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Magnetic resonance imaging (MRI) is widely used in human medicine, offering 
multiple contrast mechanisms to visualise different tissue types. It is also gaining 
importance in veterinary medicine, including diagnosing joint disorders. The menisci 
of the stifle joint play a crucial role in the development of osteoarthritis (OA), and 
multi-parameter MRI of the menisci may aid in early OA diagnosis, potentially 
improving therapeutic outcomes. In a previous ex  vivo study, we  measured 
T2 relaxation times in menisci of elderly dogs with mild histological signs of 
degeneration but no clinical symptoms of lameness. As no significant changes in 
T2 relaxation times were observed in relation to histological scores, the present 
study extends this investigation by exploring more advanced MR parameters—
including T1 relaxation time, T2* relaxation time, magnetisation transfer ratio 
(MTR), and magnetisation transfer saturation (MTsat)—to assess their potential 
for detecting early microstructural changes in the menisci. While T2* relaxation 
times and MTR showed no significant variation across histological scores, MTsat 
values increased with higher proteoglycan staining. In contrast, the apparent T1 
relaxation time (T1app) was lower in menisci with elevated proteoglycan scores 
and increased with higher cellularity scores. The correlation between MTsat and 
proteoglycan content suggests that MTsat, along with T1app, could be a promising 
parameter for characterising the extracellular matrix. However, further research 
is needed to validate these findings.
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1 Introduction

Osteoarthritis (OA) of the canine stifle joint is a predominantly degenerative joint disease, 
especially common in older dogs. OA frequently develops in the context of cranial cruciate 
ligament disease (1) and is closely associated with damage or degeneration of the menisci. 
These fibrocartilaginous structures play a critical role in absorbing compressive loads and 
maintaining joint stability, which helps to protect the articular cartilage from excessive wear 
(2–4). As OA progresses, it leads to structural changes in all joint components, including the 
medial and lateral menisci, making meniscal degeneration a key factor in OA onset 
and progression.
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Magnetic resonance imaging (MRI) is the gold standard for 
diagnosing knee disorders in humans, offering high-resolution, 
non-invasive imaging of soft tissues and bone structures. It is routinely 
employed to detect meniscal tears, ligament injuries, and cartilage 
degeneration (5–12). In veterinary medicine, although traditionally 
less common, the use of MRI is steadily increasing (13, 14). In addition 
to identifying macroscopic injuries (10, 11, 15), MRI is gaining 
importance in characterising tissue microstructures. Recent advances 
in quantitative and semi-quantitative techniques have proven 
particularly useful for assessing microscopic changes in humans (9, 
16–18) and animals (1, 19–21).

The menisci are composed of fibrochondrocytes embedded in an 
extracellular matrix primarily consisting of water, collagen, and 
proteoglycans (22–25). The collagen fibres, primarily type I  with 
smaller amounts of type II and III, are arranged in radial and 
circumferential patterns, allowing the menisci to resist multidirectional 
stresses. Proteoglycans, mainly aggrecan, make up  1–2% of the 
meniscal dry weight and contain glycosaminoglycan (GAG) chains 
such as chondroitin sulphate and keratan sulphate (22).

In osteoarthritic menisci, alterations in the extracellular matrix 
commonly lead to increased water content and mobility, which in turn 
influences the T2 relaxation time. Elevated T2 relaxation times have 
been documented in human meniscus degeneration (9, 10). In a 
previous ex vivo study, we measured T2 relaxation times in menisci 
from elderly dogs with mild histological degeneration but without 
clinical signs of lameness. The results showed no significant changes 
in T2 relaxation times with higher histological scores, suggesting that 
these early degenerative changes did not markedly affect the T2 values 
(26). We have now expanded our investigation to include T1 and T2* 
relaxation times, as well as magnetisation transfer (MT) techniques 
and the derived parameters, including magnetisation transfer ratio 
(MTR) and magnetisation transfer saturation (MTsat).

