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Introduction: As human medical diagnostic expertise is scarcely available,

especially in veterinary care, artificial intelligence (AI) has been increasingly

used as a remedy. AI’s promise comes from improving human diagnostics or

providing good diagnostics at lower cost, increasing access. This study analyzed

the diagnostic performance of a widely used AI radiology software vs. veterinary

radiologists in interpreting canine and feline radiographs. We aimed to establish

whether the performance of commonly used AI matches the performance of a

typical radiologist and thus can be reliably used. Secondly, we try to identify in

which cases AI is e�ective.

Methods: Fifty canine and feline radiographic studies in DICOM format were

anonymized and reported by 11 board-certified veterinary radiologists (ECVDI or

ACVR) and processed with commercial and widely used AI software dedicated

to small animal radiography (SignalRAY®, SignalPET® Dallas, TX, USA). The AI

software used a deep-learning algorithm and returned a coded abnormal or

normal diagnosis for each finding in the study. The radiologists provided awritten

report in English. All reports’ findings were coded into categories matching the

codes from the AI software and classified as normal or abnormal. The sensitivity,

specificity, and accuracy of each radiologist and the AI software were calculated.

The variance in agreement between each radiologist and the AI software was

measured to calculate the ambiguity of each radiological finding.

Results: AI matched the best radiologist in accuracy and was more specific but

less sensitive than human radiologists. AI did better than the median radiologist

overall in low- and high-ambiguity cases. In high-ambiguity cases, AI’s accuracy

remained high, though it was less e�ective at detecting abnormalities but better

at identifying normal findings. The study confirmed AI’s reliability, especially in

low-ambiguity scenarios.

Conclusion: Our findings suggest that AI performs almost as well as the best

veterinary radiologist in all settings of descriptive radiographic findings. However,
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its strengths lie more in confirming normality than detecting abnormalities, and

it does not provide di�erential diagnoses. Therefore, the broader use of AI

could reliably increase diagnostic availability but requires further human input.

Given the unique strengths of human experts and AI and the di�erences in

sensitivity vs. specificity and low-ambiguity vs. high-ambiguity settings, AI will

likely complement rather than replace human experts.

KEYWORDS

veterinary diagnostic imaging, artificial intelligence, machine learning, dog, cat

1 Introduction

Human medical diagnostics can be prone to error, with bias

leading to systematically skewed judgments and noise, causing

errors due to random variations in judgment. Numerous strategies

and protocols have been adopted in medical services to mitigate

these issues (1). A rapidly growing and promising remedy is

Artificial Intelligence (AI). Methods such as neural networks

and autoencoders, which excel in medical image recognition,

show significant promise for radiology (2–5). Studies have

demonstrated that AI can effectively recognize abnormalities

in various radiological image-recognition tasks (6) and often

performs at least as well as well-trained and experienced

radiologists (7).

To date, these studies have primarily focused on human

radiology (8). AI has been successfully implemented in human

medicine and is now gaining traction in veterinary medicine (9,

10). This development is particularly relevant given the scarcity

of experts and their limited availability, which restricts access to

medical diagnostics in veterinary medicine, especially diagnostic

imaging. The American and European radiology board specialist

organizations have <2,000 members to serve the entire European

and North American continents. Therefore, it is reasonable

to question whether the proliferation of radiological AI could

improve outcomes in veterinary healthcare. Firstly, if AI performs

no worse than human radiologists, it can help increase the

availability of diagnostics. Secondly, if AI performs as well as

humans but errs differently from humans, effective protocols

may leverage the strengths of both. Thirdly, AI could lead

to better diagnostics and, thus, better overall health outcomes.

If AI is more accurate, it could reduce bias. Additionally,

AI is likely to exhibit less random variation than an equally

accurate human expert, improving outcomes by reducing or

eliminating noise.

The purpose of this study was to compare the diagnostic

performance for the interpretation of canine and feline

radiographs of a commonly used commercial and proprietary

AI radiology software to the performance of veterinary

radiologists. We hypothesized that (1) the diagnostic

performance of AI radiology software would be at least

as good as that of the median human radiologist, and

(2) the diagnostic performance of AI radiology software

would be worse relative to the median human radiologists in

high-ambiguity settings.

