, with PROC IML of SAS 

TABLE 1 Composition of experimental diets for weaned pigs (as-fed 
basis).

Item Basal diet

Ingredient, %

Corn 55.11

Soybean meal, 44% 37.00

Beef tallow 2.50

Meat and bone meal 2.00

Mono-dicalcium phosphate 0.95

Limestone 0.92

Vitamin–mineral premix1 0.20

l-lysine-HCl 0.84

dl-methionine 0.29

l-threonine 0.19

Total 100.00

Calculated energy and nutrient content

Metabolizable energy, kcal/kg 3,400

Crude protein, % 24.30

Calcium, % 0.85

Phosphorus, % 0.70

Lysine, % 1.70

1Provided per kilogram of diet: vitamin A, 12,000 IU; vitamin D3, 2,500 IU; vitamin E, 
30 IU; vitamin K3, 3 mg; d-pantothenic acid, 15 mg; nicotinic acid, 40 mg; choline, 400 mg; 
and vitamin B12, 12 μg; Fe, 90 mg from iron sulfate; Cu, 8.8 mg from copper sulfate; Zn, 
100 mg from zinc oxide; Mn, 54 mg from manganese oxide; I, 0.35 mg from potassium 
iodide.
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generating coefficients for unequally spaced levels. Diarrhea frequency 
was analyzed using the chi-square test of SAS. The MicrobiomeAnalyst 
webtool1 was used for analyzing fecal microbiota diversities (alpha 
diversity, the Kruskal–Wallis test; beta diversity, permutational 
multivariate analysis of variance) and comparison and classification 
[linear discriminant analysis (LDA) effect size (LEfSe), LDA 
score ≥ 2.0, false discovery rate (FDR) adjusted p-value <0.05]. 
Pearson correlation between featured microbial species through LEfSe 
analysis and blood biochemical parameters were analyzed using 
SAS. The results are presented as means ± standard error of the mean. 
Statistical significance and tendency among dietary treatments were 
considered at p < 0.05 and 0.05 ≤ p < 0.10, respectively.

Results

Growth performance and blood selenium 
level

There were no differences in the average daily gain, average daily 
feed intake, and gain to feed ratio during the experimental period 
among the CON, MSe3, and MSe5 groups (Table 2). Additionally, 
diarrhea frequency during the first 2 weeks after weaning was not 
affected by dietary MSe in addition to weaner feed. However, pigs fed 
dietary MSe3 and MSe5 had higher (p = 0.002, linear, p = 0.001) 
serum Se concentration on day 42 than those fed CON.

Hematological, immunological, and 
biochemical parameters

Supplementation of different levels of dietary MSe to a weaner 
diet had no effect on blood profiles on day 7 (Table 3). However, 
mean corpuscular hemoglobin concentration (MCHC) showed a 

1 https://www.microbiomeanalyst.ca/

tendency for a quadratic contrast (p = 0.059) on day 14 following 
dietary MSe addition. The number of white blood cells and 
hematocrit exhibited tendencies for quadratic (p = 0.054) and linear 
(p = 0.069) contrasts on day 42 among the dietary treatments, 
respectively. Additionally, hemoglobin level had a linear contrast 
(p = 0.048) on day 42 following increased MSe levels. Moreover, pigs 
fed MSe3 tended to have lower (p = 0.058, quadratic p = 0.039) mean 
corpuscular hemoglobin (MCH) on day 42 than those fed CON. As 
shown in Table 4, supplementation of dietary MSe3 and MSe5 had 
higher (p = 0.021, linear p = 0.011) serum interleukin-6 
concentration on day 7 than the CON but did not differ from each 
other. In addition, there were no differences in serum immune 
responses on day 14 following the addition of dietary MSe. The 
results presented in Table 5 show that dietary MSe influenced the 
blood biochemical parameters in weaned pigs. Pigs fed MSe3 had 
higher (p = 0.049, quadratic p = 0.026) total protein level on day 42 
than those fed CON but did not differ from those fed MSe5. In 
addition, dietary MSe5 tended to lower (p = 0.094, linear p = 0.033) 
BUN level on day 42 than the CON.

