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Climate change is disrupting the semi-arid agricultural systems in Southern Africa, 
where livestock is crucial to food security and livelihoods. This review evaluates the 
bioenergetic and agroecological scope for climate-adaptive livestock nutrition in 
the region. An analysis of the literature on climate change implications on livestock 
nutrition and thermal welfare in the regional agroecological context was conducted. 
The information gathered was systematically synthesized into tabular summaries of 
the fundamentals of climate-smart bioenergetics, thermoregulation, livestock heat 
stress defence mechanisms, the thermo-bioactive feed components, and potentially 
climate-smart feed resources in the region. The analysis supports the adoption 
of climate-smart livestock nutrition when conceptualized as precision feeding 
combined with dietary strategies that enhance thermal resilience in livestock, and 
the adaptation of production systems to the decline in availability of conventional 
feedstuffs by incorporating climate-smart alternatives. The keystone potential 
climate-smart alternative feedstuffs are identified to be the small cereal grains, such 
as sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) as dietary 
energy sources, the native legumes, such as the cowpea (Vigna unguiculata) and 
the marama bean (Tylosema esculentum) as protein sources, wild browse Fabaceae 
trees such as Vachellia spp. and Colophospermum mopane, which provide dry 
season and drought supplementary protein, minerals, and antioxidants, the non-
fabaceous tree species such as the marula tree (Sclerocarya birrea), from which 
animals consume the energy and electrolyte-rich fresh fruit or processed pulp. 
Feedstuffs for potential circular feeding systems include the oilseed cakes from 
the macadamia (Macadamia integrifolia) nut, the castor (Ricinus communis), and 
Jatropha (Jatropha curcas) beans, which are rich in protein and energy, insect 
feed protein and energy, primarily the black soldier fly larvae (Hermetia illucens), 
and microbial protein from phototrophic algae (Spirulina, Chlorella), and yeasts 
(Saccharomyces cerevisiae). Additives for thermo-functionally enhanced diets 
include synthetic and natural anti-oxidants, phytogenics, biotic agents (prebiotics, 
probiotics, synbiotics, postbiotics), and electrolytes. The review presents a conceptual 
framework for climate-smart feeding strategies that enhance system resilience 
across the livestock-energy-water-food nexus, to inform broader, in-depth research, 
promote climate-smart farm practices and support governmental policies which 
are tailored to the agroecology of the region.
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1 Introduction

Climate-smart agriculture (CSA) promotes agricultural practices 
which enhance food security and livelihoods while mitigating and 
adapting agro-systems to the challenges posed by climate change. This 
broad climate smart approach seeks to build climate resilience into 
agricultural systems, to ensure they are equipped to withstand extreme 
climate-related disruptions (1, 2). It integrates climate-adaptation 
strategies, and mitigation of the causal factors (3, 4). Maluleke and 
Mokwena (5), Maluleke and Mokwena (6) indicated that semi-arid 
Southern Africa faces uniquely adverse climate impacts due to its 
highly climate-dependent livestock systems. This is compounded by 
extreme temperatures, prolonged droughts, and erratic rainfall which 
are common in the region (7). These adverse climatic shifts exacerbate 
the inherent water scarcity, heat stress on livestock, and reduce forage 
and food crop yields, significantly compromising established precision 
livestock nutrition, and may offset the genetic progress in the 
productivity of livestock and food crops (8, 9). The shortage of high-
quality feeds in turn increases producer reliance on less efficient 
alternatives (10). In the animal body, energy efficiency, and inversely, 
the heat increment of feeding, and the cellular defences against heat-
induced oxidative damage are all strongly influenced by feed quality 
(11). As stated by Sammad et  al. (12), understanding the dietary 
influences on the animal’s thermoregulation, and the impact of heat 
stress on its health and productivity is crucial to climate-smart 
feeding. Therefore, addressing climate change impacts on the 
production of high-quality feedstuffs is crucial to supporting livestock 
thermal welfare, sustenance of high productivity, reducing greenhouse 
gas (GHG) emissions, and enhancing systems’ sustainability (13).

Millions of people in Southern Africa depend heavily on livestock 
production for their livelihoods, supporting jobs, economic stability, 
and food security. The livestock systems in the area are varied and 
include commercial operations, pastoral systems, and smallholder 
mixed crop-livestock systems (14). However, the negative 
consequences of climate change, characterized by extended droughts, 
unpredictable rainfall patterns, and rising temperatures, pose a 
growing threat to these systems. The productivity and resilience of 
livestock are weakened by these climate stressors, which also increase 
competition for water resources, decrease pasture productivity, and 
worsen feed shortages (15). Due to their reliance on massive grazing 
systems and rain-fed agriculture, Southern Africa’s semi-arid 
landscapes are especially susceptible to these effects. For instance, 
extended droughts in nations such as Zimbabwe, Namibia, and 
Botswana have resulted in a sharp decline in the productivity of the 
rangelands, making different ruminant feeding techniques necessary 
to sustain the livestock. In smallholder systems, the lack of reasonably 
priced, high-quality feeds during dry seasons frequently leads to 
decreased output and poor animal health, which fuels poverty cycles.

These difficulties highlight how urgently climate-smart feeding 
methods adapted to Southern African environments are needed. To 
address these questions, this review introduces the concept of climate-
smart livestock nutrition (CSLN). This involves the selection of 
feedstuffs based on both nutrient content and thermo-functional 
properties, and the climate change implications of their production 
and utilization, to formulate diets that promote thermal regulation, 
reduce oxidative stress, and minimize GHG emissions, to ensure 
viable and sustainable feed resources. Climate-smart livestock feeding 
incorporates novel techniques and feed materials to improve 

sustainability, resilience, and production (16). Utilizing locally 
accessible feed resources, such as crop wastes, agro-industrial 
byproducts, drought-tolerant forage species, and cutting-edge feed 
technologies such as insect-based proteins and biofortified feedstuffs 
are possible options to enhance CSLN through climate mitigation by 
circular feed utilization (17, 18).

To succeed, CSLN requires evidence-driven policies to support 
research, promote best practices, including the enforcement of 
regulations on livestock-linked GHG emissions, land, water, and 
energy use (1). This review explores the biophysical basis and scope 
for CSLN and outlines a conceptual framework for its implementation 
in semi-arid Southern Africa, to guide research, farm practices, and 
policy development.

2 Livestock production, 
climate change, and climate-smart 
agriculture

The Earth’s atmosphere is primarily composed of nitrogen (78%), 
oxygen (21%), and trace (1%) quantities of other gases, including argon, 
carbon dioxide (CO2), methane (CH4), and water vapour (19). The 
phenomenon of rising global average temperatures, or global warming is 
attributed to the green-house effect of water vapour, carbon dioxide, 
methane, nitrous oxide and ozone, the greenhouse gases (GHG) which 
trap heat from the sun, leading to an increase in the earth’s surface 
temperature, to influence the earth’s weather patterns (rainfall, 
temperature droughts), a phenomenon described as climate change (20). 
Climate-smart agriculture is a concept that is contiguous to the older 
notion of sustainable agriculture, which emerged in the context of adverse 
climate change. It provides an over-arching conceptual framework for 
transforming contemporary agriculture to sustain food security despite 
climate change (2). The FAO (1) defined CSA as multifaced, to encompass 
a sustainable increase in agricultural productivity, reduction of climate 
change vulnerability (adaptation) and GHG emissions (mitigation), while 
enhancing food security and livelihoods.

Livestock production plays an important role in providing 
livelihoods and supporting economies at the household, local, 
national and global scales. Therefore, the sector sits at the center of 
climate-smart agriculture, for food security (21). The debate on the 
contribution of livestock production to climate change remains 
controversial (22). Estimates suggest a contribution of as much as 
18% of the GHG emissions into the earth’s atmosphere, mostly 
through enteric fermentation, manure degradation and feed 
production (10). The GHG emissions depend on the livestock 
species, systems and practices in relation to inefficiencies, and 
intensification. Thornton and Herrero (10) reported that 
approximately one third of the emissions are agronomic (land use 
and feed production), one-third from manure (nitrous oxide, 
methane) management, a quarter from enteric methane, and the rest 
from other livestock-related functions. Herrero et al. (23) estimated 
that two-thirds of the global emissions come from ruminant systems 
in the developing world. There is scant data on African livestock 
systems. However, in sub-Saharan Africa, Graham et  al. (24) 
indicated that typically high emissions per unit product are 
attributed to low animal productivity, poor animal health, and 
low-quality feeds. This scenario presents scope to mitigate climate 
change through efficient feed production and feeding, instead of 
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scaling down production and consumption of the much-needed 
animal products.

3 Agroecological scope of semi-arid 
Southern Africa

Climate-Smart Livestock Nutrition (CSLN) is novel in its 
emphasis on the role of livestock nutrition in mitigating adverse 
climate change impacts on livestock and the production systems. It 
seeks to enhance thermal tolerance in livestock, and to reduce 
greenhouse gas emissions (GHG) from enteric or rumen fermentation, 
from upstream inputs into feed production such as such fertilizers and 
irrigation, and from downstream (manure decomposition) emissions. 
The climate-smart livestock production guidelines of the Food and 
Agricultural Organization (25) effectively support three primary 
objectives to anchor the CSLN approach:

 • Adapting to declining feed availability and quality: Identification 
of climate resilient crops and varieties, and efficient utilization of 
feed resources, to address the increasing scarcity and cost of 
conventional feeds, while maintaining dietary quality.

 • Enhancing livestock resilience to heat stress: Utilization of dietary 
ingredients which contain natural mitigants to thermal stress 
such as antioxidants and electrolytes, to augment body 
mechanisms for coping with extreme temperatures, and reduce 
oxidative stress. Additional nutritional interventions include, for 
example, changing the roughage-concentrate ratio (ruminants) 
and supplementary dietary fats to ensure adequate energy intake 
by all livestock despite heat stress.

 • Minimizing the environmental impact: Develop sustainable feed 
production, processing and utilization technologies, and increase 
reliance on circular feed systems, to reduce the ecological 
footprint of livestock production.