2 Material and methods

2.1 Study and dataset selection and
observers

A retrospective diagnostic performance study was undertaken,

and the CLAIM guidelines were followed (11). Each radiograph

was evaluated by veterinary radiologists and the AI software, which

we call observers. Fifty canine and feline radiographic studies in

DICOM format were randomly retrieved and anonymized from

the institutional PACS. There were forty canine and ten feline

radiographic studies. The studies included the complete thoracic

cavity in 23 cases and the entire abdominal cavity in 11 cases,

and they focused on the musculoskeletal system in 26 cases.

Radiographic studies with non-diagnostic quality or those taken

for implant and stent checks were excluded. One co-author (CC)

reviewed the retrieved cases for compliance with the inclusion

criteria and supplemented the imaging data with signalment data

(age, species, breed, sex, and neutered status) and a short clinical

history and purpose of the study. These data were retrieved from

each study’s diagnostic imaging request form stored in the patient

management system. The hospital’s caseload consisted of primary

and referred patient veterinary care.

2.2 AI software

All 50 anonymized DICOM studies were processed with

commercial AI software dedicated to small animal radiography

(SignalRAY R©, SignalPET R© Dallas, TX, USA). The software is

continuously updated and does not have version numbers; it was

accessed in July 2022. SignalRAY is a useful benchmark for AI

software available in practice, as it is used by over 2,300 clinics

worldwide and interprets around 50,000 radiographs per week. It

is used in roughly 5% of US practices and almost 2% worldwide.

2.2.1 Deep-learning architecture
Since SignalRAY R© employs a proprietary algorithm, full

architectural details are unavailable. However, key features

relevant to understanding the algorithm’s functionality can be

presented. SignalRAY is applied to various binary and multiclass

computer vision tasks, including image-level classification,

segmentation, localization, and study-level classification. It utilizes
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38 different deep-learning architectures. Most computer vision

models consist of convolutional neural networks (CNNs) with

multiple intermediate layers for hierarchical feature extraction

and classification (12). Head networks and skip connections

are incorporated to preserve fine-grained spatial information.

The CNNs include ConvNeXt variants (13), which enhance

feature extraction through their convolutional designs; the

EfficientNetfamily (14), selected for their balance of accuracy and

computational efficiency; ResNet architectures (15), employed for

their ability to train very deep networks effectively; and U-Net and

its derivatives (16), primarily used for segmentation tasks.

2.2.2 Model training and evaluation
SignalRAY R© was trained on a large, multicentric dataset

comprising radiographic images and clinical data from over 3,000

veterinary practices across more than ten countries. The dataset

was designed to broadly represent varied clinical settings, patient

populations, and imaging equipment. The training set size for each

model typically ranged from 10,000 to 60,000 images.

A stratified train-test-validation split method was implemented

to maintain independence between the datasets and to ensure

robustness in evaluation across different conditions, animal species,

and image quality. Data partitioning typically allocated 70% for

training, 15% for validation, and 15% for testing.

During training, several models were optimized for each

task. Optimization included data augmentation techniques such

as geometric transformations (rotations, flips, scaling), intensity

adjustments (brightness, contrast), noise injection (Gaussian,

speckle), and domain-specific augmentations (e.g., artifact

introduction). Additionally, the high-dimensional hyperparameter

space, including learning rates, batch sizes, regularization

strengths, and architectural choices (e.g., depth and width of

networks), was optimized. The models were further refined, and

the final model for each task was selected based on standard

performance metrics such as accuracy, area under the receiver

operating characteristic, and precision-recall curves. Further

criteria were error analysis based on the expected clinical impact

according to veterinary experts, interpretability of results, and

time stability (17).

2.2.3 Model output
The software processed only the images provided without

considering additional clinical information. Based on the

information from all radiographs in the study, it provided a

coded diagnosis, normal or abnormal, for each case. The outcome

data from the processed studies were formatted into codes

corresponding to specific radiographic findings, and these coded

diagnostic findings and diagnoses were recorded.

