
Frontiers in Veterinary Science 01 frontiersin.org

Use of fecal microbiome to 
understand the impact of housing 
conditions on metabolic stress 
responses in farmed saltwater 
crocodiles (Crocodylus porosus)
David J. Beale 1, Thao V. Nguyen 1, Tim Dyall 2, 
Jodie van de Kamp 3, Andrew Bissett 3, Leisha Hewitt 4 and 
Alison H. Small 2*
1 Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences 
Precinct, Dutton Park, QLD, Australia, 2 Agriculture & Food, Commonwealth Scientific and Industrial 
Research Organisation (CSIRO), Armidale, NSW, Australia, 3 Environment, Commonwealth Scientific 
and Industrial Research Organisation (CSIRO), Battery Point, TAS, Australia, 4 Roseworthy Campus, 
School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia

Introduction: Understanding the impact of housing conditions on the stress 
responses in farmed saltwater crocodiles (Crocodylus porosus) is crucial for 
optimizing welfare and management practices.

Methods: This study employed a multi-omics methodology, combining targeted 
and untargeted LC–MS for metabolite, lipid, and hormone profiling with 16S 
rRNA gene sequencing for microbiome analysis, to compare stress responses 
and changes in fecal samples of crocodiles housed in single versus group 
pens. Metabolic responses to a startle test were evaluated through multivariate 
analysis, and changes post-stress were examined.

Results: A total of 564 metabolic features were identified. Of these, 15 metabolites 
were linked to the cortisol biosynthesis pathway. Metabolite origin analysis showed 
that 128 metabolites originated from the host, 151 from the microbiota, and 400 
remained unmatched. No significant differences in fecal corticosterone levels 
were observed between single and group pens. However, metabolic profiling 
revealed distinct differences in stress responses: single pen crocodiles exhibited 
downregulation of certain compounds and upregulation of others, affecting 
pyrimidine and purine metabolism pathways when compared to grouped pen 
crocodiles, linked to altering energy associated induced stress. Additionally, fecal 
microbiome analysis indicated increased Firmicutes:Bacteroides (F:B) ratio in 
group-housed animals, suggesting greater stress.

Discussion: The study highlights that while traditional stress indicators like 
corticosterone levels may not differ significantly between housing conditions, 
metabolic and microbiome analyses provide deeper insights into stress responses. 
Single pens are associated with less metabolic disruption and potentially better 
health outcomes compared to group pens. These findings underscore the value 
of fecal microbiome and metabolomics in assessing animal welfare in farmed 
crocodiles.
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1 Introduction

The demand for luxury products made from crocodile leather has 
driven the global expansion of crocodile farms. Over 11 different 
species of crocodilians are farmed worldwide for their meat and skin 
products (1). Saltwater or estuarine crocodiles (Crocodylus porosus) 
are particularly prized for their superior skins, attributed to the 
absence of bony deposits (osteoderms) in their ventral scales, resulting 
in a higher number of small, evenly distributed scales (2–4). Key 
producers of C. porosus include Australia, Bangladesh, Indonesia, 
Malaysia, Papua New Guinea, the Philippines, and Thailand (1). In 
Australia, crocodile farming began in the 1970s, although a sustainable 
industry did not emerge until the 1980s (5, 6). These farms are 
primarily located in tropical northern regions, focusing on exporting 
skins and providing other by-products like meat, feet, teeth, and skulls 
to the domestic market (6). The value of skins accounts for 80% of the 
total product value, with meat and other by-products contributing 15 
and 5%, respectively (7).

Crocodiles can be reared in group or individual pens (6). Single 
pens offer benefits like easier monitoring, less social stress, better 
health, and improved growth and skin quality (6). However, they are 
costlier to construct and manage (6). Group pens are cheaper, but 
come with management challenges and increased social conflict, 
leading to health issues and lower skin product quality (6). Studies 
have examined various stress factors affecting crocodiles, such as 
stocking densities and environmental stress (8–11).

