
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
SYSTEMATIC REVIEW article
Front. Vet. Sci.
Sec. Veterinary Imaging
Volume 12 - 2025 | doi: 10.3389/fvets.2025.1511522
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Deep learning (DL), a subfield of artificial intelligence (AI), involves the development of algorithms and models that simulate the problem-solving capabilities of the human mind. Sophisticated AI technology has garnered significant attention in recent years in the domain of veterinary medicine.This review provides a comprehensive overview of the research dedicated to leveraging DL for diagnostic purposes within veterinary medicine. Our systematic review approach followed PRISMA guidelines, focusing on the intersection of DL and veterinary medicine, and identified 422 relevant research articles. After exporting titles and abstracts for screening, we narrowed our selection to 39 primary research articles directly applying DL to animal disease detection or management, excluding non-primary research, reviews, and unrelated AI studies.Key findings from the current body of research highlight an increase in the utilisation of DL models across various diagnostic areas from 2013 to 2024, including radiography (33% of the studies), cytology (33%), health record analysis (8%), MRI (8%), environmental data analysis (5%), photo/video imaging (5%), and ultrasound (5%). Over the past decade, radiographic imaging has emerged as most impactful. Various studies have demonstrated notable success in the classification of primary thoracic lesions and cardiac disease from radiographs using DL models compared to specialist veterinarian benchmarks. Moreover, the technology has proven adept at recognising, counting, and classifying cell types in microscope slide images, demonstrating its versatility across different veterinary diagnostic modality.While deep learning shows promise in veterinary diagnostics, several challenges remain. These challenges range from the need for large and diverse datasets, the potential for interpretability issues and the importance of consulting with experts throughout model development to ensure validity. A thorough understanding of these considerations for the design and implementation of DL in veterinary medicine is imperative for driving future research and development efforts in the field. In addition, the potential future impacts of DL on veterinary diagnostics are discussed to explore avenues for further refinement and expansion of DL applications in veterinary medicine, ultimately contributing to increased standards of care and improved health outcomes for animals as this technology continues to evolve.
Keywords: machine learning, deep learning, neural networks, Computer Vision, Automated disease detection, image analysis, digital pathology
Received: 15 Oct 2024; Accepted: 24 Feb 2025.
Copyright: © 2025 Xiao, Dhand, Wang, Hu, Thomson, House and Khatkar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Mehar S Khatkar, The University of Sydney, Darlington, NSW 2006, New South Wales, Australia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.