Fecal microbial diversities and taxonomic 
relative abundance

A total of 2,200,279 read counts were obtained from the feces of 
weaned pigs through 16S rRNA sequencing, with average reads of 
122,238 ± 10,923 per sample. After quality filtering, the total number 
of read counts obtained was 220,982, with the average reads per 
sample being 12,277 ± 3,073. A summary of fecal microbial diversities 
in weaned pigs among dietary treatments is shown in Figure 1. There 
were no differences in microbial alpha diversity indices among the 
CON, MSe3, and MSe5 groups (Figures 1A–D: number of operational 
taxonomic units, Chao1, Shannon, and Simpson, respectively). Beta 
diversity based on the Bray–Curtis distance using PCoA plots among 
dietary treatments is illustrated in Figures 1E,F (2D and 3D plots, 
respectively). There was a difference (r2 = 0.56, p = 0.001) in the 
clustering of the fecal microbial community among the CON, MSe3, 
and MSe5 groups according to the level of dietary MSe 

TABLE 2 Effects of dietary mixed selenium on overall growth performance and blood selenium concentration of weaned pigs1.

Dietary treatments p-value

Item2 CON MSe3 MSe5 SEM Diet Linear Quadratic

Growth performance (day 1–42)

  Initial body weight, kg 7.85 7.86 7.85 0.32 0.999 0.993 0.972

  Final body weight, kg 22.49 22.29 22.15 0.84 0.958 0.771 0.999

  Average daily gain, g/d 348.75 343.54 340.51 15.45 0.930 0.705 0.989

  Average daily feed intake, g/d 641.15 649.56 644.37 22.59 0.965 0.899 0.817

  Gain to feed ratio, g/g 0.546 0.528 0.531 0.019 0.774 0.540 0.717

  Frequency of diarrhea, % 10.99 14.29 14.84 0.592

Selenium concentration (day 42)

  Serum, ppm 0.088b 0.147a 0.154a 0.012 0.002 0.001 0.210

1Each value for growth performance and selenium concentration are the mean of 13 replicates (4 pigs per pen) and 6 replicates (1 pig per pen), respectively.
2CON, a non-selenium-fortified diet based on corn and soybean meal; MSe3, CON + 0.15 ppm inorganic selenium + 0.15 ppm organic selenium; MSe5, CON + 0.25 ppm inorganic 
selenium + 0.25 ppm organic selenium; Diet, statistical comparisons among dietary treatments; Linear, linear contrast of dietary mixed selenium supplementation levels; Quadratic, quadratic 
contrast of dietary mixed selenium supplementation levels. Frequency of diarrhea for the first 2 weeks after weaning = (number of diarrhea score of 4 or higher/number of pen days) × 100.
a,bMeans with different superscript letters within each variable are different (p < 0.05).
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supplementation (CON vs. MSe3, r2 = 0.37, p = 0.002; CON vs. MSe5, 
r2 = 0.62, p = 0.003; MSe3 vs. MSe5, r2 = 0.37, p = 0.004).

Microbial taxonomic profiling among dietary treatments is 
presented in Figure  2. At the phylum level, Firmicutes and 
Bacteroidetes were collectively accounted for 87.96–94.48% of the 
total sequences among dietary treatments (Figure 2A). A total of eight 
phyla were identified at the phylum level, and the top five most 
abundant phyla were Firmicutes (47.89–76.73%), Bacteroidetes 
(11.23–46.59%), Actinobacteria (3.10–9.63%), Spirochaetes 

(0.79–1.40%), and Proteobacteria (0.14–0.30%). At the family level, 
the top five most abundant families were Lactobacillaceae (9.72–
48.50%), Barnesiellaceae (6.40–38.31%), Clostridiaceae (5.77–8.16%), 
Bifidobacteriaceae (2.53–9.52%), and Prevotellaceae (3.70–6.67%) 
regardless of dietary treatments (Figure 2B). At the genus level, the top 
five most abundant genera were Lactobacillus (8.40–46.59%), 
Barnesiella (6.40–38.31%), Clostridium (5.31–7.86%), Bifidobacterium 
(1.63–9.50%), and Megasphaera (0.43–9.85%) across dietary 
treatments (Figure 2C). According to the species-level Venn diagram, 

TABLE 3 Effects of dietary mixed selenium on blood profiles of weaned pigs1.