These advanced MR parameters are not yet part of routine clinical 
diagnostics in human or veterinary medicine, partly due to longer 
acquisition times and the complexity of data interpretation (27, 28). 
However, these techniques are gaining significance in medical imaging 
(27), and post mortem studies may help to identify promising 
candidates for future clinical applications. In the following, we will 
briefly address the potential advantages and added value of these 
techniques for the microtissue characterization of the menisci.

Given the observed increase in water content during meniscal 
degeneration, T2* relaxation times may behave similarly to T2 
relaxation times. Nebelung et al. reported higher T2* relaxation values 
correlating with increasing histological scores in humans, though 
primarily at the extreme ends of the spectrum (29). Furthermore, Lee 
et al. found a positive correlation between contact strain and T2* 
relaxation times in the articular cartilage of cattle (6). Although T2 
and T2* are related, T2* is more sensitive to magnetic field 
inhomogeneities, potentially providing additional insights into subtle 
tissue changes such as variation in fiber density and orientation. 
However, this heightened sensitivity poses challenges for data 
acquisition and interpretation, limiting its current clinical use.

T1 relaxation time, another parameter sensitive to water content, 
is valuable for assessing cartilage and soft tissues (8, 18, 30, 31), but its 
application to the meniscus remains largely in the research phase.

MT techniques have been widely applied to indirectly assess 
macromolecular content in various biological tissues (32–36). These 
methods exploit the interaction between free water protons and 

protons bound to macromolecules. By selectively saturating the bound 
protons, magnetisation is transferred to the free water protons, 
resulting in a reduction in signal intensity. The MTR quantifies the 
degree of this signal loss by comparing it to a data set acquired without 
the saturating radiofrequency pulse. Higher MTR values typically 
indicate denser macromolecular structures (12). Several studies have 
measured MTR in articular cartilage and menisci, reporting lower 
MTR values in tissues with reduced collagen and proteoglycan content 
(12, 30, 32).

A limitation of MTR is its lack of specificity. Various factors, such 
as inflammation and oedema, can influence the results. Additionally, 
MTR is susceptible to B0 (main magnetic field) and B1 
(radiofrequency) field inhomogeneities and highly sensitive to 
acquisition parameters, such as the choice of saturation pulse, which 
can lead to inconsistent values and makes standardisation across 
different studies or clinical environments challenging. To address 
these limitations, quantitative magnetisation transfer (qMT) methods 
have been developed. These techniques provide more specific and 
reproducible macromolecular parameters, such as the macromolecular 
pool size fraction and the exchange rate between free and bound 
protons. However, the advantages of qMT come at the cost of longer 
acquisition times and more complex data processing, limiting its 
availability in clinical practice.

Helms et  al. (37) introduced a technique called MTsat that 
bridges the gap between the simplicity of MTR and the complexity of 
full qMT imaging. MTsat incorporates corrections for B1 
inhomogeneities and T1 relaxation times, providing more accurate 
data but with shorter acquisition times compared to full qMT. MTsat 
is increasingly used in research settings, particularly for studying 
neurological disorders (38–41). To our knowledge, this technique has 
not yet been applied to examine musculoskeletal structures. 
We  hypothesize that MTsat may be  suitable for quantifying the 
macromolecular content of the meniscus, thereby offering more 
detailed insights into the remodeling processes of menisci 
during degeneration.

In this study, we determined the T1 and T2* relaxation times, 
along with MTR and MTsat, in menisci from elderly dogs as previously 
described. Our goal was to evaluate the sensitivity of these MR 
parameters in detecting relatively mild degenerative tissue changes in 
mostly normally aged menisci and to determine whether and how 
these parameters can identify specific types of tissue alterations. If 
successful, these early markers could enhance the understanding of 
osteoarthritis pathogenesis and pave the way for more effective 
treatment strategies.