Corticosterone, a glucocorticoid produced in the adrenal cortex 
during environmental challenges, is crucial for metabolism, stress 
response, and adaptation in rodents, birds, reptiles, and amphibians 
(12). It’s often used as a stress biomarker (13–17). In crocodilian 
studies, corticosterone levels negatively correlate with growth rates, 
mortality, immune function, reproductive hormones, and 
reproductive success (8, 11, 18–21). Plasma corticosterone gauges 
crocodile stress under various conditions like salinity, water 
temperatures, capture and restraint methods, and disease (8–10, 22). 
However, limited research exists on how pen types and stocking 
densities affect stress. Isberg and Shilton (23) examined group versus 
individual pens’ effects on saltwater crocodiles’ corticosterone but the 
experiment did not aim to induce a stress response, but instead was 
observational in nature.

Stress effects on crocodiles have also been examined using fecal 
corticosterone levels (24, 25). Fecal samples allow non-invasive 
glucocorticoid measurements over long periods, providing a better 
assessment of chronic stress. Furthermore, with the advancement of 
high-resolution mass spectrometry, we can extend beyond discrete 
corticosterone measurements and profile the entire cortisol 
biosynthesis pathway (which includes precursors and intermediate 
metabolites within the biosynthesis pathway) in order to capture the 
activated stress response. In previous research on freshwater turtles 
(Emydura macquarii macquarii) we demonstrated that fecal sample 
metabolome and microbiome assays revealed interactions between the 
host, gut microbiome, and the environment (26), and that Firmicutes 
and lower Bacteroidota relative abundances were indicative of stress, 
as has been observed in other wildlife (27). Here we describe a similar 
multi-omics approach applied to crocodile faces within a farm context 
seeking to assess stress and show relationships among glucocorticoids 
(stress markers), metabolites, and gut microbiota more accurately. To 
do this, we compared the responses of metabolites and microbiomes 

between crocodiles in single versus group pens. A targeted and 
untargeted liquid chromatography-based mass spectrometry (LC–
MS) approach was used to measure metabolite, lipid, and hormone 
profiles in collected faces, while 16S rRNA gene sequencing provided 
bacterial microbiome community profiles. It was expected that this 
data would offer a non-invasive method for evaluating stress levels in 
farmed crocodiles, as it does in other organisms.

2 Materials and methods

2.1 Animal ethics

This study was conducted under the authority of the CSIRO 
Wildlife and Captive Large Animals Animal Ethics Committee 
(CWLA), reference 2020–20, in accordance with the Australian Code 
for the Care and Use of Animals for Scientific Purposes (28).

2.2 Crocodile fecal samples

Samples were collected during the course of the study described by 
Campbell et al. (29). Briefly, a total of 20 farmed Saltwater crocodiles 
were housed in groups of 4 under varying conditions, such that each 
crocodile underwent a period of single housing, followed by housing 
as the group of 4, and then with free access to both the large group 
area and the single pen option (Figure 1). Supplementary Figure S1 
illustrates the pen configuration. On the morning of day 8, both 
single- and group-housed crocodiles experienced a physical 
disturbance (a firm poke in the large muscle of one hind leg with the 
rounded end of a broom handle) (29), which was performed to 
trigger a stress response. Following this event, the crocodiles were 
observed to be ‘startled’. All crocodiles used in the experiment were 
over 3 years old, between 1.5 and 1.9 meters long, and were at the end 
of their typical finishing period (the final stages of production, when 
crocodiles are between 1 and 2 m in length).

Fecal samples were collected when available, using a long-
handled scoop. Faces were placed into plastic pots (250 mL volume, 
S10065SL, Labdirect, Wetherill Park, Australia) and frozen at −20°C 
until analysis. In total, 96 crocodile fecal samples were collected from 
five assigned groups, over five different sampling times. These groups 
comprised the following: single (control), single (startled), group 
(control), group (startled), and preference (post-trial). Table  1 
provides a summary of the sample groupings and the associated fecal 
samples collected per group. Fecal samples were analyzed for 
metabolites and lipids, corticosterone biosynthesis metabolites, and 
bacterial 16S rRNA amplicon sequencing, as described below.