Dietary treatments p-value

Item2 CON MSe3 MSe5 SEM Diet Linear Quadratic

White blood cells, ×103/μL

  Day 7 21.83 21.92 17.13 2.67 0.375 0.268 0.392

  Day 14 26.93 24.87 26.20 2.97 0.884 0.823 0.663

  Day 42 21.12 30.18 18.95 4.02 0.145 0.889 0.054

Red blood cells, ×106/μL

  Day 7 7.37 7.78 7.37 0.23 0.372 0.854 0.170

  Day 14 8.05 7.71 7.79 0.30 0.711 0.514 0.623

  Day 42 6.88 6.79 6.33 0.30 0.399 0.236 0.523

Hemoglobin, g/dL

  Day 7 12.65 13.07 12.58 0.42 0.690 0.991 0.397

  Day 14 13.77 12.75 13.33 0.44 0.286 0.399 0.181

  Day 42 12.48 11.62 11.22 0.42 0.130 0.048 0.841

Hematocrit, %

  Day 7 38.67 40.17 38.27 1.39 0.603 0.931 0.324

  Day 14 41.40 39.18 39.48 1.52 0.550 0.352 0.579

  Day 42 30.27 28.68 27.30 1.07 0.180 0.069 0.884

Platelet, ×103/μL

  Day 7 492.50 480.83 364.17 74.70 0.426 0.272 0.489

  Day 14 487.00 359.50 423.00 60.96 0.360 0.391 0.254

  Day 42 462.67 479.17 454.17 33.77 0.869 0.907 0.612

Mean corpuscular volume, fL

  Day 7 52.67 51.67 51.83 0.77 0.626 0.420 0.607

  Day 14 51.50 50.83 50.50 0.80 0.675 0.385 0.947

  Day 42 44.17 42.33 43.17 0.59 0.120 0.179 0.109

Mean corpuscular hemoglobin, pg

  Day 7 17.20 16.78 17.10 0.29 0.571 0.719 0.326

  Day 14 17.10 16.62 17.15 0.27 0.341 0.964 0.149

  Day 42 18.17 17.20 17.77 0.26 0.058 0.196 0.039

Mean corpuscular hemoglobin concentration, g/dL

  Day 7 32.80 32.47 33.00 0.28 0.428 0.730 0.215

  Day 14 33.25 32.68 33.80 0.36 0.119 0.401 0.059

  Day 42 41.22 40.53 41.12 0.37 0.393 0.731 0.192

1Each value is the mean of 6 replicates (1 pig per pen).
2CON, a non-selenium-fortified diet based on corn and soybean meal; MSe3, CON + 0.15 ppm inorganic selenium + 0.15 ppm organic selenium; MSe5, CON + 0.25 ppm inorganic 
selenium + 0.25 ppm organic selenium; Diet, statistical comparisons among dietary treatments; Linear, linear contrast of dietary mixed selenium supplementation levels; Quadratic, quadratic 
contrast of dietary mixed selenium supplementation levels.
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TABLE 4 Effects of dietary mixed selenium on immune responses of weaned pigs1.

Dietary treatments p-value

Item2 CON MSe3 MSe5 SEM Diet Linear Quadratic

Cortisol, ng/mL

  Day 7 65.07 87.52 76.88 16.74 0.621 0.530 0.456

  Day 14 102.06 88.14 88.29 20.08 0.855 0.615 0.822

Tumor necrosis factor-α, pg/mL

  Day 7 149.38 164.55 141.30 20.59 0.725 0.853 0.443

  Day 14 152.29 132.57 161.01 22.87 0.673 0.868 0.390

Transforming growth factor-β1, pg/mL

  Day 7 2322.14 2206.00 2170.34 88.36 0.444 0.215 0.807

  Day 14 2012.30 2359.68 2354.88 180.01 0.287 0.146 0.459

Interleukin-1β, pg/mL

  Day 7 78.31 78.43 68.51 9.31 0.656 0.463 0.599

  Day 14 69.15 72.20 63.50 8.70 0.776 0.700 0.557

Interleukin-6, pg/mL

  Day 7 134.11b 151.49a 150.98a 4.39 0.021 0.011 0.200

  Day 14 150.38 150.67 154.05 4.03 0.777 0.555 0.706

1Each value is the mean of 6 replicates (1 pig per pen).
2CON, a non-selenium-fortified diet based on corn and soybean meal; MSe3, CON + 0.15 ppm inorganic selenium + 0.15 ppm organic selenium; MSe5, CON + 0.25 ppm inorganic 
selenium + 0.25 ppm organic selenium; Diet, statistical comparisons among dietary treatments; Linear, linear contrast of dietary mixed selenium supplementation levels; Quadratic, quadratic 
contrast of dietary mixed selenium supplementation levels.
a,bMeans with different superscript letters within each variable are different (p < 0.05).