2.3 Human veterinary radiologists

Board-certified veterinary radiologists (ECVDI or ACVR) were

recruited via advertisements on the ACVR and ECVDI websites

and mailing lists. Participating radiologists were given PACS access

to the anonymized cases, patient signalment, short history, and

clinical signs. They were asked to provide a written report in

English in digital format. The report should contain a descriptive

and a diagnostic part and be written in the style the radiologist

was used to reporting. The complete reports from veterinary

radiologists were recorded and manually coded into categories

that matched the codes from the AI software. All findings were

also classified as normal or abnormal (Figure 1). Findings where

radiologists implied a normal variation were coded as normal. On

the other hand, findings where radiologist implied insignificant

abnormality were considered abnormal. If a radiologist or the

AI did not mention an observation made by others, it was

assumed that this radiologist or AI considered the observation

normal. The differential diagnoses veterinary radiologists gave

were not investigated as the AI software did not provide any

comparable outcome.

FIGURE 1

(A) Lateral and (B) craniocaudal radiographs of the left stifle region of a 7-year-old Border collie with left hind lameness. An example for a human

observer statement classified as a normal finding is: Both stifle joints are congruent. An example for an observer statement classified as abnormal is:

The lateral fabella is enlarged with regular margins and fragmented (arrows).
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2.4 Ground truth and performance metrics

To assess the diagnostic performance of each observer i, the

true state of each finding must first be established. Consider finding

fj,k with j being the radiograph and k being the finding in the

radiograph. Each finding is either abnormal
(

fj,k = 1
)

or normal

(fj,k = 0). To proxy the true state of each finding the consensus

of all observers f̂j,kwas taken. Considering the assessment of each

observer f̂j,k,i, the consensus is:

f̂j,k=I

(

1

n

n
∑

i=1

f̂j,k,i≥ 0.5

)

, n ≥ 5.

If the median observer regarded the finding as normal, it

was considered normal and abnormal otherwise. Therefore, for

each finding fj,k evaluated by observer i, there were four potential

outcomes: true positive (TPj,k,i), true negative (TNj,k,i), false

positive (FPj,k,i), and false negative (FNj,k,i).

Three commonly used metrics—accuracy, sensitivity,

and specificity—were used to evaluate each observer’s

diagnostic quality.

Accuracyi =

∑

j

∑

k TNj,k,i + TPj,k,i
∑

j

∑

k TNj,k,i + TPj,k,i + FNj,k,i + FPj,k,i
,

Sensitivityi =

∑

j

∑

k TPj,k,i
∑

j

∑

k TPj,k,i + FNj,k,i
,

Specificityi =

∑

j

∑

k TNj,k,i
∑

j

∑

k TNj,k,i + FPj,k,i
.

The observers’ metrics were compared using a z-test for

proportions. As all radiologists were compared to the AI for each

metric, a Bonferroni correction for multiple hypotheses testing

was applied. Adjusted p-values smaller than 0.05 were considered

as significant.

To further allow an investigation into whether certain

situations favored radiologists vs. the AI, we calculated the

inter-observer agreement level of each radiological finding by

establishing the variance of assessment (V) for each finding:

Vj,k =
1

n

n
∑

i=1

(

f̂j,k,i − f j,k

)2
.

Findings in which all observers agreed had a variance of

zero while findings where half the observers assessed abnormal
(

fj,k = 1
)

and half assessed normal (fj,k = 0) had a variance of

0.3. Observations without unanimity in agreement and below the

median variance were considered as low ambiguity, as it implies

an easier to detect true state. Observations without unanimity

in agreement and above the median variance were considered as

high ambiguity. Then the same metrics for each situation were

computed, and the z-test was used for proportions to assess

whether there were differences in performance between the AI and

radiologists in each situation.