2 Materials and methods

2.1 Study samples

The stifle joints used in this study have been described previously 
(26). One joint had to be excluded from the original cohort of 16 joints 
from 8 dogs due to image artefacts. In total, 30 menisci from 15 joints 
(15 medial, 15 lateral) were included. Only elderly dogs, aged between 
10 and 17 years, were selected for the study. None of the dogs had a 
history of hindlimb lameness or stifle instability. The reasons for the 
required euthanasia were unrelated to this study. Additional patient 
information can be found in Bunzendahl et al. (26).
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Based on the results of X-ray scoring using the modified Kellgren-
Lawrence scale (42, 43), 29% of the joints showed no radiographic 
evidence of osteoarthritis (score 0). The remaining 71% exhibited mild 
signs of osteoarthritis, corresponding to a score of 1.

Histological scoring was based on a system adapted from Sun 
et al. (44) and Pauli et al. (45), which includes individual scores for 
meniscus cellularity (0 to 3), collagen content (0 to 2), collagen 
organisation (0 to 3), and proteoglycan content (0 to 2). Additionally, 
a total score was calculated by summing up all the individual scores, 
resulting in a maximum possible total score of 10. Among the 30 
menisci, one was classified with a total score of 0, while the highest 
total score observed was 6 (n = 2).

2.2 MR imaging

Before MRI, the stifle joints were dissected from the surrounding 
tissue and fixed in 10% neutral-buffered formaldehyde. The joints, 
submerged in the formaldehyde solution were positioned in a flexible 
16-channel receive-coil (Variety, NORAS MRI products GmbH, 
Höchberg, Germany). All MR measurements were performed using a 
3 Tesla whole-body MR system (MAGNETOM Prisma, Siemens 
Healthineers, Erlangen, Germany).

Maps of T2*-relaxation time were estimated from 3D multi-echo 
gradient echo (GRE) images acquired with the following parameters: 
TR = 75 ms, TE = 5–64.5 ms in 8.5 ms increments (8 echos), flip angle 
α = 25°, and an isotropic resolution of 300 μm. The total acquisition 
time was 1 h and 14 min. The T2*-maps were calculated using an 
in-house pixel-wise mono-exponential fitting routine (MATLAB 
R2021a, Math Works, Natick, MA, United States).

To estimate MTR and MTsat, 3D single-echo GRE images 
(TR = 27 ms, TE = 4 ms and 300 μm isotropic resolution) with 
varying weightings were acquired. Weightings were achieved by 
applying an off-resonance saturation pulse (MT-weighted: MT flip 
angle = 500° and MT offset = 1,500 Hz) or by modifying the flip angle 
α (proton density (PD)-weighted: α = 7°; T1-weighted: α = 20°). The 
total acquisition time was 27 min per acquisition. MTsat and T1 
relaxation time were calculated as described in Helms et al. (37). Since 
the measured T1 relaxation time reflects both intrinsic tissue 
properties and the effects of the imaging technique, it is referred to as 
the apparent T1 relaxation time (T1app). T1app, T2*-relaxation time, 
MTR and MTsat were extracted from manually defined regions of 
interest (ROIs) that segmented the medial and lateral menisci. All 
segmentations were consistently performed by the same experienced 
observer on T2-weighted images using the software program 
ITK-SNAP.1 The segmentation process utilized sagittal, transverse, and 
coronal planes as previously described (26). An example of the 
segmentation is shown in Supplementary Figure 1.

2.3 Statistical analysis

Statistical analyses were conducted using the Python libraries 
statsmodels (version 0.14.1, www.statsmodels.org), scipy (version 

1 www.itksnap.org

1.10.1, www.scipy.org), and scikit-learn (version 1.3.0, http://scikit-
learn.org). To assess differences in MR parameters across the three 
values (0, 1, 2) of each histological score, a one-way ANOVA was 
performed using statsmodels.stats.anova. Given the limited sample 
size and deviations from normality assumptions for some 
parameters (scipy.stats.shapiro), the ANOVA results should 
be interpreted with caution and are presented here primarily for 
orientation purposes. To ensure transparency, individual data 
points are displayed in the corresponding figure, enabling readers 
to assess the data distribution and variability within and 
across groups.

Additionally, a linear regression analysis was conducted using 
sklearn.linear_model, and the Pearson correlation coefficient was 
calculated with scipy.pearsonr. The normality of the residuals from the 
regression analysis was evaluated using scipy.stats.shapiro.