TABLE 5 Effects of dietary mixed selenium on blood biochemical parameters of weaned pigs1.

Dietary treatments p-value

Item2 CON MSe3 MSe5 SEM Diet Linear Quadratic

Total protein, g/dL 6.69b 7.30ac 6.88bc 0.16 0.049 0.276 0.026

Calcium, mg/dL 10.18 10.33 9.97 0.18 0.378 0.478 0.232

Inorganic phosphorus, 

mg/dL

8.09 8.13 8.23 0.31 0.952 0.775 0.905

Magnesium, mg/dL 2.44 2.52 2.18 0.13 0.182 0.219 0.161

Total cholesterol, mg/dL 92.33 102.83 92.75 6.83 0.486 0.857 0.243

Triglyceride, mg/dL 56.50 55.92 48.92 7.53 0.735 0.515 0.675

Glucose, mg/dL 91.92 98.92 108.25 9.06 0.460 0.229 0.806

Albumin, g/dL 4.07 4.18 4.07 0.11 0.672 0.919 0.384

Creatinine, mg/dL 1.15 1.00 0.90 0.15 0.527 0.266 0.999

Blood urea nitrogen,  

mg/dL

35.04 23.06 17.38 5.41 0.094 0.033 0.838

Aspartate 

aminotransferase, IU/L

40.33 35.83 61.67 12.43 0.320 0.292 0.277

Alanine aminotransferase, 

IU/L

49.50 43.58 41.92 3.39 0.281 0.124 0.748

AST:ALT, % 0.84 0.81 1.42 0.23 0.147 0.122 0.214

1Each value is the mean of 6 replicates (1 pig per pen).
2CON, a non-selenium-fortified diet based on corn and soybean meal; MSe3, CON + 0.15 ppm inorganic selenium + 0.15 ppm organic selenium; MSe5, CON + 0.25 ppm inorganic 
selenium + 0.25 ppm organic selenium; Diet, statistical comparisons among dietary treatments; Linear, linear contrast of dietary mixed selenium supplementation levels; Quadratic, quadratic 
contrast of dietary mixed selenium supplementation levels; AST:ALT, aspartate aminotransferase to alanine aminotransferase ratio.
a–cMeans with different superscript letters within each variable are different (p < 0.05).
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a total of 231 species overlapped among dietary treatments 
(Figure 2D). Additionally, 56, 50, and 70 species were unique to the 
CON, MSe3, and MSe5 groups, respectively.

We determined which bacteria increased in abundance among the 
dietary treatments at the phylum, family, genus, and species levels 
based on the LEfSe plots (LDA ≥ 2.0; FDR adjusted p < 0.05) 
(Figure 3). The CON group had higher bacterial abundance of phylum 
Firmicutes (LDA = 6.17, FDR adjusted p = 0.008), family 
Lactobacillaceae (LDA = 6.27, FDR adjusted p = 0.006), genus 
Lactobacillus (LDA = 6.27, FDR adjusted p = 0.023), and species 
Lactobacillus ultunensis (LDA = 6.26, FDR adjusted p = 0.019), Blautia 

wexlerae (LDA = 4.63, FDR adjusted p = 0.016), and 
Limosilactobacillus reuteri (LDA = 4.15, FDR adjusted p = 0.016) than 
the MSe3 and Mse5 groups. In contrast, the MSe5 group had a higher 
bacterial abundance of the phylum Bacteroidetes (LDA = 6.22, FDR 
adjusted p = 0.004), families Barnesiellaceae (LDA = 6.19, FDR 
adjusted p = 0.006) and Veillonellaceae (LDA = 5.72, FDR adjusted 
p = 0.006), genera Barnesiella (LDA = 6.19, FDR adjusted p = 0.023) 
and Megasphaera (LDA = 5.67, FDR adjusted p = 0.023), and species 
Barnesiella intestinihominis (LDA = 6.19, FDR adjusted p = 0.016) and 
Megasphaera elsdenii (LDA = 5.67, FDR adjusted p = 0.016) than the 
CON and MSe3 groups.