3 Results

The 50 radiographic studies had a mean of 5.64 radiographs,

with a range of 1 to 16 radiographs per study. Eleven veterinary

radiologists participated in the study, each providing amean of 24.8

radiologic reports (range 24–25), resulting in amean of 5.46 reports

per study and a total of 16,434 radiological findings. Consensus

established an imbalanced sample, with 84% of findings being

normal and 16% being abnormal.

For 47% of these findings, there was unanimous agreement

among all radiologists and the AI software. For findings without

unanimity, there were 2,546 observations with low ambiguity

and 3,370 observations with high ambiguity. The rate of normal

findings decreased in the absence of unanimity and the presence of

high ambiguity. The distribution of the sample is summarized in

Table 1.

3.1 Aggregated results

The diagnostic results are displayed in Table 2. Further,

the worst-performing, median-performing, and best-performing

radiologists, as well as the AI software for all studies with all

findings, are displayed in Figure 2. The worst-performing, median-

performing, and best-performing radiologists (henceforth worst,

TABLE 1 Distribution of normal and abnormal findings for di�erent

subsamples.

Sample All No
unanimity

Low
ambiguity

High
ambiguity

Normal (%) 83.89 79.53 90.97 75.40

Abnormal (%) 16.11 20.47 9.03 24.60

Total number
of findings

16,434 8,646 2,546 3,370

TABLE 2 Accuracy, sensitivity, and specificity by observer for all findings.

Observer Accuracy Sensitivity Specificity

R1 0.910 0.779∗∗∗ 0.936∗∗∗

AI Software 0.902 0.688 0.944

R2 0.898 0.784∗∗∗ 0.921∗∗∗

R3 0.889 0.643 0.926

R4 0.886 0.824∗∗∗ 0.899∗∗∗

R5 0.882 0.824∗∗∗ 0.899∗∗∗

R6 0.875∗∗∗ 0.860∗∗∗ 0.878∗∗∗

R7 0.867∗∗∗ 0.784 0.883∗∗∗

R8 0.862∗∗∗ 0.865∗∗∗ 0.861∗∗∗

R9 0.860∗∗∗ 0.898∗∗∗ 0.852∗∗∗

R10 0.856∗∗∗ 0.826∗∗∗ 0.861∗∗∗

R11 0.822∗∗∗ 0.948∗∗∗ 0.798∗∗∗

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01 (based on Bonferroni-corrected Proportion tests for

difference between Human observer and AI software).
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FIGURE 2

(A) Accuracy, (B) sensitivity, and (C) specificity of an AI radiologist (red bar), best, median, and worst performing human radiologists (gray bars) for all

findings. The AI accuracy and specificity were higher than those of the median radiologist, but the sensitivity was lower.
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TABLE 3 Accuracy, sensitivity, and specificity by observer for

non-unanimous findings.

Observer Accuracy Sensitivity Specificity

R1 0.826∗∗ 0.677∗∗∗ 0.868∗∗∗

AI Software 0.814 0.533 0.887

R2 0.804 0.684∗∗∗ 0.837∗∗∗

R4 0.781 0.743∗∗∗ 0.792∗∗∗

R5 0.773 0.789∗∗∗ 0.769∗∗∗

R6 0.759∗∗ 0.796∗∗∗ 0.749∗∗∗

R3 0.750 0.500 0.816

R7 0.750∗∗∗ 0.672 0.769∗∗∗

R8 0.740∗∗∗ 0.795∗∗∗ 0.726∗∗∗

R9 0.729∗∗∗ 0.851∗∗∗ 0.696∗∗∗

R10 0.729∗∗∗ 0.735∗∗∗ 0.727∗∗∗

R11 0.665∗∗∗ 0.922∗∗∗ 0.601∗∗∗

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01 (based on Bonferroni-corrected Proportion tests for the

difference between Human observer and AI software).

median, and best radiologists) were re-determined for each metric,

meaning the best and worst radiologists may vary across different

metrics. Thus, they represented an upper and lower benchmark in

all cases. To benchmark the performance, recall that the prevalence

of normal findings in our data was 84%. Thus, a radiologist

probabilistically guessing “normal” for every case would achieve an

accuracy of 84%. The accuracy of the median and best radiologist

was significantly higher than probabilistic guessing while the

performance of the worst radiologist was not significantly different

from probabilistic guessing. The AI software was significantly

more accurate than any median radiologist (p = 0.0022). There

was no significant difference in performance between the best

radiologist and the AI software (p = 0.0561). Thus, the AI

software was no less accurate than any radiologist, confirming our

first hypothesis.