2.3 Metabolomics analysis

Metabolites and lipids were extracted from 20 mg freeze dried 
faces as previously described in Beale et al. (30). Briefly, 20 mg of 
faces was prepared with 100 μL MilliQ water and 450 μL of ice-cold 
(−20°C) methanol:ethanol (50% v/v; LiChrosolv®, Merck, 
Darmstadt, Germany), and vortexed for 2 min. The samples were 
centrifuged (Centrifuge 5430R, Eppendorf, Hamburg, Germany) at 
14,000 rcf at 4°C for 5 min to pellet any protein and solid material. 
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The supernatant was transferred and filtered using a positive pressure 
manifold (Agilent PPM48 Processor, Agilent Technologies, Santa 
Clara, California, USA) with Captiva EMR cartridges (40 mg, 1 mL; 
Agilent Technologies, Mulgrave, VIC, Australia) to separate the lipid 
and metabolite fraction.

Central carbon metabolism (CCM) metabolites were analyzed on 
an Agilent 6470 LC-QqQ-MS coupled with an Agilent Infinity II Flex 
UHPLC system using the Agilent Metabolomics dMRM Database 
and Method following Sartain (31) and Gyawali et al. (32). Untargeted 
polar metabolites and non-polar lipids were analyzed using an 
Agilent 6546 Liquid Chromatography Time-of-Flight Mass 
Spectrometer (LC-QToF) with an Agilent Jet Stream source coupled 
to an Agilent Infinity II UHPLC system (Agilent Technologies, Santa 
Clara, CA, USA) following Shah et al. (33) and Beale et al. (34).

The metabolite and lipid datasets were first filtered and features 
with >50% missing values per group were removed; remaining 
missing values were replaced with 1/5 of the minimum positive value 
of each variable. The data were then log-transformed and multivariate 
data analysis was conducted using SIMCA (v17.0.01, Sartorius 
Stedim Biotech, Umeå, Sweden) and MetaboAnalyst 6.0 (35). 
MetOrigin 2.0 (36) was used to assign to metabolites sources of 
origin, tied to well-known metabolite databases (i.e., KEGG, HMD, 
CheBI etc) utilizing the KEGG Crocodylus porosus (Australian 
saltwater crocodile) genome (37) and bacterial 16S rRNA amplicon 
sequence data to identify host, microbiota, and other metabolite 
sources. Metabolomics outputs were enriched using Paintomics 4.0 
to further explore the contribution of measured biomolecules to 

corresponding metabolic pathways, which then facilitated a pathway 
impact assessment (i.e., its criticality in ensuring pathway expression). 
Significant features were identified using a fold change threshold of 
≥2.0 (38) and a Benjamini–Hochberg adjusted p-value of ≤0.05 (35).

Two internal standards were used throughout the extraction: 
100 ppb of l-Phenylalanine (1-13C) and 200 ppb of Succinic Acid (1,4-
13C2). The internal standards were sourced from Cambridge Isotope 
Laboratories (Andover, MA, USA). The residual relative standard 
deviation (RSD%) of the internal standards was 8.2% 
(l-Phenylalanine, 1-13C) and 6.5% (Succinic Acid, 1,4-13C2). Matrix 
free quality assurance and quality control (QAQC) mixed authentic 
standards (amino acids and organic acids) and pooled biological 
quality control (PBQC) samples were analyzed throughout the 
sequence. QAQC (n = 10) and PBQC (n = 10) samples were within 
5.8–9.6% RSD and 4.2–9.4% RSD, respectively.