FIGURE 1

Effects of dietary mixed selenium on microbial alpha and beta diversity indices of weaned pigs. (A) Number of OTUs (p = 0.641), (B) Chao1 index 
(p = 0.717), (C) Shannon index (p = 0.810), (D) Simpson index (p = 0.796), and (E,F) PCoA plots based on the Bray–Curtis dissimilarity (r2 = 0.56, 
p = 0.001). CON, a non-selenium-fortified diet based on corn and soybean meal; MSe3, CON + 0.15 ppm inorganic selenium + 0.15 ppm organic 
selenium; MSe5, CON + 0.25 ppm inorganic selenium + 0.25 ppm organic selenium.
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FIGURE 2

Effects of dietary mixed selenium on microbial taxonomic relative abundance in weaned pigs. The fecal microbiota of weaned pigs at the (A) phylum, 
(B) family, and (C) genus levels, respectively. The top 15 bacteria are presented at both family and genus levels, with the rest being included in others. 
(D) Venn diagram showing the unique and shared species among dietary treatments. CON, a non-selenium-fortified diet based on corn and soybean 
meal; MSe3, CON + 0.15 ppm inorganic selenium + 0.15 ppm organic selenium; MSe5, CON + 0.25 ppm inorganic selenium + 0.25 ppm organic 
selenium.

FIGURE 3

Effects of dietary mixed selenium on taxonomic features of weaned pigs determined by LEfSe analysis (LDA score > 2.0, p < 0.05). (A) Different phyla, 
(B) families, (C) genera, and (D) species among dietary treatments. CON, a non-selenium-fortified diet based on corn and soybean meal; MSe3, 
CON + 0.15 ppm inorganic selenium + 0.15 ppm organic selenium; MSe5, CON + 0.25 ppm inorganic selenium + 0.25 ppm organic selenium.
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Correlation between featured microbial 
species and blood biochemical parameters

As presented in Table 6, a positive correlation (r = 0.60, p = 0.008) 
was determined between Blautia wexlerae and the BUN level. In 
contrast, a negative correlation (r = −0.49, p = 0.037) was observed 
between Megasphaera elsdenii and the BUN level.

Discussion

This study determined that different levels of dietary MSe 
improved Se concentration in blood and modulated blood 
composition, inflammatory response, biochemical indices, and fecal 
microbiota in weaned pigs. However, dietary MSe addition did not 
affect the growth performance and post-weaning diarrhea frequency. 
In previous studies, the growth performance of weaned pigs was 
inconsistent depending on the source (dl-selenomethionine, sodium 
selenite, Se yeast, or hydroxy-selenomethionine) and level (0.1, 0.3, 
0.375, 0.5, or 0.7 mg/kg of Se) of dietary Se (9, 27–29), but Se affected 
the health of pigs through its antioxidant or immunomodulatory 
effects against oxidative stress due to weaning. In addition, 
supplementation of dietary Se and Se-enriched products (0.3 mg/kg 
of Se nanoparticles; 0.3 ppm of Se mushroom powder; 0.3 mg/kg of 
OSe mushroom powder) alleviated diarrhea in early-weaned pigs by 
modulating antioxidant capacity and immunity (8, 17, 30). However, 
differences in results among studies may be  attributed to the 
differences in the products and levels of dietary Se, as well as breeds, 
managing environment, or health conditions of pigs. Additionally, the 
lack of notable growth performance effects in our study may be due 
to the competitive utilization of the host and gut microbiota for 
nutritional MSe and the fact that MSe primarily contributed to 
systemic health indicators. This study confirmed that dietary MSe 
addition improved serum Se concentration. The results determined 
that blood Se levels in pigs were neither deficient nor toxic as indicated 
by reference values for Se status (29). However, the serum Se level in 
the CON group was close to the marginal level for livestock (0.05–
0.08 ppm), suggesting that additional dietary Se supplementation 
should be  considered. Clinical signs of Se deficiency, which are 
commonly observed after weaning (31, 32), are due to decreased 
blood nutritional indicators such as vitamin E and glutathione 

peroxidase with antioxidant properties (33–35) and increased 
oxidative stress at this time (36, 37). Thus, our findings indicated that 
MSe supplementation did not affect the growth performance and 
diarrhea frequency in weaned pigs but can lead to adequate Se status 
by improving the Se concentration in the blood.