To achieve its objectives in the semi-arid Southern African 
ecosystems, CSLN demands agro-ecological zone-specific strategies 
which are tailored to the unique challenges. The agro-ecology is 
characterized by low and highly variable rainfall (300–600 mm 
annually), and a mix of soil and vegetation conditions which impose 
significant constraints to productive, sustainable agriculture. The region 
increasingly experiences extended dry seasons, with the rain seasons 
and unpredictable rain, which exacerbates water stress, with high 
temperatures exceeding 40°C, which further intensify evapotranspiration 
(26, 27). Climate models project that temperatures will rise faster than 
the global average, particularly in the low-altitude semi-arid to arid 
zones, with mean surface warming surpassing global trends in all 
seasons (28–30). Regions such as the northwest South Africa, Botswana, 
and Namibia are particularly vulnerable to this accelerated warming (31).

Smallholder farmers in these areas rely on mixed crop-livestock 
systems, where sheep, goats, and cattle play critical roles in cultural, 
economic, and food security needs. However, natural rangelands and 
supplementary crop byproducts, the primary feed resources, are often 
inadequate during prolonged dry periods. To address these challenges, 
innovative strategies such as water-saving techniques, forage 
diversification, and drought-resilient crops are increasingly adopted, 
which provide potential climate-smart animal nutrition solutions to 
these harsh conditions.

Livestock systems in semi-arid Southern Africa are particularly 
vulnerable to the disruptive effects of climate change, particularly 
rising temperatures, prolonged droughts, and erratic rainfall patterns 
(5, 7). These changes exacerbate water scarcity, heat stress, and 
declines in forage and crop yields, negatively impacting livestock 
nutrition and thermal welfare. The retrogressive effects on precision 
livestock nutrition compel producers to turn to unconventional feed 
resources, often inefficient, to sustain or intensify production. This 
practice, however, risks increasing livestock-generated greenhouse gas 
(GHG) emissions (32), which demands urgency in adopting strategic 
interventions such as those advocated by CSLN.

Heat stress poses a particularly significant challenge, with ambient 
temperatures frequently exceeding the thermal comfort zones of 
livestock species. For instance, poultry experience stress above 26°C, 
while cattle are affected when temperatures rise beyond 25–30°C (33–
35). Heat stress reduces feed intake, metabolic efficiency, and overall 
productivity, resulting in financial losses and animal welfare concerns. 
The CSLN approach addresses these issues by incorporating heat-
mitigating strategies, such as diets enriched with antioxidants, 
electrolytes, and essential nutrients, to enhance livestock thermotolerance.

Beyond thermal resilience, CSLN contributes to broader climate 
adaptation by ensuring livestock remain productive in sustainable 
systems despite extreme climatic conditions to support food security 
and economic stability in vulnerable regions. Effective promotion of 
CSLN practices requires targeted investments, including funding for 
the development of heat-mitigating feed additives, integrating them 
into smallholder and commercial feeding systems, and providing 
financial incentives to encourage adoption. Additionally, robust 
support for farmer training programs and extension services is crucial 
to scaling up CSLN interventions and achieving widespread impact.

4 Conceptual framework for 
implementing climate-smart livestock 
nutrition in Southern Africa

A framework for the implementation of effective CSLN should 
integrate the underpinning principles of nutritional bioenergetics, 
thermoregulation, oxidative stress, and sustainable feed systems to 
address the three core objectives: adapting to declining feed 
availability, enhancing livestock resilience to heat stress, and 
minimizing environmental impact. A possible conceptual framework 
is outlined in Table 1.

4.1 Bioenergetics of climate-smart 
livestock nutrition

Effective climate-smart livestock nutrition solutions require 
adequate understanding and application of the fundamental 
bioenergetics. Depending on the species, the thermal homeostasis and 
nutritional bioenergetics of livestock are profoundly influenced by 
dietary factors. Diet influences the animal’s thermal regulation, including 
modulation of heat stress as well as defence mechanisms at the molecular, 
cellular and higher-levels (36). Bioenergetics is therefore, fundamental 
to the optimum dietary management of the thermal welfare of livestock 
(37). An array of complex dietary factors is known to influence energy 
extraction from feeds through both the quantum, and profile of energy 
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TABLE 1 A conceptual framework for climate-smart livestock nutrition interventions in Southern Africa.

Principles Concepts Mechanistic pathways Impact Climate-smart interventions Indicators References

Bioenergetics
Energy efficiency & heat 
production

Dietary inefficiencies increase heat 
production, intensifying heat stress and 
reducing productivity.

Heat stress from inefficient 
energy use increases the 
environmental heat load to 
limit performance,

Formulate energy-efficient diets with low-
heat increment feedstuffs, feedings in cooler 
parts of the day.

Serum glucose, lactate, rectal 
temperature.

(10, 13)

Metabolic & hormonal 
acclimation

Endocrine balance during heat 
stress

Heat stress alters hormone levels, 
reducing feed intake and energy 
balance.

Imbalance in energy 
availability reduces growth 
and reproduction.

Manage adverse responses though dietary 
modifications

Insulin, cortisol, T3, and T4 levels. (8, 12)

Thermoregulation Neuroendocrine signaling
Heat stress disrupts neuroendocrine 
signals affecting metabolism and 
behavior.

Altered signaling reduces 
feed intake and changes 
metabolic responses.

Manage adverse responses though dietary 
modifications

Dopamine, norepinephrine, 
cortisol levels.

(7, 10)

Oxidative stress
Reactive oxygen species (ROS) 
control

Heat stress elevates ROS levels, causing 
cellular oxidative damage.

Oxidative damage decreases 
immune responses and 
overall productivity.

Supplement diets with antioxidants (vitamin 
E, curcumin) to neutralize ROS and reduce 
oxidative stress.

ROS levels. (9, 13)

Heat shock response Heat shock proteins (HSPs)
HSPs protect cells from heat-induced 
damage by stabilizing protein structure.

Reduced HSPs increase 
susceptibility to cellular 
damage and stress.

Nutritional approaches to support HSP 
regulation using supplements to enhance 
resilience to heat stress.

HSP70 levels, HSF-1 activity. (11, 18)

Epigenetics
Epigenetic modifications for 
thermal tolerance

Heat triggers DNA methylation and 
histone protein modifications to 
influence gene expression.

Epigenetic alterations can 
either enhance or reduce 
stress resilience.

Use epigenetic markers in selective breeding 
for thermal tolerance; methyl donors such as 
choline, folate, betaine in diets to modulate 
gene expression.

DNA methylation patterns, histone 
acetylation levels.

(1, 10)

Nutrigenomics
Nutrient effects on gene 
expression

Nutrients regulate genes which control 
stress tolerance, metabolism, and 
immunity.

Improves feed efficiency, 
heat resilience, and immune 
function.

Supplement with selenium, omega-3 fatty 
acids, and antioxidants to modulate stress-
related gene expression.

Gene expression levels (HSPB8, 
SERPINH1), antioxidant enzyme 
activity.

(7, 8)

Nutrigenetics
Genetic variation & dietary 
responses

Genetic polymorphisms affect nutrient 
metabolism and thermal tolerance

Inefficient nutrient 
absorption or metabolism 
due to genetic variation can 
reduce performance in heat 
stress.

Tailor diets to match genetic profiles 
(precision feeding) to improve nutrient 
efficiency and stress resilience.

Nutrigenetic markers for nutrient 
metabolism and heat resilience.

(10, 12)

Sustainable feeds Climate-smart feedstuffs
Climate change reduces conventional 
feed availability, increasing the use of 
alternative, sustainable feed sources.

Decreased feed availability 
leads to reduced 
productivity and higher 
methane emissions.

Use insect feed, climate-resilient forage crops, 
and alternative protein sources to lower 
greenhouse gas (GHG) emissions and 
improve resilience.

Feed quality (protein, fiber 
content), methane emissions.

(1, 17)

Antioxidant defence Exogenous antioxidants
Bioactive dietary compounds reduce 
oxidative stress and enhance cellular 
protection.

Elevated oxidative stress 
reduces animal health, 
productivity, and immune 
function.

Use of supplements to enhance antioxidant 
defences.

Plasma antioxidant levels, 
oxidative stress biomarkers.

(9, 13)

Water-electrolyte 
balance

Hydration & electrolyte 
homeostasis

Heat stress accelerates fluid loss and 
causes electrolyte imbalances

Dehydration and 
imbalances lead to reduced 
productivity and health.

Supplement electrolytes (Na, K, Cl) to 
maintain hydration and heat tolerance.

Plasma osmolality, Na+, K+, 
Cl − levels, feed intake, body 
weight and feed efficiency

(3, 12)
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substrates, and the intermediates, as they flow into central metabolism, 
to determine the overall dietary energy efficiency, and inversely, heat 
production (38). These bioenergetic interactions are summarized in 
Table  2. Therefore, climate-smart feed characterization and diet 
formulation should prioritize the influences on energy consumption and 
efficiency, and the associated heat production, in relation to heat stress, 
and its effect on the animal’s biochemical and physiological functions 
which determine productivity. In semi-arid Southern Africa, livestock 
are frequently subjected to environmental stresses such as heat and feed 
scarcity, factors which can drastically change their energy needs and 
utilization (15). For example, increased thermoregulation due to heat 
stress can increase maintenance energy demands, reducing the energy 
available for growth, reproduction, or milk production.

4.2 Metabolic and hormonal acclimation to 
a hot environment

Reduced feed intake is the direct mechanism through which heat 
stress affects production and reproduction, coupled with altered 
endocrine status, increased maintenance requirements, decreased 
rumination and or nutrient absorption (39). These mechanisms 
contribute to a net decrease in nutrient/energy assimilation. For 
example, lactating heifers lose body weight during periods of extreme 
heat stress, which is at least partially explained by a drop in energy 
intake, coupled with an increase in energy expenditure for 
maintenance (40).

Hormones are linked to the body’s acclimatory reaction to heat 
stress (39). These include growth hormone, prolactin, thyroid 
hormones, glucocorticoids, and mineralocorticoids. The thyroid 
hormones, T4 and T3, have drawn the most interest because they 
constitute a key acclimatization mechanism. Mammals that have 
evolved to warmer temperatures are known to follow the pattern of 
decreased endogenous thyroid hormone levels during heat acclimation 
as a means of reducing endogenous heat generation (41). Research 

shows that insulin is also involved in acclimation with animals under 
heat stress showing greater insulin levels, even if they consume less 
feed. The function of insulin in inducing heat shock proteins may 
partially explain this conundrum (42). For example, HSP70 expression 
is positively correlated to circulating insulin levels (43), and adaptation 
to hypoxia requires both HSP90 and insulin responses (44).