2.4 Fecal corticosterone analysis

Fecal corticosterone hormones were extracted from 20 mg of 
faces using Bond Elut Plexa cartridges (30 mg, 1 mL, Agilent 
Technologies, Mulgrave, VIC, Australia) as per the manufacturer’s 
instructions. Samples were then separated on an Agilent InfinityLab 
Poroshell HPH-C8 column (2.1 × 50 mm, 2.7 μm), and analyzed on 
an Agilent 6546 Liquid Chromatography Time-of-Flight Mass 
Spectrometer (LC-QToF) with an Agilent Jet Stream source coupled 
with an Agilent Infinity II Flex UHPLC system. Samples were 

FIGURE 1

Overview of the study design and three crocodile housing configurations as per Campbell et al. (29).

TABLE 1 Summary of study design, sample groupings and the number of fecal samples collected per grouping.

Grouping No. samples No. time points Grouping description

Single (Control) 33 5 Single animal pen baseline samples.

Single (Startled) 22 4 Single animal pen after physical disturbance and subsequent days.

Group (Control) 13 4 Multiple animals that have been relocated into a group pen.

Group (Startled) 18 5 Multiple animal pens after physical disturbance and subsequent days.

Preference (post-group trial) 10 3 Phase three, where crocodiles are given free access to the group area and the single pens.
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analyzed in positive electrospray ionization (ESI) using a 1 mM 
ammonium fluoride mobile phase to improve hormone responses. A 
50-ppb heavy-labeled Hydrocortisone-d4 internal standard sourced 
from Cambridge Isotope Laboratories (Andover, MA, USA) was used 
(RSD% 2.9). A cortisol biosynthetic pathway Personal Compound 
Database and Library (PCDL) was created using Masshunter Pathway 
to PCDL Manager (Version B.08.00, build 8.0.24.0, Agilent 
Technologies, Santa Clara, USA). The PCDL was sourced from 
metabolites from known BioCyc/MetaCyc and Wiki pathways (39–
41), with MS/MS spectra taken from the Agilent METLIN PCDL 
(Version 8.0, Agilent Technologies, Santa Clara, USA).

2.5 Bacterial 16S rRNA amplicon 
sequencing

DNA was extracted from 0.25 g freeze-dried fecal material using 
the DNeasy® PowerSoil® Pro Kit (QIAGEN®; cat. no. 47016) following 
the manufacturer’s instructions. DNA was eluted in 60 μL of Buffer C6 
and quantified on a QuBIT™ Flex Fluorometer with a dsDNA HS kit 
(Invitrogen™). Negative control extractions were conducted with no 
starting material and following the same procedure of samples. To 
investigate changes in the microbiome, we  used next generation 
sequencing of the v1-3 hypervariable region of the bacterial 16S 
rRNA gene. We  used the primers 27F (42) and 519R (43) with 
Illumina overhang adapter sequences to generate amplicons. PCR 
reactions consisted of 25 μL GoTaq® Green Master Mix (Promega), 
0.2 μM forward primer, 0.2 μM reverse primer, 0.5 μL BSA, and 
10–30 ng DNA template in a total volume of 50 μL. Cycling 
parameters were: denaturation at 95°C x 3 min; 25 cycles of 95°C x 
30 s, 55°C x 30 s and 72°C x 30 s; and a final extension at 72°C x 
5 min. Amplicon products were purified using Agencourt AMPure 
XP (Beckman Coulter, Inc., California, USA) as per the 
manufacturer’s instructions. Purified PCR amplicons were sent to the 
Ramaciotti Centre for Genomics (UNSW Sydney, Australia) where 
indexing PCRs to incorporate Nextera XT barcodes, purification, 
library generation and sequencing were conducted using the Illumina 
MiSeq platform (with 300 bp paired reads) according to the 
manufacturer’s directions.