Blood parameters reflect the physiological and health status of the 
animals and are influenced by nutritional status. In addition to its 
antioxidant properties, nutritional Se has anti-inflammatory 
properties that regulate the secretion of inflammatory cytokines, such 
as tumor necrosis factor-α and interleukins, by inhibiting nuclear 
factor-κB (NF-κB) activation through the regulation of SeP expression 
(38). In the present study, the serum interleukin-6 level was elevated 
in the early post-weaning period following dietary MSe addition, but 
it did not differ across the addition levels. Additionally, a quadratic 
tendency was observed on the number of white blood cells at the end 
of the experiment depending on the level of dietary MSe 
supplementation. These results indicate that dietary MSe modulated 
the systemic immune responses of weaned pigs. Consistent with our 
findings, it has been reported that dietary Se regulated cell-mediated 
immunity by improving serum interleukin levels under oxidative 
stress conditions such as weaning stress and bacterial challenge (27). 
In addition, adequate Se intake in a mice model resulted in increased 
serum IL-6 along with increased stress-related SeP expression (39). 
The cytokine IL-6 is known to have both pro- and anti-inflammatory 
properties, playing a crucial role in the immune system through 
macrophage activation (40). Meanwhile, Se exhibits anti-
inflammatory properties by attenuating pro-inflammatory gene 
expression in macrophages (41). Therefore, as the immune system is 
immature in the post-weaning period due to impaired immune cell 
proliferation and increased oxidative stress (36, 42), MSe-triggered 
cytokine may effectively address diseases or infections during the 
stress period of early weaning. In addition, dietary MSe may 
be  involved in the inflammatory response through regulated 
activation rather than inhibition of NF-κB, which plays an important 
role in macrophage activation. Furthermore, when comparing dietary 
MSe3 and MSe5, there were no differences in serum Se concentration 
and regulated cytokine level, suggesting that supplemental MSe3 may 
be  more efficient in regulating systemic Se status and 
inflammatory cytokine.

In this study, we confirmed linear or quadratic effects of dietary 
MSe supplementation levels on hemoglobin and indices (i.e., 

TABLE 6 Pearson correlations between featured microbial species and serum biochemical parameters of weaned pigs1.

Item2 Lactobacillus 
ultunensis

Barnesiella 
intestinihominis

Megasphaera 
elsdenii

Blautia 
wexlerae

Limosilactobacillus 
reuteri

Calcium, mg/dL r = 0.40, p = 0.098

Magnesium, mg/dL r = 0.41, p = 0.091

Glucose, mg/dL r = 0.45, p = 0.058

Blood urea nitrogen, 

mg/dL

r = −0.45, p = 0.061 r = −0.49, p = 0.037 r = 0.60, p = 0.008 r = 0.42, p = 0.086