The neurotransmitters dopamine and norepinephrine are involved 
in modulating thermoregulation during heat stress (45). They influence 
the physiological and behavioral responses to thermal stress, which 
makes them relevant to the overall stress management in livestock. 
Understanding neuroendocrine pathways is therefore essential for 
developing effective climate-smart feeding strategies. By targeting these 
pathways, it is possible to optimize feeding practices to enhance animals’ 
resilience to heat stress (34). The central nervous system plays a major 
role in hormone regulation. The hypothalamic–pituitary-thyroid axis, 
the sympathetic-adreno-medullary axis, the hypothalamic–pituitary–
adrenal axis (HPA), and the hypothalamic–pituitary-gonadal axis can 
all be  affected by heat stress. The primary neurosecretory systems 
triggered by stress include the HPA and sympathetic-adrenal-medullary 
(SAM) system, among others (46, 47). As reported by Beede and Collier 
(48), when animals are thermally challenged, the endocrine system, a 
vital component in the coordination of metabolism, undergoes 
significant modifications. Collier et  al. (39) stated that the 
hypothalamic–pituitary–adrenal axis represents a crucial element of the 
body’s acclimatory reaction to heat stress while the thyroid hormones, 
specifically T3 and T4, are essential for animals’ proper growth, 
differentiation, and metabolism. They are essential for controlling body 
temperature, energy intake, and thermal metabolic adaptability (49). 
Elevated ambient temperature dramatically diminishes T3 secretion 
while augmenting T4 synthesis in chickens (50). Yousef and Johnson 
(51) identified a synergistic impact between the decrease in thyroid 
hormones and the decreased level of growth hormone in plasma which 
aids the body’s urge to minimize heat production. Thyroid atrophy and 
diminished secretory function, and other thyroid-related conditions 
may be direct impacts of heat stress (52).

TABLE 2 Bioenergetics, heat stress, and thermoregulation in livestock.

Bioenergetic factors Thermal responses and mechanisms References

Thermal stress

Climate-induced heat stress: Increased frequency of extreme temperatures in prolonged heatwaves negatively 

affects livestock welfare and productivity.
(39, 40)

Oxidative stress: Heat stress enhances reactive oxygen species (ROS) production, leading to cellular lipid 

peroxidation and protein denaturation, which impair growth; mitochondria are primary ROS sources.
(61, 63)

Altered energy metabolism: Elevated maintenance energy demands coupled with decreased feed intake and 

nutrient absorption compromise growth under heat stress.
(40)

Neuro-endocrine regulation

Neuroendocrine responses: Dopamine and norepinephrine modulate stress responses via the hypothalamic–

pituitary–adrenal (HPA) axis and sympathetic-adrenal-medullary (SAM) systems.
(45)

Endocrine responses: Reduced levels of T3 and T4 hormones lower heat production; increased insulin promotes 

heat shock protein (HSP) expression, enhancing stress adaptation.
(39, 42)

Molecular defences

Heat Shock Proteins (HSPs): HSPs act as molecular chaperones to facilitate proper protein folding and prevent 

aggregation during thermal stress; HSF-1 regulates HSP expression and serves as a biomarker for resilience.
(67)

Antioxidant defense systems:

(78)Enzymatic: Key enzymes (SOD, catalase, glutathione peroxidase) convert ROS into less harmful molecules, 

protecting cells from oxidative damage.

Non-Enzymatic: Plant-derived and synthetic bioactive dietary compounds such as glutathione, vitamin E, 

polyphenols, and flavonoids neutralize ROS and support cellular repair, mitigating oxidative stress.
(74, 76, 87, 205)
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One of the primary hormones involved in the stress response is 
cortisol which primarily supports gluconeogenesis by promoting 
protein metabolism (53), which turns proteins into amino acids. 
Sejian and Srivastava (54) pointed out that in the liver, muscle, and 
adipose tissue, the cortisol produced by the adrenal cortex promotes 
the breakdown and release of glucose, amino acids, and fat. Almost 
every biological function that is impacted by stress is regulated by 
cortisol, including behavior, metabolism, immunological response, 
and reproduction. The goal of these hormonal reactions is to increase 
the capacity to withstand stress. Elevated blood cortisol levels due to 
high temperatures have been reported to slow down the rate at which 
heat is produced metabolically (54, 55).

Somatostatin is stimulated by corticotropin-releasing hormone, 
which may be a major mechanism explaining heat-stressed animals’ 
decreased thyroid and growth hormone levels (56). Glucocorticoids in 
dairy cattle fall during acclimatization at high temperatures and were 
lower in animals that had been thermally acclimated than in controls (57, 
58). Heat stress stimulates the hypothalamic axis, which reduces animal 
feed intake by upregulating the production of adiponectin and leptin as 
well as the expression of their receptors (59). The receptor and expression 
of the Neuritin B gene could be enhanced by the thermal challenge (60).

4.3 Oxidative stress and cell damage

A biological system constantly produces free radicals, some of 
which are necessary for physiological functions. The mitochondria are 
the primary location of aerobic cellular reactive oxygen species (ROS) 
generation and use more than 90% of the cellular oxygen in 
undisturbed cells (61, 62). Enzymatic oxidase reactions and the 
endoplasmic reticulum’s microsomal systems produce ROS (63). 
When the body produces excessive ROS, lipid peroxidation occurs, 
which negatively impacts organelles and cell membranes. Superoxide 
anions, hydrogen peroxide, and hydroxyl radicals are examples of 
reactive oxygen species that are produced in the mitochondria and 
function as signaling intermediaries (64).

4.3.1 Heat shock proteins (HSPs)
Heat shock proteins (HSPs) are molecular chaperones which 

protect cells from heat-induced damage by aiding in protein folding 
and preventing aggregation (65). These proteins are upregulated in 
response to various forms of stress, including heat stress, and play a 
critical role in cellular protection and recovery (66). Heat Shock 
Factor-1 (HSF-1) is a key regulator of the heat shock response. It 
orchestrates the transcription of heat shock proteins by binding to heat 
shock elements (HSEs) in the DNA, thus initiating the cellular stress 
response (67). In climate-smart feeding, monitoring HSP levels and 
analyzing HSF-1 activity or its binding to HSEs can serve as indicators 
of an animal’s capacity to activate protective mechanisms against 
thermal stress (68).

4.3.2 Antioxidant enzyme defence systems
Under normal conditions, antioxidant enzymes such as catalase, 

glutathione peroxidases, peroxiredoxins, and superoxide dismutases 
constantly remove produced ROS (64). When reactive oxygen species 
are overproduced under stressful situations, hydrogen peroxide is 
released, creating oxidative stress. This can overload the antioxidant 
defense system and lead to an imbalance in the redox system (62, 

69–71). In addition to increasing plasma corticosterone levels in 
chickens, stress activates the hypothalamic pituitary adrenal axis (72).

Exogenous and endogenous antioxidants in biological antioxidant 
defense systems are divided into enzymatic and non-enzymatic 
categories, which include ROS/RNS scavengers, transition metal 
chelators, oxidative enzyme inhibitors, and antioxidant enzyme 
cofactors (73). Low molecular weight antioxidants and antioxidant 
enzymes are the two main categories of antioxidants. Glutathione 
peroxidase, catalase and superoxide dismutases and other enzymes are 
among the most significant antioxidants. Glutathione, flavonoids, 
carotenoids, vitamin E, vitamin C and other antioxidants are among 
the most significant low molecular weight antioxidants. These two 
primary antioxidant systems are crucial in preserving the equilibrium 
between antioxidant and pro-oxidant agents while reducing oxidative 
stress (74). Antioxidants work by directly scavenging oxidizing 
radicals and allowing organisms to repair their damaged biomolecules. 
Under extreme stress, their activities are restricted (71, 75, 76). A class 
of proteins called antioxidant enzymes, also known as metalloproteins, 
catalyze the conversion of reactive oxygen species (ROS) and/or their 
metabolites into more stable, generally less dangerous species. 
Antioxidant enzymes are a crucial defensive mechanism against 
oxidative stress caused by reactive oxygen species (ROS), which 
damages cell components (77).

While non-enzymatic antioxidants include peroxide 
decomposers, oxidative enzyme inhibitors, metal chelators, singlet 
oxygen quenchers, and/or ultraviolet radiation absorbers and 
enzymatic antioxidants play a protective role by breaking chains of 
free radicals and scavenging them (73). Superoxide dismutase was 
the first line of defense against free radicals and maintained cellular 
redox equilibrium among the potential reactive oxygen species 
scavengers (78). The SOD is therefore essential for the early stages 
of defense against ROS-mediated oxidative damage. By facilitating 
the transformation of superoxide into oxygen and hydrogen 
peroxide, SOD is an essential component of the defense against 
free radicals.

Because aerobic organisms produce this enzyme broadly, it is an 
essential part of the first line of defense against oxidative stress (78). 
There are three different isoforms of SOD: extracellular SOD3, 
mitochondrial SOD2, and cytoplasmic SOD1. Most eukaryotic cells 
have SOD2 and SOD3, with SOD3 being the main isoform identified 
in the cardiovascular system (79). Nuclear genes encode manganese 
superoxide dismutase, or SOD2, an antioxidant enzyme. Mutations or 
disruptions in SOD2 function have been linked to changes in the 
structure of the mitochondria seen in diseases such as heart failure 
(80). Reduced SOD2 levels cause ROS to build up and then excessive 
4-hydroxynonenal synthesis in the mitochondria (64).

4.3.3 Superoxide dismutase activity and gene 
expression

Seasonally appropriate feeding, providing feeds high in fiber and 
fats, supplementing with vitamins and minerals, and offering cold 
drinking water are some of the dietary changes that promote 
activities of superoxide dismutase enzyme (68). The orange-yellow 
lipophilic polyphenolic compound curcumin is extracted from the 
rhizome of herbs. Its antioxidant and anti-inflammatory qualities 
have led to its recognition for its important role in the treatment and 
prevention of cardiovascular diseases (81). Through a variety of 
methods, the bioactive substance curcumin protects the 
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cardiovascular system from OS. In order to attenuate OS, lower ROS 
levels, and restore cardiac SOD levels, two important processes 
implicated are the activation of the PI3K-Akt survival pathway and 
the SIRT1-FoxO1 pathway (82). Owing mainly to its antioxidant 
qualities, salvianolic acid, a naturally occurring polyphenolic 
molecule obtained from Salvia miltiorrhiza, demonstrated 
noteworthy preventive actions against cardiovascular diseases. 
Salvianolic acid has been shown in numerous studies to be able to 
postpone the onset of ischemia in animal models of MI by increasing 
angiogenesis, decreasing infarct size, and enhancing post-infarction 
contractile performance (83).