Paired end sequences were merged with flash2 
(--min-overlap = 30 --max-overlap = 250) (44). Priming regions were 
removed from merged reads with cutadapt v2.9 (45). Sequences were 
then dereplicated and denoised to zero radius operational taxonomic 
units (zOTU) using USEARCH (46). zOTU abundance table was 
constructed by mapping all sequences to zOTUs using the USEARCH 
-otutab command. zOTUs were classified using the silva database 
(v138) (47–49) and a two-step process. zOTUs were first matched 
using a consensus method to the silva database (100% similarity 
cut-off, 100% consensus up to 5 top hits). Any sequences not 
classified with this method were classified using the QIIME2 (50) 
sk-learn Bayesian classifier (--p-confidence 0.6). Putative 
contaminants were removed from the abundance table using the 
Decontam R package (51) with the “prevalence” method and 
threshold = 0.5, as suggested by the documentation to “identify as 
contaminants all sequences that are are more prevalent in negative 
controls than in positive samples.” Finally, any sequences not 
classified as “bacteria,” unclassified at the Phylum level, classified as 
“Chloroplast” or “Mitochondria” were removed. The data were 

filtered with a minimum median OTU abundance threshold of 4 
reads, and a variance threshold of 10% based on the inter-quartile 
range. Rarefaction curves reached saturation at 2732 sequences per 
sample indicating a sufficient sampling depth was achieved. Data was 
then transformed using the centered log ratio (CLR) method. A 
dysbiosis score based on median community level variation was 
performed after Lloyd-Price et al. (52).

3 Results and discussion

3.1 Metabolic profile of naïve farmed 
crocodiles (control samples)

Overall, 94 CCM metabolites, 238 polar metabolites and 232 
non-polar lipids were identified across all crocodile fecal samples 
resulting in 564 metabolic features. Of the identified features, 15 
metabolites were annotated as belonging to the cortisol biosynthesis 
pathway. An overview of the metabolite and lipid chemical class 
characterization within the crocodile fecal samples is presented in 
Supplementary Figure S2. The fecal samples show a high presence of 
ceramide non-hydroxyfatty acid-sphingosine (25.23%) and other 
lipids like hexosylceramide, sulfatide, and free fatty acids. Among 
non-lipid metabolites, amino acids and peptides are the most 
dominant (14.15%), followed by fatty acids and conjugates (11.38%), 
and monosaccharides (6.46%). Other groups make up less than 5% 
each (see Supplementary Table S1).

Based on the metabolite origin analysis (Figure  2A), 128 
metabolites were identified as originating from the host crocodiles 
(13 unique to the host), 151 metabolites were identified as originating 
from their associated microbiota (36 unique to the microbiota) and 
the origin of the remining 400 metabolites could not be assigned. The 
matched metabolites were then classified as belonging to a range of 
biological processes/sources, with some overlap between categories 
(Figure 2B). The host-related metabolites were principally annotated 
to metabolism (79.27%), organismal systems (4.88%), cellular 
processes (7.32%), environmental information processing (6.10%), 
and genetic information processing (2.44%).

Across the analyzed biomolecules, with respect to the control, 
single and initial group pen fecal samples, no metabolites or lipids 
were significantly altered. This indicates that the baseline control 
samples were statistically similar to the single pen samples and the 
initial group pen samples ([PERMANOVA] F-value: 0.067852; 
R-squared: 0.0012549; p-value (based on 999 permutations): 0.946). 
This is graphically presented in Supplementary Figure S3. In 
agreement to this, Isberg and Shilton (23) did not observe a 
significant difference in stress level between crocodiles from group 
pens or individual pens by comparing the plasma corticosterone 
levels of the two groups. The similar metabolic profile of control 
crocodiles in two pen types allows for a further comparison of startle 
stress responses of animals in single pens versus those in group pens.