A paired t-test was applied to compare findings between the 
medial and lateral menisci using scipy.ttest_rel. A p-value of less than 
0.05 was considered statistically significant.

3 Results

3.1 Delineation of menisci on differently 
weighted images and their derived maps

Figures 1–3 illustrate the achieved image quality, all derived from 
the same joint. The T2*-weighted images (Figure  1, GRE) clearly 
separate bone from softer tissues, including muscles and cartilage. As 
the echo time increases, the fibrous cartilage of the menisci (red 
arrow) becomes progressively better delineated from the hyaline 
articular cartilage (blue arrow), although the signal-to-noise ratio 
decreases. In the post mortem specimen, the best contrast was 
observed at TE = 22 ms. The improved delineation at longer TE is 
attributed to the shorter T2* relaxation time of fibrous cartilage 
compared to hyaline articular cartilage, as further confirmed by the 
calculated T2* relaxation time map (Figure 1, right).

Interestingly, the macromolecule-based contrast of magnetisation 
transfer-weighted imaging also clearly delineates fibrous and hyaline 
cartilage, whereas proton density-weighted (PDw-GRE) and 
T1-weighted (T1w-GRE) images show very little difference (Figure 2). 
The higher MT in fibrous cartilage is particularly evident on the 
calculated maps of MTR and MTsat (Figure  3). Notably, the 
T1-corrected MTsat map provides even better results than MTR, 
offering enhanced contrast and more precise tissue delineation.

3.2 Relationship between histological 
scores and MR parameters

The menisci included in this study exhibited histological scores 
for cellularity, proteoglycan content, collagen content, and collagen 
organisation ranging from 0 to 2. To assess whether these mild 
histological alterations were reflected in the MR parameters, the 
measured values were initially categorised according to the 
corresponding histological scores for each staining (Figure 4). A 
one-way ANOVA was performed primarily as an exploratory tool to 
provide an initial overview of potential differences in the MR 
parameters across the three scores. Additionally, the Pearson 
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correlation coefficient was calculated to assess the relationship 
between each histological score and the corresponding 
MR parameter.

While most MR parameters did not show significant differences 
across individual scores, T1app decreased with increasing 
proteoglycan staining (ANOVA: p < 0.003; Pearson correlation: 
r = −0.54, r < 0.003) and increased with higher cellularity scores 
(ANOVA, p < 0.05, r = 0.37, p < 0.05). In contrast, MTsat values were 
higher in menisci with elevated proteoglycan scores (ANOVA, 
p < 0.0003, Pearson correlation: r = 0.63, p < 0.0003).

Interestingly, collagen and proteoglycan content appeared to have 
opposite effects on MTsat. To explore this further, we calculated the 
ratio of the collagen and proteoglycan scores, adjusting all values by 
adding one to avoid division by zero. The results are shown in Figure 5, 
where MTsat significantly decreased with a higher collagen-to-
proteoglycan ratio (r = −0.56, p < 0.002).

To investigate a potential correlation between the severity of 
changes and the MRI parameters, we  summarised, as previously 
described (26), all individual histological scores into a total score and 
performed a correlation analysis between the total score and the MRI 
parameters. When analysing the lateral and medial menisci together, 
none of the parameters showed a significant correlation with the total 
score. A separate analysis of the lateral and medial menisci indicated 
a potential mild negative correlation between MTR and the total score 
in the medial menisci, though this trend did not reach statistical 
significance (r = −0.48, p = 0.08, Supplementary Figure 2).

3.3 Comparison of lateral and medial 
menisci

Due to their restricted mobility, medial menisci are more prone 
to injury and may be more susceptible to degenerative changes over 
time (46). The histological analysis of the menisci included in this 
study revealed no statistically significant difference between the 
medial and lateral menisci (Supplementary Table 1), except for the 
proteoglycan score. On average, the medial menisci exhibited more 
intense proteoglycan staining (higher score), with greater variability 
between samples (paired t-test, p = 0.006) (Figure  6, left). To 
determine whether these histological differences are reflected in any 
of the MR parameters, the values for T2*, T1, MTR, and MTsat were 
analysed separately for lateral and medial menisci. None of the 
investigated parameters showed a significant difference, although 
MTR displayed a trend toward lower levels in the medial menisci 
(paired t-test, p = 0.059), as shown in Figure 6. The mean and standard 
deviation for each MR parameter, separated by lateral and medial 
menisci, are summarised in Table 1.