In order to coordinate cellular and whole-animal metabolism, 
gene networks both inside and across cells and tissues react to 
external heat loads exceeding the thermoneutral zone by sending 
out intra-and extracellular signals. In Vrindavani cattle (B. indicus 
X B. taurus), heat stress response genes (SERPINH1, DNAJ4, FKB4, 
HSPB8 and HSPH1) were up-regulated at a greater fold change 
(244). High ambient temperature modulates heat shock protein 
genes to shield the cells and proteins from a changed metabolism. 
Induced heat stress causes such changes in physiologic parameters 
that modify the neuroendocrine system (84). Elayadeth-Meethal 
et al. (85) investigated the differential expression and molecular 
mechanism of the HSPA1A gene in dwarf Vechur cattle, Kasaragod 
cattle, and crossbred cattle in an experimental field context. They 
concluded that HSPA1A is a possible candidate gene for heat 
tolerance. The potential for improving thermotolerance through 
manipulation of the genes regulating HSF1 expression and 
evaporative heat loss in cattle is suggested by the variation in 
evaporative heat loss among animals and the crucial role that (heat 
shock transcription factor 1) HSF1 plays in coordinating thermal 
tolerance (86).

4.3.4 Exogenous, non-enzymatic antioxidants
Exogenous antioxidants are abundantly found in natural plants 

and primarily consist of polyphenols and natural flavonoids. 
Supplementation with exogenous antioxidants exerts potent 
antioxidant effects by engaging various signaling pathways. These 
pathways include augmenting the antioxidant capacity of endogenous 
antioxidant systems, thereby reducing OS, inhibiting ROS production, 
consequently restraining OS, and activating antioxidant signaling 
pathways that counteract OS (87).

5 Functional compounds in 
climate-smart feedstuffs

The functional compounds in feeds are the bioactive molecules 
that have specific physiological or health effects beyond nutrition (88). 
In the context of thermal stress and oxidative cell damage, there are 
compounds that help animals cope with heat stress, in support of the 
internal antioxidant defences, immune responses, and overall 
biochemical and physiologic resilience to heat stress (245). Climate-
smart feeds may contain an array of functional compounds. The 
natural functional compounds which may be present in climate-smart 
feedstuffs are indicated in Table 3. To operationalize these solutions to 
enhance livestock’s health, productivity, and resilience in the face of 
climate stress, feeding plans need to be modified to fit the resource 

limitations and production systems of semi-arid Southern Africa. 
Examples of specific or targeted interventions include the following;

 • Antioxidant supplementation: Supplementing with natural 
antioxidant-rich feedstuffs, such as sorghum bran and sunflower 
meal, can help reduce the oxidative stress brought on by exposure 
to heat. These dietary components can be added to concentrates 
designed to meet animal demands or utilized in silage.

 • Phytogenic supplements: To improve gut health and lower 
oxidative stress, livestock diets can include locally accessible 
plants with multifunctional bioactive components as feed 
additions. The phytogenic additives can be combined with crop 
residues or tree fodder after being processed into meal or 
extract form.

 • Probiotics and prebiotics: Smallholder farmers can use fermented 
feed technology to add healthy microorganisms to livestock diets, 
to enhance gut health and nutrient absorption. Fermenting waste 
grains or grain crop byproducts with supplementary molasses 
can be an inexpensive way to distribute probiotics.

 • Integrated feeding systems: In smallholder systems, functional 
compounds can be incorporated into domestic feed formulations 
by employing locally accessible resources. For example, cattle 
could be supported during the dry season by combining crop 
residues enriched with neem leaf powder and treated with 
antioxidants. To target high-value production systems such as 
dairy or poultry farms, feed manufacturers could create 
pre-mixed functional ingredient supplements. To cut farmers’ 
expenses, these might be provided via cooperatives.

 • Policy and capacity building: Funding for farmer education 
programs on processing methods and the advantages of 
functional compounds is necessary for successful 
implementation. The feed industry and extension agencies must 
work together to guarantee that these compounds are affordable 
and available for a variety of farming methods.

6 Climate-smart feed resources in 
semi-arid Southern African 
ecosystems

In the semi-arid regions of Southern Africa, developing 
sustainable, climate-smart livestock feeding systems is imperative to 
mitigate severe environmental constraints such as drought, heat 
stress, and low soil fertility. Climate-smart feedstuffs are those which 
are cultivated or exploited from the wild, which meet the climate-
smart definition, they comply with the agroecological principles of 
sustainability, productivity and nutritional quality, with least energy, 
chemicals, and water input (246). The cultivation or wild exploitation 
of such feed resources should minimize upstream (irrigation, 
pesticides, fertilizer) greenhouse gasses (mitigation), and promote 
the most productive, ecologically adapted, climate resilient or 
drought-tolerant species and varieties (adaptation) (247). Though 
research on climate-smart feed resources is still limited and 
fragmented, several promising candidates are emerging, which can 
be produced or exploited on a large-scale for viable value chains. 
Strategic incorporation of these feeds, ranging from the drought-
tolerant native grain cereals and legumes to biofuel or pharmaceutical 
oilseed cakes, the wild or cultivated browse trees and the fruit 
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byproducts, and single cell (microbial) protein presents ample 
opportunity for CSLN (89). A selection of the feed resources which 
have attracted research attention for potential integration into 
climate-smart livestock nutrition in semi-arid Southern Africa are 
profiled in Table 4. The challenges in research are to expand the 
existing matrix of (conventional) feedstuffs by identifying, and 
characterizing (nutrients, bioactive compounds) climate-smart 
alternatives, to facilitate least cost, climate-smart formulation of 
diets for different livestock (90).

6.1 Local production and applicability of 
climate-smart livestock feeds in semi-arid 
Southern Africa

6.1.1 Small cereal grains
In the advent of climate change, the traditional small cereal grains 

may become dietary energy options, despite their previous 

displacement as staple food crops by improved, maize hybrids. Of the 
small grains, sorghum (Sorghum bicolor) and Pearl millet (Pennisetum 
glaucum) seem to be the most suitable candidates. They are tolerant to 
heat, drought and low soil fertility, and yield reasonably well under 
such adverse conditions. Apart from the organic and mineral 
nutrients, the small grains contain many functional nutrients. 
Sorghum contains the flavonoids luteolin, kaempferol, quercetin, 
catechin and the phenolic acids such as ferulic acid, caffeic acid, 
vanillic acid, p-coumaric acid (91, 92), compounds which help reduce 
oxidative stress in heat-stressed livestock (78). Pearl millet is rich in 
the flavonoids tricin and acacetin, as well as phenolic acids such as 
vanillic and salicylic acids (93).

6.1.2 Grain legumes
In the context of CSLN, two native grain legumes seem to be the 

most eligible alternative dietary plant protein sources to complement 
the small cereal grains for livestock feeding in semi-arid Southern 
Africa. The Cowpea (Vigna Unguiculata) is widely cultivated, highly 

TABLE 3 Dietary chemical defences against thermal stress and oxidative cell damage.

Functional 
Compound

Examples Role and application References

Antioxidants
Vitamin E Selenium Polyphenols 

Flavonoids

 • Neutralize free radicals generated during oxidative stress, protecting cells 

from damage.

 • Can be naturally present in feeds, or as synthetic supplements.

(74, 76)

Electrolytes
Sodium Potassium Magnesium 

Chloride Bicarbonate Trace minerals

 • Maintain fluid balance and prevent dehydration under heat stress.

 • Regulate the acid–base balance of the internal environment. Which can 

be disrupted during thermal stress, ensuring proper muscle and 

nerve function.

 • Supplementing electrolytes in feed or water helps animals maintain 

homeostasis during periods of high heat.

(39, 233)

Fatty acids Omega-3 fatty acids

 • Anti-inflammatory properties that reduce cellular damage and inflammation 

caused by oxidative stress during heat exposure.

 • Modulate the immune response and improve overall health and productivity 

under thermal stress.

(234)

Amino acids Methionine, Taurine Glutamine

 • Higher requirement for essential amino acids, primarily methionine, to 

compensate for the increased protein synthesis during cellular repair after heat 

related oxidative damage.

 • Precursors for antioxidant molecules (e.g., glutathione) that protect cells from 

oxidative damage caused by heat stress.

 • Taurine is particularly important in maintaining cellular integrity and 

hydration under stress.

(42)

Carotenoids Beta-carotene Astaxanthin Lutein

 • Beta-carotene helps in removing ROS, protecting cells from oxidative damage.

 • Astaxanthin, found in microalgae, is a potent natural antioxidant, protecting 

cell membranes from peroxidation under heat stress.

 • Lutein supports eye and skin health, to improve thermal resilience.

(61)

Vitamins Vitamin C Vitamin A

 • Vitamin C is a potent antioxidant that removes ROS in tissues exposed to 

high temperatures.

 • Vitamin A supports the immune system and protects against oxidative damage 

in epithelial tissues, improving overall animal health under stress conditions.

(76)

Catalytic minerals Zinc, Copper, Manganese

 • Trace minerals – co-factors for enzymes involved in antioxidant 

defense systems.

 • Zinc is a co-factor for superoxide dismutase.

 • Manganese supports mitochondrial function, reducing oxidative damage 

in cells.

(78, 233)
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TABLE 4 Profile of representative potential climate-smart in semi-arid Southern African.