Alanine 

aminotransferase, IU/L

r = 0.46, p = 0.057

AST:ALT, % r = −0.41, p = 0.087 r = 0.43, p = 0.074 r = −0.43, p = 0.087

1Pearson correlation coefficients (r) with p < 0.10 are presented.
2CON, a non-selenium-fortified diet based on corn and soybean meal; MSe3, CON + 0.15 ppm inorganic selenium + 0.15 ppm organic selenium; MSe5, CON + 0.25 ppm inorganic 
selenium + 0.25 ppm organic selenium; AST:ALT, aspartate aminotransferase to alanine aminotransferase ratio.
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hematocrit, MCH, and MCHC), reflecting the relationship between 
red blood cells and hemoglobin in the blood. Se deficiency affects the 
proportion of immature erythrocytes and hemoglobin in pigs (43). 
Moreover, Se and SePs positively influence not only protein oxidation 
but also erythrocyte and hemoglobin development against ROS 
generated under stress conditions (44). This is because erythrocytes, 
which constitute the main component of blood, are more susceptible 
to peroxidative damage due to their oxygen-carrying function and 
higher concentration. Interestingly, the hematological indices related 
to iron status showed an opposite trend with blood Se concentration. 
These results suggest that increased levels of dietary MSe 
supplementation may interfere with age-related erythropoiesis and/or 
development. Additionally, increased IL-6 can affect erythropoiesis by 
inducing a decrease in circulating iron associated with hepcidin 
activity, a hormone that regulates iron homeostasis (45, 46). However, 
this case is mainly associated with clinical anemia. Overall, the 
hemoglobin levels in all dietary treatments collected during the 
experimental period were not at the level of anemia (8.0 g/dL, 
borderline anemia; 7.0 g/dL or less, anemia) (47), and the Se 
concentration in the blood was not at the deficiency level as mentioned 
above. No hematological changes were observed in the absence of 
clinical signs of Se deficiency, despite the addition of various Se 
sources (48). Even the supplementation of toxic levels of dietary Se did 
not affect the hemoglobin and hematocrit levels of pigs (1). Thus, 
dietary Se may have more pronounced effects in improving 
erythrocytes, hemoglobin, or related indices under pathological 
conditions such as Se deficiency or anemia. However, since reductions 
in blood iron levels and changes in iron metabolism following Se 
supplementation have been reported in animal models (49, 50), 
further studies on the interaction between dietary MSe, hematological 
results, and iron metabolism are considered necessary.

This study revealed that dietary MSe altered total protein and 
BUN levels, which are used as indicators of protein metabolism and 
functions of the liver or kidneys. A greater total protein level may 
indicate increased protein synthesis in the body. Efficient utilization 
of protein means less conversion of excess nitrogen to urea for 
excretion. BUN reflects nitrogen utilization, which is derived from 
protein metabolism and finally excreted in the urine. In addition, 
BUN can indicate an efficient utilization of nutrients in the feed, 
which is related to increased feed efficiency (51). Furthermore, the 
reduction of BUN may alleviate metabolic stress in the tissues, 
indicating a healthier metabolic state. Previous studies have shown 
that Se deficiency increases protein metabolic end products (52), while 
Se supplementation alleviates them (53), which is consistent with our 
results. Taken together, dietary MSe supplementation indicates 
improved metabolic functions in the liver or kidneys, which are key 
Se metabolic organs, likely due to the antioxidant effects of MSe. In 
addition, an increased total protein level in the blood suggests that the 
effective action of immune-related proteins may be  linked to the 
immunomodulatory effects of MSe. Thus, this study indicates the 
potential effects of different levels of dietary MSe on improving 
protein metabolism and supporting metabolic health in weaned pigs.

A variety of gut microbiota utilize Se for the expression of 
their own SePs, which may result in the competitive use of 
nutritional Se with the host (54). Additionally, through the animal 
model experiments, potential effects have suggested that the 
addition of dietary Se modulates gut microbial ecosystems and 

consequently enhances gut barrier functions as well as the SeP and 
antioxidant capacity (8, 55–57). However, the results on gut 
microbial diversities are inconsistent. In this study, there was no 
difference in alpha diversity of fecal microbiota, but different 
clusters were identified according to dietary MSe supplementation 
in beta diversity. These results may be due to the relatively minor 
effects of MSe on the majority of the microbiota of weaned pigs. 
On the other hand, the MSe sensitivity of specific microbial 
communities or low abundance communities may have resulted 
in their growth or inhibition. Consequently, dietary MSe did not 
alter the richness and evenness of the fecal microbiota of weaned 
pigs, but the overall composition was dissimilar. Therefore, to 
evaluate gut health, which is complex and has diverse function 
interactions, not only diversities but also the taxonomic 
abundance of each microbiota that constitutes the gut microbial 
communities should be considered.