4 Discussion

In this ex  vivo study, we  evaluated the detectability of mild, 
histologically confirmed degeneration in the menisci of elderly dogs 
with no history of hindlimb lameness using MRI. None of the 

FIGURE 1

Orthogonal slices acquired with a 3D multi-gradient echo (GRE) sequence show the best contrast between the fibrous cartilage of the menisci (red 
arrow) and the hyaline articular cartilage (blue arrow) at an echo time (TE) of 22 ms. The corresponding T2* maps confirm the shorter T2* relaxation 
time of the menisci compared to the articular cartilage.
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included dogs showed signs of meniscal tears or other 
macroscopically visible injuries. Therefore, the samples can 
be  considered representative of canine menisci from essentially 
normally aged dogs. Building on our previous study, which primarily 
investigated T2 relaxation times (26), we broadened our analysis to 
include T2* and T1 relaxation times, MTR, and MTsat. Our aim was 
to explore the suitability of these MR parameters for identifying mild 
changes in tissue microstructure associated with age-related 
degradation. Previous MRI studies on dog stifles have mainly 
concentrated on T2 and T2* weighted images or the corresponding 
relaxation time maps (1, 20, 21). To our knowledge, this is the first 
study on canine menisci that has additionally incorporated 
magnetisation transfer techniques.

Compared to hyaline cartilage, MRI of the menisci can be more 
challenging. Their lower water content, dense collagen network, and 
restricted proton mobility lead to rapid signal attenuation due to their 
short T2 and T2* relaxation times (29, 47). This also applies to post 
mortem imaging, as demonstrated in this study. Increasing the echo 
time of a gradient echo sequence, thereby enhancing T2* weighting, 
improved the delineation between hyaline cartilage and the menisci. 
However, excessively long echo times resulted in insufficient signal 
intensity. Furthermore, the MTR and MTsat values of the menisci 

were higher than those of hyaline cartilage, likely due to their dense 
collagen structure, offering a promising contrast mechanism for 
improved delineation.

The menisci analysed in this study exhibited relatively mild 
degenerative changes. The highest score observed in any histological 
staining did not exceed 2, and the highest total score was 6 (in 2 out 
of 30 menisci), with 10 being the maximum possible score. Our goal 
was to determine whether any of the tested MR parameters could 
reflect these subtle structural alterations. In summary, T2* relaxation 
times and MTR showed no significant differences across histological 
scores, while T1app and MTsat correlated with certain scores. These 
findings will be discussed in more detail below.

T2* relaxation time has been reported to increase following 
meniscal tears and other injuries. For instance, Koff et  al. (48) 
observed prolonged T2* and T2 values in menisci after surgical repair 
in an ovine model. However, in the case of milder alterations, the 
results are less clear.

Nebelung et  al. (29), for example, found no significant 
correlation between T2* values and histological degeneration in 
human menisci using the Williams grading system, which considers 
properties such as cellularity, matrix organisation and matrix 
staining intensity—a finding that aligns with our observations. A 

FIGURE 2

Comparison of images acquired with a 3D multi-gradient echo (GRE) proton-density weighted (PD) sequence with (MTw-GRE) and without (PDw-
GRE) magnetisation transfer preparation, as well as the corresponding T1 weighted images (T1w-GRE). The macromolecule-based contrast of MTw-
GRE provided the clearest delineation of fibrous and hyaline cartilage across all three orthogonal slices.
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relatively mild increase in extracellular water, as opposed to the 
pronounced changes seen in acute injuries, combined with almost 
preserved fiber density and orientation, may render T2* less sensitive 
to detecting mild, age-related alterations. Furthermore, T2* 
relaxation is highly susceptible to magnetic field inhomogeneities. 
For example, differences in tissue fixation post mortem may overlay 
the effects of mild degeneration, contributing to increased 
standard deviation.