The frequency of abnormalities in our sample was 16%.

Thus, the sample was imbalanced. The performance in detecting

abnormalities varied widely. While the worst radiologist detected

only slightly more than six in 10 abnormalities, the median

radiologist detected more than eight in 10 abnormalities, and the

best radiologist detected 92% of abnormalities. Human radiologists

tended to be much better than the AI software (68.8%) in

detecting abnormalities, with nine radiologists being significantly

more sensitive (p < 0.0001). Two radiologists’ sensitivity did

not significantly differ from the AI software (p = 0.497 and

p > 0.9999).

In the analysis of observers’ abilities to detect normality, a

reverse picture compared to sensitivity was found. The AI software

detected 94.4% of all normal findings, whereas the best human

radiologist detected only 93.6% of normal findings, the median

human radiologist detected 88.3% of normal findings, and the

worst human radiologist detected 79.8% of normal findings. The AI

software significantly outperformed ten radiologists (p < 0.0001).

However, one veterinary radiologist was as good as the AI software

in identifying normality (p > 0.9999).

TABLE 4 Accuracy, sensitivity, and specificity by observer for

low-ambiguity findings.

Observer Accuracy Sensitivity Specificity

AI-Software 0.927 0.578 0.962

R1 0.920 0.900∗∗∗ 0.923∗∗∗

R2 0.902 0.848∗∗∗ 0.910∗∗∗

R10 0.889∗∗ - 0.889∗∗

R8 0.889∗∗ - 0.889∗∗

R7 0.889∗∗ - 0.889∗∗

R5 0.864∗∗∗ 0.917∗∗∗ 0.857∗∗∗

R6 0.861∗∗∗ 0.939∗∗∗ 0.851∗∗∗

R4 0.837∗∗∗ 0.891∗∗∗ 0.831∗∗∗

R3 0.762 1.000∗∗∗ 0.737∗∗∗

R9 0.752∗∗∗ 0.926∗∗∗ 0.730∗∗∗

R11 0.611∗∗∗ - 0.611∗∗∗

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01 (based on Bonferroni-corrected Proportion tests for the

difference between Human observer and AI software). The sensitivity for R7, R8 and R10

could not be computed as there was no low-ambiguity abnormality for any study they rated.

Table 3 displays the results for findings with no unanimity

among observers. There, accuracy, sensitivity, and specificity

declined for all observers. While the differences in sensitivity and

specificity between AI and veterinary radiologists remained

unchanged, the best veterinary radiologist significantly

outperformed the AI in accuracy (p = 0.0352). However, the

AI still significantly outperformed all below-median radiologists

(p ≤ 0.0011).

3.2 Results by level of ambiguity

Table 4 and Figures 3, 4 summarize and illustrate the diagnostic

performance in the low ambiguity situation. The worst radiologist

diagnosed worse than probabilistic guessing (accuracy of 0.752),

while the median (accuracy of 0.861) and best radiologist

(accuracy of 0.920) as well as the AI software (accuracy

of 0.927) were significantly better. The AI software had the

highest accuracy and was significantly more accurate than

eight radiologists (p ≤ 0.0231) and as accurate as three

radiologists (p ≥ 0.294). However, the AI software was the

least sensitive (0.578) in detecting abnormalities (p < 0.0001).

However, four out of 11 radiologists did not have low-ambiguity

abnormality in the list of studies they interpreted. Therefore,

it could not be evaluated how the AI software comparatively

performs. In low ambiguity situations, the AI software was

again the most specific (0.962) in detecting normality. Indeed,

it was significantly more specific than any radiologist (p ≤

0.0231).