We identified the microbiota that can be  characterized as 
regulated by dietary MSe down to the species level using LEfSe 
analysis. Increasing levels of dietary MSe elevated the abundance 
of genera Barnesiella and Megasphaera in the gut of weaned pigs, 
while decreasing the abundance of genus Lactobacillus. 
Additionally, the MSe5 group was characterized by the species 
Barnesiella intestinihominis and Megasphaera elsdenii included in 
the increased genera, whereas the non-MSe group was 
characterized by the species Lactobacillus ultunensis, Blautia 
wexlerae, and Limosilactobacillus reuteri. Genus Barnesiella and 
species B. intestinihominis regulate microbial composition by 
restricting the colonization of pathogenic antibiotic-resistant 
bacteria and improve anticancer effects by stimulating 
immunomodulation (58, 59). In addition, the genus Megasphaera 
and species M. elsdenii utilize intestinal lactic acid in pigs to 
produce short-chain fatty acids, which are used as energy sources 
for the host and play important roles in intestinal health (60). 
Moreover, antibiotic-sensitive M. elsdenii has a potential probiotic 
approach that delays the dominance of antibiotic-resistant strains 
(61). Meanwhile, contrary to our results, when pigs were fed 
OSe-enriched products or OSe diets, the abundance of Lactobacillus 
increased (16, 17, 30) or Megasphaera decreased (57), respectively. 
Resulting differences may be related to the sources and levels of 
dietary Se as well as biological and environmental factors in the 
experiment. Collectively, this study could not clearly determine the 
individual effect of dietary ISe or OSe on altering the fecal 
microbiota of weaned pigs, but the relative dominance of 
Barnesiella spp. (B. intestinihominis) and Megasphaera spp. 
(M. elsdenii) in weaned pigs fed dietary MSe may suggest an 
interaction on the nutritional utilization of Se in the gut. 
Interestingly, Se has potential antimicrobial effects and, in 
particular, it was reported that biogenic Se nanoparticles exhibited 
antibacterial activity against drug-resistant bacteria and had 
potential as antibacterial agents (4, 62, 63). Based on the 
characterized microbiota following MSe addition, it was 
hypothesized that these bacteria may be  less sensitive to the 
antibacterial activity of MSe or may have been metabolically 
utilized to stimulate the antibacterial activity. Moreover, these 
species were negatively correlated with the BUN of weaned pigs. 
The increase in microbial species directly or indirectly induced by 
dietary MSe may have preferentially altered the gut microbial 
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environment and then influenced the nutrient metabolic efficiency 
of the host tissues. In contrast, the species Blautia wexlerae 
identified in non-Se pigs showed a positive correlation with BUN, 
indicating the potential for modulation of gut health and systemic 
nutrient utilization in weaned pigs by dietary MSe addition. 
Furthermore, gut-mediated signals such as microbial metabolites 
are important for gut and host health. Thus, the metabolites or 
functions of the correlated microbiota may have influenced the 
health of the host by interacting with the gut–organ (e.g., liver and 
kidney) axis. Further studies evaluating the metabolic and 
functional profiles of gut microbiota following dietary MSe 
supplementation would be  helpful in establishing the effects of 
dietary MSe in pigs.

Conclusion

In conclusion, the present study demonstrated that 
supplementation of dietary MSe to the corn and soybean meal-
based non-Se-fortified diet enhanced serum Se concentration, 
modulated systemic health parameters, and modified fecal 
microbiota in weaned pigs. However, the MSe was not effective on 
growth performance and frequency of post-weaning diarrhea. 
Supplemental MSe contributed to the contrast effects of different 
addition levels on hematological indices, increased cytokine level, 
and improved nutritional metabolic indices following enhanced 
systemic Se level in weaned pigs. In addition, gut microbiota shifted 
by supplemental MSe correlated with improved blood biochemical 
index, suggesting the modulatory effects of dietary MSe on gut 
microbiota and host health. Overall, dietary MSe indicated potential 
immune and gut microbiota modulatory effects. However, excessive 
supplementation of Se can cause adverse effects such as toxicity. 
Similarly, an overdose of dietary MSe exceeding nutrient 
requirements may result in an imbalance of systemic responses and 
gut microbiota. Thus, exploring the interaction of gut microbiota 
with metabolic functional profiles in future studies would 
be beneficial to understand the potential effects of MSe. Moreover, 
considering additional approaches to SeP and antioxidant markers 
could efficiently reveal the MSe effects. Our results may provide a 
novel approach to the health of weaned pigs following dietary 
MSe addition.
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