Feed category Keystone candidate 
climate-smart feedstuffs

Climate-smart attributes Bioactive compounds Limitations Recommended 
processing

Sources

Small cereal grains

Sorghum (Sorghum bicolor), grain
Drought-tolerant, comparatively high yield 
potential, suitable for low-input agriculture; high 
energy

Flavonoids, phenolic acids Low lysine, tannins Soaking, sprouting, cooking, 
fermentation. (91, 235)

Pearl Millet (Pennisetum glaucum), 
grain Adapted to dry conditions, high energy, minerals Phenolic acids Phytates Phytase (93)

Cultivated grain 
legumes Cowpea (Vigna unguiculata), grain Tolerant to drought, high protein, enhances soil 

fertility Flavonoids, phenolic compounds Trypsin inhibitors, lectins and 
other antinutrients Cooking, soaking, sprouting (94–96)

Wild grain legumes Marama Bean (Tylosema 
esculentum), grain

Adapted to arid environments, high protein, high 
oil (energy) content

Phenolic acids, phytosterols, 
flavonoids

Trypsin inhibitors and other 
antinutrients Heat treatment (97)

Roots and tubers Cassava (Manihot esculenta) roots Drought tolerant, high energy Cyanogenic glycosides Cyanogenic glycosides (leaves, 
peels of raw tubers)

Peeling, sun drying, fermentation, 
cooking (99, 100)

Wild trees

Vachelia spp., pods, twigs, leaves Drought-resistant, legume, dry season and 
drought feed, protein-rich, minerals

Polyphenols, flavonoids, terpenoids, 
glucosinolates, carotenoids Tannins Soaking, chemical treatments (lime, 

sodium bicarbonate) (101, 102)

Colophospermum mopane, pods, 
young twigs, leaves

Drought-tolerant, dry season and drought feed, 
legume, protein-rich, minerals Polyphenols Tannins Soaking, chemical treatments (lime, 

polyethylene glycol, fermentation) (101, 102)

Marula (Sclerocarya birrea afra), 
fruit pulp

Drought-resistant, high in carbohydrates, 
vitamins, and antioxidants

Vitamin C, phenolic compounds 
tocopherols (Vitamin E) Drying, fermentation (236)

Food nut oilseed cakes Macadamia (Macadamia 
integrifolia), seed oil cake High protein, essential fatty acids, high energy Monounsaturated fats, antioxidants 

(vitamin E, polyphenols) High fiber for mnogastrics (109, 110)

Pharmaceutical oilseed 
cakes

Castor Bean (Ricinus communis) 
seed oil cake

Drought-tolerant, high protein, essential fatty 
acids, high energy Ricin Heat treatment, fermentation (111)

Prickly Pear (Opuntia ficus-indica), 
seed oil cake Drought-tolerant, protein and energy rich Antioxidants (betalain pigments, 

vitamin C), electrolytes Oxalates Drying, soaking, water leaching, 
chemical treatment (lime) (237, 238)

Biofuel oilseed cakes Jatropha (Jatropha curcas) seed oil 
cake

Drought-tolerant, high protein content, essential 
fatty acids Phorbol esters Fermentation, heat treatment (112)

Forages – grass Napier Grass (Pennisetum 
purpureum)

High yielding, drought-tolerant, suitable for 
various soil types Drying, fermentation (239)

Forages-xerophytes Spineless Prickly Pear (Opuntia 
ficus-indica) cladodes & waste fruit

Drought-tolerant, high-water content, vitamins, 
minerals

Antioxidants (betalain pigments), 
electrolytes Oxalates Drying, soaking, water leaching, 

chemical treatment (lime) (240)

Insect feed Black Soldier Fly Larvae (Hermetia 
illucens)

High protein, high energy (full-fat), waste 
management

Essential amino acids, fat (energy), 
antimicrobial peptides Drying, defatting (120–122)

Microbial derived feeds Phototrophic algae (e.g., Spirulina, 
Chlorella)

High protein source, rich in carotenoids and 
polyphenols, omega-3 fatty acids

Carotenoids, polyphenols, DHA, EPA 
vitamins (B12)

High production cost, scalability 
challenge, Allergenicity Drying (124–126)

Yeasts (e.g., Saccharomyces 
cerevisiae)

High protein, antioxidants, beta-glucans, 
ergosterol, reduces methane emissions in 
ruminants, B-vitamins

Beta-glucans, ergosterol, mannan-
oligosaccharides, antioxidants, 
B-vitamins (B1, B2, B6, B12)

Strain-specific responses, high 
production cost, Risk of digestive 
upset if used in excess

Fermentation (127–129)

Cereal grain processing 
byproducts

Brewers’ spent grains Circular feed use B-vitamins, polyunsaturated fatty 
acids, phenolic acids, antioxidants Mycotoxins (130–132)

Maize milling byproducts Circular feed use Mycotoxins, variable quality (133)

Distillers’ dried grains Circular feed use Mycotoxins, variable quality (134–136)
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climate and edaphically adaptable, rich in protein, starch, minerals, 
and the B-group vitamins (94–96). The Marama bean (Tylosema 
esculentum) is a wild, and widely endemic in the region, is protein-
rich, drought-resistant, but largely neglected perennial legume (97). 
In addition to the high protein content, the marama bean is rich in 
phytochemicals such as phenolic acids, phytosterols, flavonoids, 
behenic acid and griffonilide, with carbohydrate content in the tubers 
(97). However, typical of the genus among other undesirable attributes, 
these leguminous feedstuffs contain high levels of trypsin inhibitors 
and other toxic antinutrients, which necessitate processing to optimize 
their nutritional benefits (94).

6.1.3 Roots and tubers
There are a range of climate-resilient indigenous root/tuber crops, 

many of which are excluded due to the feed-food competition. In this 
regard, Cassava (Manihot esculenta) is an outstanding climate-smart 
alternative to maize for livestock feeding in semi-arid Southern Africa. 
Yet to find a firm footing in the region’s agriculture and the food 
chains, Cassava is drought and heat-tolerant and grows well in poor 
soils (98). Compared to maize grain, cassava has a higher root biomass 
and yields more starch at a lower input cost (99, 100). However, along 
with the leaves, the root periderm contains cyanogenic glycosides, 
particularly linamarin and lotaustralin, which remain toxic if not 
properly processed (99).

6.1.4 Browse trees and byproducts
Ruminants in Southern African rangelands browse on many 

leguminous tree species such as, among others, Piliostigma thonningii, 
Dichrostachys cinerea, Colophospermum mopane, and Vachellia karroo, 
from which they consume the high-protein pods, twigs, and leaves, 
mostly during the dry season. These components can alternatively 
be  harvested and processed into bush meal, and similarly for 
dry-season or drought feeding (101, 102). Bush meal also contains a 
range of bioactive compounds, including phenolics and flavonoids, 
with high tannin levels that inhibit protein digestibility. The tannins 
can be neutralized by supplementary polyethylene glycol (PEG) or can 
be reduced through soaking and ensiling (103, 104). With proper 
treatment, bush meal can be a sustainable, climate-smart feed.

A wild, non-legume fabaceous tree feed resource which is 
abundant in the ecosystem is the Marula (Sclerocarya birrea subsp. 
Caffra). Endemic to much of sub-Saharan Africa, the Marula tree 
produces fruits which are rich in vitamins, amino acids, carbohydrates, 
organic acids, and polyphenols (105). Livestock consume the fresh 
fruit’s pulp or its processed byproducts from traditional brewing, such 
as ensiled or dried pulp. The Marula fruit has a high sugar content 
which provides dietary energy. The dried pulp preserves most of the 
essential nutrients, while fermentation enhances the digestibility and 
introduces beneficial probiotics (106). Climate models suggest 
increased Marula abundance, which reinforces its potential role as a 
significant climate-smart feed (107).

6.1.5 Oilseed cakes from climate-resilient plant 
species

Oil extraction byproducts from a range of wild or cultivated 
climate-resilient plant species which are common in semi-arid 
regions, where they have attracted attention as alternative protein and 
energy options for livestock feeding. Oil cake from the Macadamia 
integrifolia nut contains as much as 19.5% crude protein and is a 

cost-effective source of dietary energy (108, 109). However, its high 
fiber content (up to 25%) limits its inclusion in monogastric livestock 
diets to avoid depressed feed intake and nutrient digestibility (110).

The pharmaceutical oil cake from the castor bean (Ricinus 
communis) is rich in protein and energy, but contains toxins, primarily 
ricin. Ricin and its poisonous derivatives can be destroyed by moist 
heat treatment or low pH fermentation (111). The biofuel byproduct 
from Jatropha (Jatropha curcas) beans is high in protein and energy 
but contains toxic phorbol esters. The phorbol esters can be detoxified 
by heat treatment or fermentation (112).

6.1.6 Forage crops
Two species stand out as potential climate-smart forage resources 

in the region. One of these is Napier grass (Pennisetum purpureum), a 
high-yielding, drought-tolerant forage crop suitable for semi-arid 
regions (113). The other one is the Prickly pear (Opuntia ficus-indica), 
which, despite classification as an invasive plant, plays a significant 
role in supporting rural livelihoods (114). Endemic to arid regions, 
the Prickly pear is increasingly cultivated for its fruit or forage. The 
water-rich leaves (cladodes) are the primary livestock forage, which 
along with the byproducts, namely waste fruit and seed oil extraction 
cake can be used as feed for livestock (115, 116). Prickly pear feed 
products are rich in energy, protein, antioxidant flavonoids and 
phenolic acids, and betalain pigments (betacyanins and betaxanthins) 
that express antioxidant and anti-inflammatory properties (115, 117). 
However, the products contain tannins and phytate, which may 
require processing (118, 119).

6.1.7 Insect feed
The use of alternative, comparatively inferior protein sources such 

as native legumes for livestock feeding could undermine the 
formulation of precision diets, and increase the need for expensive 
supplementary animal protein, such as fishmeal. However, fishmeal is 
also threatened by climate change and overfishing. Insect feed, 
particularly the Black Soldier Fly larvae (Hermetia illucens), is 
emerging as a viable alternative (120–122). Black Soldier Fly larvae 
contain high levels (40–44%) of crude protein, with advantage of 
efficient, eco-friendly production (120, 123).

6.1.8 Microbial feedstuffs
Phototrophic algae (124–126) and yeasts (127–129) are potential 

climate-smart feed resources. Subject to the cost, microbial feedstuffs 
carry the advantage of efficient production of protein in controlled 
environments, with minimal land and water input, and low 
environmental impact. In addition to protein, microalgae are rich in 
carotenoids and polyphenols, which neutralize ROS and mitigate 
oxidative damage (124, 125). Yeasts produce antioxidants and beta-
glucans and ergosterol, which support immune functions and reduce 
oxidative cell damage (128).