Interestingly, Pownder et al. (47) reported longer T2* values in the 
caudal horn of the medial, histologically normal menisci of healthy 
beagles. We did not observe any significant differences between lateral 
and medial menisci, although we did not analyse the horns separately. 
A possible reason for these differing observations could be the MR 
sequences used. The ultrashort echo time (UTE) imaging employed 
by Pownder et al. is more prone to the magic angle effect. This effect 
occurs when collagen fibres are orientated at approximately 55 degrees 
to the main magnetic field (B0), resulting in an artificially increased 
signal due to the decreased dipolar interaction of protons in collagen-
rich tissues. The longer echo times used in our study may have 
minimised this effect.

Degeneration of the menisci is often accompanied by changes in 
collagen content and collagen organisation, making MT techniques a 
promising candidate for early detection. Zhang et  al. reported 
significantly decreased MTR values in menisci from human patients 
with severe osteoarthritis. However, quantitative MT techniques 
appear to be more effective in detecting milder alterations (12). MTR 
can be  affected by several confounding factors, including B1 
inhomogeneity and T1 relaxation. It reflects both the exchange rate 
between free and bound protons and the recovery of longitudinal 
magnetisation of saturated spins. Consequently, when T1 relaxation 

times are shorter, the MT effect—and thus the apparent 
macromolecular content—may be underestimated, and vice versa (49).

The absence of significant changes in MTR in our study may 
be  due to the relatively mild alterations in tissue properties. 
Additionally, the observed changes in T1 relaxation time could 
counterbalance the MT effect, potentially masking any detectable 
variations. Quantitative MT techniques aim to separate the effects of 
T1 relaxation from the MT effect, enabling parameters that more 
accurately reflect macromolecular content, such as the macromolecular 
fraction (MMF) or bound proton fraction (BPF).

Interestingly, Li et al. reported an increase in BPF associated with 
higher GAG levels in engineered cartilage (32), which aligns with our 
findings. The toluidine blue, which we used in this study to assess the 
amount of proteoglycans semi-quantitively, binds to the acidic GAGs 
within the proteoglycans. We  found that menisci with increased 
proteoglycan staining showed higher MTsat values, a marker for 
magnetisation transfer that is corrected for T1 relaxation (37).

The role of GAGs in the pathobiology of meniscal tissue remains 
debated, especially in dogs, with limited data available. Inflammatory 
processes may increase enzymes like matrix metalloproteinases 
(MMPs) and aggrecanase, leading to a reduction in proteoglycan 
content. Conversely, there may be  an initial rise in proteoglycan 
synthesis as the tissue attempts to repair, accompanied by the 
inhibition of degrading enzymes to support recovery (50, 51).

Notably, T1 relaxation time decreased with more intense 
proteoglycan staining and increased with higher cellularity scores, 
suggesting its potential for distinguishing between degenerative 
(reduced proteoglycan content, fibroblast-like cells) and regenerative 
processes (increased cellular activity and proteoglycan production) in 
the meniscus. Another promising diagnostic parameter may be the 

FIGURE 3

Maps of the magnetisation transfer ratio (MTR), apparent T1 relaxation time and magnetisation transfer saturation (MT saturation) calculated from the 
data sets shown in Figure 2. Both magnetisation transfer maps reveal differences between fibrous and hyaline cartilage, with the T1-corrected MTsat 
map offering enhanced contrast.
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collagen-to-proteoglycan ratio, as a decrease in this ratio was linked 
to lower MTsat values. However, further studies involving menisci 
with a broader range of pathological lesions are needed to validate 
these findings. Future research should also compare MTsat and T1app 
directly with T1ρ in relation to the collagen-to-proteoglycan ratio, 
given T1ρ’s sensitivity to proteoglycan loss.