3.2 Fecal corticosterone (stress hormone) 
and the cortisol biosynthetic pathway

Fecal corticosterone levels measured in the collected faces from 
single and group penned crocodiles showed no significant 
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differences between the sampled groups (Figure 3A), aligning with 
the plasma corticosterone results documented by Isberg and Shilton 
(23). While not statistically significant, the mean relative abundance 
of the Dunnett’s multiple comparisons test was lower for the single 
and preference group pens at 79,312 (adjusted p-value = 0.3308) 
and 86,273, respectively (adjusted p-value = 0.8038), when 
compared to the control group (94,748). Conversely, the group pen 
crocodiles were observed to have an elevated mean relative 
corticosterone abundance (112,283; adjusted p-value = 0.1784). 
However, interpretation of single-time-point corticosterone levels 
per se, as an indicator of stress, is fundamentally flawed. 
Corticosterone and cortisol have been observed to be elevated in 
other non-stressed related circumstances, such as positive arousal 
situations (53–55).

The cortisol biosynthetic pathway has been identified as the most 
affected pathway in plasma following hypoxia and re-oxygenation 
(56, 57). In the present study, the cortisol biosynthesis pathway 

metabolites in faces within three crocodile sample groups were not 
statistically different based on fold change (Figure  3B). This is 
indicative of inactivated cortisol biosynthetic pathway and the 
intermediate stress hormone, corticosterone, not being produced, 
suggesting no stress was observed in these animals.

It is proposed that fecal corticosterone reflects more stable and 
long-term stress levels, while blood corticosterone varies more, tends 
to spike and signifies a short-term stress response (58). Importantly, 
the host microbiome, environmental conditions, and male and 
female hormonal status are known to alter fecal corticosterone levels 
and impact their interpretation (58). The gut microbiome is essential 
in controlling the host’s endocrine system and stress response, 
influenced by sex hormones like estrogen and testosterone, which are 
further affected by external stressors (59–61). To overcome these 
limitations and provide greater insight to the crocodile stress 
response, metabolomics and microbial community profiling of fecal 
samples was performed.

FIGURE 2

(A) Annotated metabolites that were mapped to host or microbiota origins based on known metabolic pathways within the KEGG Crocodylus porosus 
(Australian saltwater crocodile) genome (37) and 16S bacterial rRNA amplicon sequence data; and (B) annotated metabolites that were mapped to 
origin sources based on publicly available metabolite databases within MetOrigin 2.0 (http://metorigin.met-bioinformatics.cn/).
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3.3 Metabolic variations between single 
and group pens during the startle test

A pairwise comparison between single and group pen 
arrangements was conducted to assess the metabolic responses of 
animals in each pen type that was subjected to a stress test. Multi-
variate analysis was employed to identify biomolecules responsible 
for differences between the groups, with PLS-DA score plots 
(Supplementary Figure S4) highlighting distinct distribution 
variances in measured biomolecules, particularly polar 
metabolites, indicating differing metabolic responses between the 
two groups. Notably, 21 features were statistically different 
(Figure 4A; Supplementary Table S2), and among these, single pen 
crocodiles exhibited a downregulation of 9 compounds and an 
upregulation of 12 compounds when compared to group 
crocodiles. These metabolic differences resulted in enriched 
pyrimidine metabolism and purine metabolism pathways being 
impacted (Figure 4B), which are linked to altering energy pathways 
that have been associated with various animal models exposed to 
chemical stressors (62).

The startle test significantly impacted fecal 2-Hydroxycaprylic 
acid, which was found at lower levels in the single pen crocodiles 
compared to those in the group pens (Figure  5). Known as 
D-2-Hydroxyoctanoic acid, this medium-chain fatty acid has been 
studied for its various properties (63). In bovine research, a diet 
supplemented with Perilla frutescens leaf (PFL) led to decreased 
2-hydroxycaprylic acid in cow’s milk relative to a control diet (64). 
This reduction showed a negative correlation with ruminal 
deoxycytidine and a positive correlation with ruminal uridine 

5-monophosphate. PFL is recognized for its antibacterial, anti-
inflammatory, and antioxidant properties due to its bioactive 
compounds (65–67). These findings suggest that the reduced levels of 
2-hydroxycaprylic acid might be linked to cow health and metabolism. 
Additionally, 2-hydroxycaprylic acid was identified as one of twelve 
down-regulated differential metabolites associated with the survival 
of patients with Gastric Cardia Adenocarcinoma (GCA), a malignant 
tumor (68). Therefore, the lowered levels of 2-Hydroxycaprylic acid 
in single pen crocodiles during the startle test could indicate an 
altered, possibly improved, health condition compared to those in 
group pens.