6.1.9 Cereal grain processing by-products
Brewers’ spent grains contain 20–30% crude protein and are rich 

in B-vitamins such as thiamine and riboflavin (130). They also contain 
high levels of phenolic acids (130, 131). However, they may 
be contaminated with mycotoxins (132). Maize milling byproducts 
(bran, germ meal, gluten feed or meal, hominy chop) contain variable 
(8–23%) crude protein, are noted for their phenolic compounds such 
as ferulic acid, which offers antioxidant benefits (133). However, these 
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byproducts may also contain mycotoxins, necessitating careful 
management to ensure feed quality. Distillers’ dried grains are a 
byproduct of ethanol production with a high (25–35%) crude protein 
content and are rich in diversely bioactive compounds (134–136).

6.1.10 Circular feed systems
Similar to circular food systems (137), circular feed systems are 

more sustainable and reduce the environmental footprint. Examples 
of the climate-smart feedstuffs in such circular systems include the 
oilseed cakes, cereal grain processing byproducts and insect feeds 
efficiency (138).

Circular feed systems emphasize recycling and reusing locally 
accessible feedstuffs to cut waste and boost system resilience for 
sustainable feeding of livestock. This strategy fits into CSLN, especially 
in semi-arid areas where resource limitations and feed scarcity are 
most intense (139). For example, brewers’ spent grains, oilseed cakes, 
and fruit pulp are agricultural and agro-industrial by-products that 
can be recycled into nutritionally balanced livestock meals. While 
technologies such as composting organic waste or raising insects such 
as Black Soldier Fly larvae turn waste streams into high-quality 
protein feeds, dual-purpose crops such as maise and sorghum supply 
grain for human use and leftovers for livestock feeding (140). 
Furthermore, livestock dung can improve soil quality, promoting the 
development of fodder crops and maintaining a closed-loop nutrient 
cycling system.

Crop residues, by-products, and organic waste are examples of 
locally accessible resources used as major inputs in this system. To 
increase feed value and reduce spoilage, these resources are processed 
using technologies such as fermentation, urea treatment, and silage 
production. While feedback loops ensure that animal waste, including 
manure, is returned to the land to increase forage production and 
promote sustainable agriculture, the outputs are nutrient-dense, 
inexpensive feeds that satisfy cattle’s energy and protein needs.

7 Feed additives and supplements

Where the novel diets lack adequate biofunctional compounds to 
achieve the climate-smart objectives, a range of synthetic or microbial 
or plant-derived products can be  used. There is a range of feed 
additives and supplements that enhance animal well-being and 
performance. These can be natural plant extracts, or synthetics (141). 
Candidates for adoption in CSLN are described in Table 5.

7.1 Methane suppressors

The livestock gut fermentation process produces significant 
greenhouse gasses, particularly methane, which plays a major role in 
climate change. A range of additives which include probiotics, 
exogenous enzymes, plant metabolites and fodder trees, organic acids, 
and other microbes reduce methane emission (142).

7.2 Heat stress modifiers

Heat stress modifiers are a variety of tactics used to lessen the 
negative impacts of high temperatures on the well-being and output 

of animals. Animals can escape direct sunshine by being given shade 
and cover, and they can avoid dehydration by having access to clean, 
cold water (33, 143). An environment can be made more comfortable 
by using ventilation systems and airflow control to disperse heat and 
humidity, as well as cooling equipment such as fans and misters (144). 
Resilience to high temperatures is further increased by behavioral 
management techniques and genetic selection for heat tolerance 
features. During times of heat stress, nutritional modifications are 
essential, such as changing the content of the feed or increasing the 
amount of electrolyte supplementation (34, 145). Betaine is an amino 
acid derivative with advantageous biological characteristics that 
support its use as a useful supplement during heat exposure (146).

Betaine is one example of an additive that has been shown to 
be effective in decreasing metabolic heat, improving heat dissipation, 
and increasing nutrient use in order to mitigate heat stress. It functions 
as a methyl donor, a chemical prebiotic involved in the methyl transfer 
reaction in cells, and a micronutrient for microbial cells that increases 
uptake during osmotic stress (146). Moeckel et  al. (147) and 
DiGiacomo et al. (148) reported betaine’s potential to mitigate heat 
stress by decreasing energy used and therefore metabolic heat 
production, while also acting to maintain osmotic balance during 
thermal challenge. Additionally, it stabilizes the intracellular protein 
structure by increasing hydrogen bonding between aqueous proteins 
in the folded state, acting similarly to molecular chaperones (149). 
When oxidative stress is present, betaine has been demonstrated to 
decrease the mRNA expression of HSP70 (150). However, utilizing an 
animal model (151), showed that goats supplemented with betaine 
and exposed to extended heat stress (42°C, 36 ± 2% RH, 6 h per day, 
for 16 days) generated noticeably lower amounts of HSP60, HSP70, 
and HSP90 than goats not supplemented with betaine (151). 
Additionally, through changes in blood chemistry and cellular 
metabolism, betaine supplementation may help manage heat stress 
indirectly. The findings of Hall et al. (152) revealed that there was an 
improvement in the thermotolerance of cattle-fed betaine during the 
thermal challenge.

The body typically shows a taurine shortage when under stress 
(153). For this reason, adding taurine to the diet is crucial. Taurine has 
positive effects on reducing stress, which may lower the amount of 
reactive oxygen species and shield mitochondria from oxidative 
damage (153). As an animal’s cell-mediated immune response 
weakens in summer, glutamine strengthens it (154). Additionally, 
glutamine promotes the development of intestinal mucosa, shielding 
the intestine from harm under a variety of stressful circumstances 
(155). Broilers subjected to cyclic heat stress showed enhanced 
immunological response and performance attributes when 
supplemented with 100 mg/kg GABA (156).

7.3 Biotic agents

By producing different metabolites to activate the neurological, 
endocrine, and immunological systems of hosts, the gut microbiota 
plays a crucial role in maintaining host health (157). By suppressing 
pathogens, releasing immunomodulatory and bioactive factors and 
encouraging the growth of beneficial bacteria, probiotics can restore 
the ecological stability of the gut microbiota. This can also improve the 
function of the hypothalamic–pituitary–adrenal axis, one of the main 
stress response systems, and immunity through the 
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TABLE 5 Climate-smart feed additives and supplements.

Additive/supplement Climate-smart attributes Bioactive compounds Limitations References

Phototrophic algae

Sustainable protein source, rich in 

antioxidants (carotenoids, polyphenols) 

that neutralize reactive oxygen species 

(ROS) and mitigate oxidative damage. 

Enhances livestock thermal resilience 

and reduces environmental impact

Carotenoids, polyphenols, EPA, 

DHA

High production costs: scaling 

challenges for large-scale 

livestock use

(124–126)

Yeast derivatives

Source of antioxidants, beta-glucans, 

and ergosterol, supports immune 

function, reduces oxidative cell damage, 

and contributes to better stress resilience

Beta-glucans, ergosterol, 

antioxidants

Strain-specific responses; 

variable bioavailability
(128, 129)

Probiotics

Modulate gut microbiota, improve 

digestion and immunity, enhance stress 

resistance and nutrient use

Lactic acid bacteria, Pediococcus, 

Bacillus

Strain-specific efficacy, affected 

by storage and environmental 

factors

(158, 159)

Prebiotics

Promote beneficial gut microbes, 

enhance gut integrity, improve nutrient 

absorption

Galactooligosaccharides (GOS), 

Mannanoligosaccharides

Limited by diet composition and 

environmental factors
(161, 164)

Exogenous enzymes

Improve nutrient digestibility and 

absorption, reduce environmental 

nitrogen and phosphorus excretion

Phytase, xylanase, cellulase

Sensitive to storage and pH 

variations; requires careful 

formulation

(241)

Organic acids
Enhance gut health, reduce harmful 

bacteria, improve feed efficiency
Propionate, acetate, lactate

Reduced efficacy with improper 

application or dosage
(193)

Phytogenic extracts

Antioxidant, anti-inflammatory, 

methane suppression, heat stress 

reduction

Flavonoids, polyphenols, tannins
Effectiveness depends on plant 

source and dose
(200, 204)

Postbiotics
Enhance gut barrier, modulate immune 

response, reduce stress effects
SCFAs, polyamines, bacteriocins

Emerging research: effects not 

fully understood
(181, 185, 242)

Electrolytes

Maintain water and electrolyte balance 

during heat stress, reduce impact of 

climate extremes

Sodium, potassium, chloride ions
High inclusion rates can disrupt 

acid–base balance
(243)

microbiota-gut-brain axis or the microbiota-gut-immune axis (158). 
The use of probiotics, prebiotics, and synbiotics to modify the gut 
microbiota has emerged as a promising biotherapy approach for the 
prevention and treatment of a wide range of illnesses, including stress-
related conditions (159).

7.4 Prebiotics

The gut microbiota is crucial for energy control and the stress 
response (160). Prebiotics are substances that the host cannot digest, 
but can be  used to ferment and aid in the reproduction and 
metabolism of intestinal probiotics for the benefit of the host’s health 
(161). Research has demonstrated that adding dietary GOS 
supplements to broiler chickens’ jejunum can reduce the disturbance 
of intestinal integrity by averting changes in TJs and AJs (162). 
Furthermore, by upregulating occluding mRNA and protein 
expression, GOS increase intestinal bifidobacteria in rats and is 
important in preventing disturbance of intestinal integrity (163). 
Fructooligosaccharide dietary supplements also reduce E. coli and 
C. perfringens while increasing the diversity of Lactobacillus in 

chickens’ gut. Mannanoligosaccharides inhibit the attachment or 
colonization of harmful bacteria by preventing their binding to 
mannan receptors on the mucosal surface, most notably Salmonella 
typhimurium (164). Additionally, mannan-oligosaccharides improve 
intestinal integrity by raising villus height, goblet cell count, 
lactobacilli and bifidobacteria populations, and lowering the amount 
of E. coli in chicken ceca (165). In Caco-2 and HT-29 cells, HMO 
treated with B. longum infantis enhanced IL-10 expression and 
transcription of ZO-1, occludin, and junctional adhesion molecule 
(JAM)-A mRNA (166). In vivo studies on hens exposed to heat stress 
revealed that adding mannan-oligosaccharides and cello-
oligosaccharides (COS) to the diet helped to lessen the effects of heat 
on intestinal morphology and intestinal barrier function (167). By 
reducing HS-induced increases in pro-inflammatory cytokines and 
decreases in intraepithelial lymphocytes, IgA-secreting plasma cells, 
and mucin formation, the probiotic B. licheniformis promotes the GIT 
mucosal immunity in broilers subjected to thermal challenge (168). 
By boosting mRNA expression, an IgA secretion of the anti-
inflammatory cytokine IL-10, B. subtilis B10 promotes the 
development of mucosal immunity in broiler chickens (169). During 
a 42-day heat stress phase, oral supplementation of L. acidophilus and 
S. cerevisiae probiotics with and without selenium supplementation 
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reduced markers of oxidative stress and hepatic inflammation in 
rats (170).