Table 5 and Figures 5, 6 summarize and illustrate the

diagnostic performance in the high ambiguity situation.

Accuracy decreased for the worst (0.484), median (0.650),

and best radiologists (0.741), as well as the AI software (0.701).

Frontiers in Veterinary Science 06 frontiersin.org

https://doi.org/10.3389/fvets.2025.1502790
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ndiaye et al. 10.3389/fvets.2025.1502790

FIGURE 3

(A) Accuracy, (B) sensitivity, and (C) specificity of an AI radiologist (red bar), best, median, and worst performing human radiologists (gray bars) for

low-ambiguity findings. The AI software had the highest accuracy and specificity but the lowest sensitivity.
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FIGURE 4

Example of a case with low-ambiguity radiographic findings. On this

thoracic radiographic study of a 12-year-old Labrador retriever

presenting for routine staging of a digital melanoma, all 8 human

observers and the AI software identified pulmonary nodules (arrow)

and a skin mass (arrowhead).

The AI software was significantly more accurate than seven

radiologists (p ≤ 0.0011) but insignificantly less accurate

than the best radiologist (p = 0.807) refuting our second

hypothesis. The AI did not detect abnormalities as well as

seven radiologists
(

p ≤ 0.0022
)

. In terms of specificity, the

AI performed significantly better than all but two radiologists

(p ≤ 0.0198) but significantly worse than the best radiologist

(p = 0.0011).

4 Discussion

In this study, the AI software performed in parts on par

with the best radiologist in reporting radiographic findings and

was at least better than the median radiologist, confirming

our first hypothesis. The broader use of AI could reliably

increase the availability of diagnostic expertise, particularly in

settings where human radiologists are scarce. The AI strengths

were more pronounced in confirming normality than detecting

abnormal findings, and it performed better in a low-ambiguity

situation. Veterinarians dealing with AI-generated radiographic

interpretation results should consider this. The relevance of

false positive or false negative findings depends on the clinical

circumstances of the case, so diagnostic results should always be

interpreted in that context. The high-ambiguity settings captured

cases where radiographic findings were most nuanced and required

the most clinical context. Our hypothesis that human radiologists

would outperform AI in accuracy in a high ambiguity situation

TABLE 5 Accuracy, sensitivity, and specificity by observer for

high-ambiguity findings.

Observer Accuracy Sensitivity Specificity

R3 0.741 0.375 0.895∗∗∗

AI Software 0.701 0.444 0.785

R4 0.700∗∗∗ 0.677∗∗∗ 0.713∗∗

R9 0.695∗∗∗ 0.817∗∗∗ 0.623∗∗∗

R1 0.687∗∗∗ 0.579∗∗∗ 0.75

R2 0.657 0.612∗∗∗ 0.683∗∗∗

R5 0.650 0.733∗∗∗ 0.601∗∗∗

R6 0.610 0.733∗∗∗ 0.537∗∗∗

R7 0.605∗∗∗ 0.563 0.613∗∗∗

R10 0.556∗∗∗ 0.602∗∗∗ 0.547∗∗∗

R11 0.541∗∗∗ 0.828∗∗∗ 0.487∗∗∗

R8 0.484∗∗∗ 0.482∗∗∗ 0.484∗∗∗

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01 (based on Bonferroni-corrected Proportion tests for the

difference between Human observer and AI software).