Besides the limitation of including only menisci with relatively 
mild changes and not having either healthy or severely affected 
menisci involved, the applied histological scoring system may also 
limit the correlation between MRI and histological findings. More 
quantitative, continuous readouts would be preferable. Further studies 
aim to address these limitations by including a broader range of 
pathological changes, a larger sample size, additional histological 
methods and separate analyses of the meniscal body and horns.

Another limitation of this study is that all measurements were 
conducted post mortem on formalin-fixed tissue. Formalin affects the 
tissue’s hydration state and thereby influences relaxation times (26, 
29, 52). Additionally, measurements were performed at room 
temperature, which is lower than body temperature and impacts 
several MRI-relevant properties, such as exchange rate, diffusivity, 
and T1 relaxation time (53). On the other hand, post mortem MRI 
studies offer the advantage of longer measurement times, allowing for 
higher spatial resolution and the simultaneous use of multiple 
contrast mechanisms. So, this approach can be used to test a wide 
range of MR contrasts, with the most promising ones then applied 
and validated in vivo.

Finally, it should be noted that MR parameters are influenced 
by various factors, leading to limited overall specificity when 

FIGURE 4

Boxplot of MRI parameters across different histological scores. The apparent T1 relaxation time (T1app) is shorter in menisci with increased 
proteoglycan staining and longer in those with increased cellularity score. In contrast, MTsat values (magnetisation transfer saturation) are higher in 
menisci with elevated proteoglycan scores.
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detecting subtle or complex tissue changes. To achieve a more 
comprehensive characterization of meniscal degeneration—an 
essential factor in guiding therapeutic decisions—future studies 
should not only assess multiple MR parameters but also investigate 
their combined use. This integration could significantly enhance 
diagnostic specificity and precision. Based on our results, MTsat and 
T1app emerge as particularly promising parameters for future 
in  vivo studies, which should encompass a broad spectrum of 

meniscal alterations, extending beyond age-related changes in 
canine menisci.

5 Conclusion

In summary, none of the investigated contrast mechanisms 
showed high sensitivity or specificity for detecting mild changes in the 

FIGURE 5

MTsat (magnetisation transfer saturation) values in relation to collagen and proteoglycan content. Collagen and proteoglycan scores appear to have 
opposite effects on MTsat. Specifically, MTsat tends to decrease with lower collagen content (r = −0.16, p = 0.43), while it increases with increased 
proteoglycan staining (r = 0.62, p < 0.0003). This relationship is further reflected in lower MTsat values associated with a reduced collagen-to-
proteoglycan ratio (left, r = −0.56, p < 0.002).

FIGURE 6

Comparison of lateral and medial menisci. The medial menisci exhibited more intense proteoglycan staining (higher score) and greater variability 
between the analysed samples. Among the quantitative MRI parameters, only the magnetisation transfer ratio (MTR) indicated a potential difference, 
showing a trend toward lower values in the medial menisci. T1app – apparent T1 relaxation time, MTsat – magnetisation transfer saturation.

TABLE 1 Mean values and standard deviations (SD) of the respective magnetic resonance (MR) parameters (MTR – magnetisation transfer ratio, T1app – 
apparent T1 relaxation time, MTsat – magnetisation transfer saturation) in the medial and lateral menisci.

MR parameter Medial menisci (mean ± SD) Lateral menisci (mean ± SD) p-value

MTR 46.3 ± 1.7 ms 47.4 ± 1.5 ms 0.06

T1app 517 ± 121 ms 536 ± 88 ms 0.56

MTsat 0.08 ± 0.02 ms 0.08 ± 0.02 ms 0.24

T2* 21.8 ± 3.4 ms 20.9 ± 0.7 ms 0.27

A paired t-test was applied to assess significant differences, and the corresponding p-values are provided.
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tissue microstructure of canine menisci, as assessed by histological 
analyses using the modified scoring systems of Pauli (45) and Sun 
(44). However, the observed correlation between MTsat and 
proteoglycan content may be a promising candidate for characterising 
the extracellular matrix, though further studies are needed to validate 
this effect.
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