7.5 Probiotics

Probiotics have been described as “live microorganisms that are 
beneficial to the health of the host at an adequate intake dose” (171). 
Probiotics have the ability to modify the composition of intestinal 
microbes and prevent harmful bacteria from colonizing the intestines. 
They have been shown to have the capacity to aid in the development 
of a robust intestinal mucosa protective layer, hence boosting 
immunity and strengthening the intestinal barrier (172).

Lactic acid bacteria (LAB), such as Lactobacillus bulgaricus, 
Lactobacillus acidophilus, Lactobacillus lactis, Lactobacillus salivarius, 
Lactobacillus plantarum, Streptococcus thermophilus, Enterococcus 
faecium, E. faecalis, and Bifidobacterium sp., are the bacterial species 
now utilized in probiotics (173). Probiotics can also include yeast 
(Saccharomyces cerevisiae) and fungus (Aspergillus oryzae) (173). 
Multiple mechanisms are involved in their action, including 
neutralizing enterotoxins, promoting gut integrity and maturation, 
improving growth, preventing inflammation, and modulating the 
immune system, metabolism, and oxidative stability in fresh meat 
(174). Probiotics have been shown to enhance gut microbial diversity. 
To be more precise, Pediococcus pentosaceus had a greater average 
SCFA level and Bacillus sp. increased body weight (175).

Heat tolerance is causally correlated with the microbial 
community, which includes the microbiota’s population, composition, 
and function (176). Heat-stressed mice showed reduced levels of 
several probiotics, including L. murinus and segmented filamentous 
bacteria (177). It was reported that Bacteroides were greatly decreased, 
and Akkermansia was dramatically increased in mice when fecal 
microbiota from heat-stressed pigs was transplanted (178). These 
findings suggested that a therapeutically beneficial microbiota may 
have been added to the heat-stressed animals. Probiotics, prebiotics, 
and synbiotics have been utilized to prevent or lessen the deleterious 
effects of stress on physiological equilibrium (179). Under hot 
temperatures, the gut microbiota can be modulated by probiotic or 
postbiotic supplementation. Supplementing with probiotics (Bospro, 
Lacto-Sacc) improved physiological state, particularly 
thermoregulation, in the summertime (23 to 34°C, relative humidity 
65 to 89%) (180). Dietary supplementation with Bacillus subtilis 
reduced heat-induced inflammatory reactions via controlling 
immunity (78).

7.6 Postbiotics

Postbiotics are soluble metabolic products or byproducts secreted 
by living bacteria or released following bacterial lysis. They are widely 
used because they contain a variety of signaling molecules that may 
have antioxidant, immunomodulatory, and anti-inflammatory 
properties (181). Such as probiotics and prebiotics, postbiotics work 
in a number of ways to have positive benefits. By preventing the 
growth of harmful bacteria and promoting the growth of good 
bacteria, they can alter the makeup of the gut microbiota, improve the 
operation of the gut barrier, have anti-inflammatory and antioxidant 
qualities, and influence the immune system (182). Various constituents 

are present in them, including vitamins, bacteriocins, functional 
proteins, peptides, SCFAs, polyamines, inactivated microbial cells, and 
other bioactive metabolites (181).

The addition of 0.3% postbiotics, which are made by Lactobacillus 
lantarum, improves the gut microbiota by increasing the populations 
of Lactobacillus and caecum total bacteria and decreasing those of 
Enterobacteriaceae, Salmonella and Escherichia coli (183). It has been 
shown that epithelial colorectal adenocarcinoma cells were partially 
protected against heat-induced damage to their monolayer integrity 
by pretreatment with galacto-oligosaccharides prior to heat stress 
exposure (40 to 42°C) for 24 h (184). Furthermore, by increasing 
gut-beneficial bacteria, primarily butyrate-producing bacteria, oral 
therapy with fermented Saccharomyces cerevisiae prebiotic for fourteen 
days prior to heat stress exposure mitigates the negative effects of heat 
stress (185). The postbiotic Aspergillus oryzae enhanced energy-use 
efficiency, water absorption, and intestinal permeability (186).

7.7 Other biogenic additives

The GIT taxa distribution is significantly altered by early insults 
to the microbiota, which have detrimental effects on the host due to 
the disruption of stable, selective forces that preserve a homeostatic 
equilibrium (187). With overlapping metabolic capacities, the 
reticulo-rumen and hindgut contain enormous species-and strain-
level variety (188, 189). The ecological characteristics of the microbiota 
are critical to the stability of the reticulo-rumen and hindgut 
ecosystems (188).

The functionality and capacity of gut microbiota to use various 
substrate groups varies (190). Therefore, greater diversity and richness 
of these microbiota promote stability and allow for more effective 
utilization of food resources, making them generally advantageous 
(191). Therefore, the gut microbiota may be  changed into a less 
desirable and functional condition due to the losses in richness and 
diversity that occur after a high-grain diet and SARA (189).

Organic acids from animal and plant tissues have been 
incorporated into livestock feed to improve their performance. It 
contains propionate, acetate, lactate, butyrate, fumaric, tannic, and 
caprylic acids. These acids are advantageous to birds’ gastrointestinal 
health and functionality (192). To improve immunity, nutritional 
digestibility, growth performance, and avoidance of GIT disorders in 
broiler chickens, organic acids have been added to feeds or water (193).

7.8 Phytogenic plant extracts and essential 
oils

There are different compounds derived from plants that possess 
thermally beneficial functional compounds including antioxidant and 
anti-inflammatory properties that help maintain livestock well-being 
when facing heat stress. In recent times, there has been an increasing 
curiosity about the application of phytogenic feed additives (PFA) (71, 
194–199). Plant polyphenols, which comprise phenolic acids, 
flavonoids, 1,2-stilbene compounds, and lignins, are polyhydroxy 
chemicals that are mostly present in plants’ roots, bark, and leaves 
(200). Plant flavonoids are naturally occurring antioxidants that 
enhance cellular viability by releasing hydrogen ions and scavenging 
oxygen-free radicals by their binding to reactive oxygen species (201). 
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Plant polyphenols can boost endogenous antioxidants, including 
SOD, CAT, and GSH, in addition to decreasing ROS (202, 203). Plant 
extracts, including flavonoids and polyphenols, are commonly utilized 
in cattle to improve product quality, boost immunity, reduce heat 
stress, and increase feed intake (200). Proanthocyanidins, a polyphenol 
found in bearberries and green tea, can donate electrons or hydrogen 
atoms and act as an antioxidant (204). Medicinal plants can improve 
the pathways leading to mitochondrial activity (205), which can 
reduce the synthesis of oxidative stress and boost synthesis and supply 
more energy resources (206). Plant extracts primarily use four 
mechanisms of action to regulate oxidative stress. First, plant extracts’ 
antioxidant components can limit pro-oxidative activity by giving 
metals hydrogen atoms (207). It is well known that phenols are potent 
antioxidants, with some researchers even arguing that their 
effectiveness surpasses that of vitamins E and C (208). Second, because 
plant extracts such as flavonoids have more hydroxyl groups in their 
skeletons, they may be able to deliver more electrons, which could 
increase their antioxidant ability (209). Third, by lowering oxygen 
concentrations and quenching oxygen, plant extracts can increase the 
antioxidant capacity in animal tissues. This prevents the generation of 
peroxide while activating antioxidant enzymes (210).

Additional mechanisms of action have been investigated to 
address the antioxidant capacity of plant extracts. These mechanisms 
include the modification of key proteins’ expression and activity, 
interactions with particular proteins essential to intracellular signaling 
cascades, effects on epigenetic mechanisms, and alteration of the gut 
microbiota (211, 212).

The addition of plant polyphenol extracts from fenugreek, 
capsicum and green tea enhanced the intake of dry matter, milk, and 
milk with 4% fat-corrected milk; it also decreased vaginal temperature, 
enhanced welfare indices, and enhanced the AT with proteins from 
the acute phase response and Nrf2-oxidative stress response in dairy 
cows under heat stress (213). Phenolic PFAs appears to improve 
performance in primiparous sows and lessen oxidative damage 
brought on by heat stress (214). Plant flavones, which originate from 
the phenylpropane metabolic pathway and are secondary metabolites 
of plants, have been shown to alleviate hypertrophic symptoms in 
dairy cows (215). Because quercetin has hydroxyl groups and a B-ring 
twisting angle, it is a flavonoid with a high capacity for 
antioxidants (216).

7.9 Exogenous enzymes

Proteases, phytases and non-starch polysaccharide degrading 
enzyme (NSPases) improve digestion, to enhance nutrient utilization 
in livestock exposed to heat stress. Animal diets frequently include 
supplementation of enzymes, and the physiological effects of these 
substances are well established. In order to improve nutrient digestion 
and support livestock growth, feed enzymes have been incorporated 
into diets on a large scale. It has been shown that the best way for the 
livestock industry to lower phosphate excretion in animal waste is to 
incorporate microbial phytase into animal feeds. Additionally, it 
increases the amino acids availability (217). It has been demonstrated 
that adding proteases, phytase, and xylanase to the diets of broiler 
chickens and pigs increases their nutritional value by enhancing 
nutrient digestibility and growth (217). Furthermore, by lowering the 
oxidative stress response and possibly affecting the makeup of the 

mucosal microbiota in the small intestine, these enzymes have shown 
a functional advantage (217). Research is currently ongoing to 
determine the exact processes underlying their activities.