assumed that the plasticity of human reasoning would be better

suited for this than a mechanistic AI pattern recognition based

on a finite training set, but this was rejected in this study. We

suspect that the increased variance reflects the increased inter-

observer noise of human radiologists, where different observers

vary in their judgment of the same problem. AI software also

showed decreased accuracy in these circumstances. AI software

may be most effective as a complementary tool rather than

a replacement for human experts. Diagnostic expertise may

matter more for difficult findings, while simpler findings could

be entirely outsourced. Potentially, AI could be used to pre-

screen radiographs expected to be low ambiguity. This could

streamline the diagnostic process, allowing radiologists to focus

on more complex cases and potentially improving diagnostic

accuracy and efficiency. Integrating AI into the clinical workflow

could have important practical implications but is likely not

straightforward. Few studies have empirically evaluated the nature

of collaboration between human healthcare professionals and AI

(18). Some found that “good” AI improved the decision-making

of physicians. This effect was most pronounced for the least

experienced physicians. However, they also found that “faulty” AI

can mislead physicians, including experts (18). Moreover, a recent

large study found that AI often made radiologists’ performance

worse and that optimal human-AI collaboration was achieved by

delegating cases to humans or AI but not AI-assisted humans

(19). Therefore, ensuring good protocols on how AI is used to

complement the work of radiologists, potentially reducing their

workload and improving overall efficiency in diagnostic practices,

is crucial.

There were several limitations of this study. Our study

investigated only a relatively small sample of radiographic studies

with two species and multiple body parts depicted. This was

mainly due to funding and resource restrictions and is similar to

other AI studies in the veterinary field (20–22). Our radiographic
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FIGURE 5

(A) Accuracy, (B) sensitivity and (C) specificity of an AI radiologist (red bar), best, median and worst performing human radiologists (gray bars) for

high-ambiguity findings. Compared to the median radiologist, the AI accuracy and specificity was higher, but the sensitivity was lower.
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FIGURE 6

Example of a case with high-ambiguity radiographic findings. In this abdominal radiographic study [(A) right lateral, (B) left lateral radiograph] of a

7-year-old Golden retriever with stage 5 lymphoma presenting for vomiting. A wide range of radiographic findings were identified by human

observers, including a perisplenic soft tissue opacity or mass (observer 1, 2, and 5, blue arrows), small intestinal granular material (observer 1, 3, and 5,

arrowhead), and colonic gas distension (observers 1, 2, and 5, red arrow), whereas observer 4 and the AI observer did not report any of these findings.

studies were imbalanced as most findings were normal. Our

results regarding accuracy would be biased if this imbalance

would not reflect the distribution in practice. However, our

findings regarding sensitivity and specificity would not be affected.

Our results depended on the selection of observers. As the AI

rated more radiographic studies than each of the radiologists

individually, the estimates of its performance may be marginally

more precise although no bias in the estimates was introduced.

Several AI systems are available, and we chose a state-of-the-

art, market-relevant 2022 version software. It is reasonable to

assume that AI software has improved over time, making our

findings a lower benchmark for the comparative performance of

AI available today. We recruited radiologists via advertisements

which could have introduced a selection bias. Any study of

diagnostic performance requires defining the underlying true state.

Our analysis opted for a consensus approach, leveraging the

wisdom of the crowd rather than relying on any single expert

or other means of confirmation. However, this consensus may

sometimes be incorrect, especially in high-ambiguity cases, when

human inter-observer noise is likely highest. There is no objective

way to classify the relevance of descriptive findings. Reporting

any irrelevant but obviously incidental finding increases the total

number of findings and thus affects our estimates of accuracy

and specificity. Nevertheless, since we compared observers’

performance relatively, this did not impact our assessment of

how well AI performs relative to human radiologists. However,

the absolute point estimates should be taken with a grain of

salt. We limited our study to descriptive findings and did not

consider differential diagnoses. This limitation was necessary

because the AI software we evaluated did not provide differential

diagnoses. This exclusion of differential diagnoses may have

led to an underestimation of the human radiologists’ overall

performance. Differential diagnoses add important nuances to

the report and give the receiving veterinarian a broader picture

of the case. Future research should address these limitations by

incorporating differential diagnoses, improving observer selection

methods, and continuously updating the AI software to ensure

its relevance.

5 Conclusion

State-of-the-art commercial veterinary radiology AI can be

used reliably to determine descriptive findings from canine

and feline radiographs, making it suitable for broader use and

increasing the availability of expertise in the field. While AI

shows promise in augmenting veterinary diagnostic capabilities,

its optimal use likely lies in complementing human expertise. By

leveraging the strengths of AI and human radiologists, AI can

improve diagnostic accuracy, increase the availability of expert

opinions, and enhance patient outcomes in veterinary healthcare.
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