Catalysts such as protease, xylanase, and phytase aid in the 
digestion of proteins, β-1,4-xylan linkages, and phytic acid. They may 
also have benefits for the digestive health and microbiota of chickens 
and pigs (217). Based on their intended use, commercial enzymes fall 
into three primary categories: Phytase breaks down fiber into smaller 
components by targeting phytate molecules, which are generated from 
phosphorus (218). Cellulases and beta-glucanases, on the other hand, 
target cellulose polysaccharides and NSPs, respectively. Proteases, on 
the other hand, work on proteins to improve digestion. In conclusion, 
alpha-amylase enzymes function as starch and enhance nutrient 
digestion (219). Depending on specific needs, an animal’s diet may 
contain a single enzyme or an enzyme cocktail (220). For example, 
regular digestive tract enzymes can also be used in conjunction with 
the traditional use of xylanase, glucanase, phytase, and, more recently, 
multi-carbohydrase preparations (217).

In addition to advantages in the lipid and oxidative profile of meat, 
a blend of exogenous enzymes (amylase, protease, cellulase, xylanase, 
and beta glucanase) in the individual and combination form in the 
feedlot steers diet positively altered nutritional indicators (221). Dairy 
cows and beef cattle operate more productively when given exogenous 
fibrolytic enzymes; nevertheless, the right combination of cellulases 
and xylanases relies on the content of the feed in ruminant diets (222). 
It is believed that feeding yeast cultures (YC; Saccharomyces cerevisiae) 
and fibrolytic enzymes (cellulases and hemicellulases) made by 
bacteria and fungi will improve fiber digestion, raise post rumen 
nutrient flow, and stabilize rumen pH (223). This could be beneficial 
to cows during heat stress. When xylanase is added to a diet of wheat 
co-products from flour milling that include high levels of arabinoxylan 
and NSP, it has been shown to increase energy digestibility in pigs 
(224). Studies on adding xylanase to broiler chicks have continuously 
shown benefits, including decreased digesta viscosity and increased 
nutritional digestibility (225). Energy use has been reported to 
be enhanced by the phytase enzymes obtained from Aspergillus niger, 
Peniophoralycii, Schizosaccharomyces pombe, and Escherichia coli (226).

8 On-farm feed production

By utilizing the socioeconomic and agro-ecological conditions of 
the region, semi-arid Southern Africa offers exceptional prospects for 
the domestic production of climate-smart animal feeds. Among the 
main feed sources are:

 • Crop residues: There are abundant drought-tolerant crop residues 
in the area, including sorghum, millet, and cowpea, which can 
be turned into inexpensive animal feed. Their nutritional value 
can be  increased by processing techniques as chopping, urea 
treatment, or ensiling.

 • Forage crops: Because of their high feed quality and resistance to 
drought, species such as Leucaena leucocephala, Stylosanthes 
spp., and Cenchrus ciliaris (buffel grass) are suited for cultivation.

 • Agro-industrial by-products: These excellent feed materials, 
which are in line with the circular economy principles, include 
brewer’s spent grains, sunflower meal, cottonseed cake, molasses, 
among other by-products from nearby agricultural sectors.
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 • Insects and algae: Because of their low resource requirements and 
capacity to adapt to local conditions, emerging feed sources such 
as spirulina and larvae of Black Soldier Flies hold promise for 
scaled production.

The capacity for various farming systems to incorporate different 
feed interventions varies:

 • Smallholder mixed crop-livestock systems: Utilizing crop wastes 
and forage crops can help these systems, which are prevalent in 
semi-arid areas. Simple technologies such as hay baling and 
silage-making can be used by small-scale farmers to preserve 
food for dry seasons.

 • Commercial livestock operations: To increase feed efficiency and 
lower input costs, larger-scale commercial systems can use 
hydroponic fodder systems, high-protein concentrates, or 
processed by-products.

 • Pastoral systems: To reduce overgrazing and soil damage, 
pastoralists in arid regions can use energy-rich feed blocks or 
supplements to keep livestock alive during times when grass 
is sparse.

 • Agro-pastoral systems: By combining crops that may be used for 
both food and feed (such as sorghum and maize), these systems 
can optimize resources.

9 Animal genetics and climate-smart 
livestock nutrition

Climate change threatens livestock productivity through heat 
extremes which overwhelm artificial climate controls and disrupt 
animal homeostasis. Heat stress alters the expression of genes which 
are involved in the control of metabolism and immune responses, 
which may compromise animal performance (227). As heatwaves 
increase and intensify, the genetic gains achieved in livestock are 
therefore at risk. Epigenetics, nutrigenomics and nutrigenetics present 
different solutions which target the genes for stress tolerance 
and productivity.

Epigenetics describes heritable changes in gene expression which 
occur without altering the DNA sequence, which are triggered by 
environmental factors such as temperature and nutrition. It involves 
molecular modifications such as DNA methylation and histone 

protein changes which alter how genes are expressed (68). By 
identifying specific epigenetic markers, breeders can select animals 
which are most equipped to cope with heat stress (228). Nutritional 
epigenomics targets these epigenetic mechanisms through the diet. 
For example, choline, folate, and betaine can act as methyl donors in 
epigenetic medications which alter gene expression to mitigate the 
effects of heat stress (228, 229).

Nutrigenomics is about how dietary nutrients influence the 
expression of genes which control stress tolerance, metabolism, and 
productivity. For example, antioxidants and amino acids such as 
methionine are known to regulate genes involved in stress resistance 
and metabolic efficiency (230). Additionally, dietary components such 
as selenium and omega-3 fatty acids have been shown to boost the 
expression of heat shock proteins and antioxidant enzymes. By 
targeting specific metabolic pathways, nutrigenomics can be used to 
enhance thermal tolerance while maintaining productivity and feed 
efficiency (78).

10 Policy interventions

Investments in infrastructure for feed processing and storage, 
such as silos and pelletisers, are crucial for a successful integration. 
Climate-smart feed solutions should be  adopted by farmer 
cooperatives and local production should be encouraged by policy 
initiatives. In order to increase the ability of smallholder farmers and 
pastoralists, extension services are essential.

A supportive policy is therefore crucial for the success of 
CSLN. Climate-smart policies should be  sensitive to the large 
variability in the availability and use of land resources between 
regions, countries and land management systems and in socio-
economic conditions, such as wealth, degree of industrialization, 
institutions and governance, which affect the capacity to respond to 
climate change (231). Being integral to broader CSA interventions, 
CSLN may benefit from climate responses such as crop 
diversification, yield and nutrient improvements, planted area 
expansion and intensification, which, in risking GHG emissions, 
conflict with climate change mitigation (232). Therefore, a complex, 
livestock nutrition focused, land-energy-water-food-livestock-
environment nexus approach remains critical to managing the 
peculiar synergies and trade-offs associated with CSLN interventions 
(Table 6).

TABLE 6 A policy framework to support climate-smart livestock nutrition practices.

Policy Action Deliverables References

Financial incentives
Provide insurance and financial support to farmers adopting 

climate-smart feeding practices.
Adoption of climate-smart feeding practices (1, 10)

Research funding
Invest in research and development for climate-smart feeding 

technologies.

Innovations and continuous improvement in 

CSLN
(7, 8)

Regulations on GHG emissions
Develop and implement guidelines and rules to reduce GHG 

emissions from livestock production systems.

Climate-smart livestock practices to meet legal 

emission targets.
(1, 232)

Awareness campaigns
Conduct educational programs to inform farmers about the 

benefits of adopting climate-smart livestock nutrition.
Knowledge and wide-scale behavior change. (10, 13)

Market incentives
Establish premium markets for sustainably produced livestock 

products.

Develop climate-smart value chains and 

economic benefits derived from adopting 

sustainable practices.

(10, 25)
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11 Conclusion and recommendations

Southern Africa’s livestock production systems are increasingly 
challenged by adverse climate change which exacerbates feed scarcity, 
reduces feed quality, and exposes livestock to thermal stress. The 
concept of CSLN is a potential solution, whose objectives include 
adapting to declining feed availability, enhancing livestock resilience 
to heat stress, and minimizing the environmental footprint of livestock 
production. The concept of CSLN advocates for alternative, climate-
resilient feed sources. To enhance livestock resilience to heat stress, 
CSLN emphasizes dietary strategies that incorporate natural 
antioxidants, electrolytes, and polyphenols, which reduce oxidative 
stress and improve thermoregulation in animals, minimizing the need 
for synthetic additives, which are an option. For environmental 
sustainability, precision feeding and the use of circular feed systems 
are recommended to reduce greenhouse gas emissions and optimize 
the use of land, water, and energy resources.

Sustainability and feed-food competition must be  carefully 
considered when adopting climate-smart alternative feedstuffs. A 
workable alternative is provided by dual-purpose crops and tree 
shrubs, which act as ecological enhancers and feed resources. Their 
incorporation into agricultural systems could guarantee feed 
availability while reducing land degradation and deforestation. To 
improve their production and use at scale, further research is 
necessary, backed by investments and regulations that serve larger 
objectives for environmental preservation and food security.

Analyses of the scope for CSLN supported the following key 
recommendations for its success;

 • Developing climate-resilient feed systems: Investment in research 
and development of a broad range of alternative, sustainable feed 
sources that are locally adapted to Southern Africa’s semi-arid 
conditions is critical. This includes insect meal, climate resilient, 
cultivated and wild forage and food crops, agro and other 
by-product feedtuffs.

 • Improving livestock resilience to thermal stress: Feed 
formulations which utilize different biotics and phytogenic 
additives and incorporate synthetic bioactive compounds such as 
antioxidants and electrolytes that enhance the animals’ ability to 
cope with heat stress. These strategies should be complemented 
by selective feed plant and animal breeding for heat tolerance.

 • Promoting environmental sustainability: Policies which 
encourage circular feed systems that reduce resource wastage, 
lower GHG emissions, and make efficient use of land, water and 
energy resources through agro-ecological practices.

 • Policy and financial incentives: Governments and development 
organizations to provide financial incentives and insurance 
schemes to encourage farmers to adopt climate-smart feeding 

practices and promote the development of climate-smart feed 
and animal product supply chains.

 • Research funding: Research directed toward climate-smart 
technologies to ensure continuous improvement.
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