Another down-regulated metabolite in single pen crocodiles was 
dopamine, a crucial neurohormone of the sympathoadrenal system 
(69). Since dopamine influences behavior (70), its differing levels 
between the two pen types suggest varied responses to rotational 
stress. Increased dopamine can signal induced stress (71), and its 
fluctuation alongside other energy metabolites (lipids) in single pen 
crocodiles supports this notion. Dopamine also plays a vital role in 
thermoregulation (72–74) explaining its higher levels in group pen 
crocodiles, who spent less time in water regulating their body 
temperature (29). Collectively, the lower levels of 2-Hydroxycaprylic 
acid and dopamine in single pen crocodiles implies these animals 
experienced less physiological arousal compared to group pen 
crocodiles (29). The daily activity patterns were more uniform in 
group pens than in single pens (29), which was attributed to the 
presence of a dominance hierarchy, under which the more 
subordinate animals may not have been able to perform preferred 
behaviors or access preferred locations. This could have resulted 
in anxiety.

FIGURE 3

(A) Corticosterone levels within analyzed crocodile feaces collected from control, single (startled) and group (startled) pens; and (B) fold Change of 
cortisol biosynthesis pathway metabolites in fecal samples collected from startled single and startled group crocodiles with respect to the control 
group.
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Single pen crocodiles had higher levels of compounds like 
γ-Aminobutyric acid, uridine, xanthine, and hypoxanthine compared 
to those in group pens, potentially due to different stress responses. 
γ-Aminobutyric acid (GABA) is a well-known neurotransmitter that 
reduces stress and enhances sleep (75). GABA accumulation in 
response to environmental stress has been seen in both plants (76, 
77) and animals (78, 79). Uridine, a pyrimidine nucleoside, functions 
in the central nervous system (80, 81). Its increase in plasma during 
physical exercise, ethanol ingestion, fructose infusion, and xylitol 
infusion enhances adenine nucleotide degradation, raising plasma 
purine base concentrations (82–84). The observed rise in xanthine 

and hypoxanthine alongside uridine could result from the stress tests, 
indicating better stress regulation in single pen crocodiles.

In fecal samples of single pen crocodiles, we  observed an 
increase in N-acetylglutamic acid, which is produced from glutamic 
acid and acetyl-CoA by the N-acetylglutamate synthase (NAGS) 
enzyme, and is an essential activator of carbamoyl phosphate 
synthetase (CPSI) in the urea cycle within the mitochondrial 
matrix. Its accumulation has been noted in bipolar disorder 
patients, suggesting mitochondrial dysfunction (85). However, its 
decrease were observed in Bombyx mori after NaF stress (86). The 
role of increased N-acetylglutamic acid in fecal samples of single 

FIGURE 4

(A) Volcano plot of the analyzed biomolecules in the sampled faces collected from single animal pen and group animal pen post stressor; and 
(B) pathway enrichment and impact plot of significant metabolites identified between the single startled and group startled crocodile groups.
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FIGURE 5

Heatmap of biomolecules that were significantly different between the single and group animal pen samples and the preference animal samples 
collected at the end of the trial.
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pen crocodiles under stress remains unclear and needs 
further research.

3.4 Metabolic changes post animal stress

At the end of the stress trial, crocodiles in group pens could 
choose to isolate. In the behavioral study, some animals chose to 
isolate, but it was unclear whether the motivator to utilize the single 
pens was isolation or access to an under-shelf area (29). To assess 
whether the metabolic profile of group pen crocodiles reverted to that 
of single-pen crocodiles after provision of the opportunity to isolate, 
a three-way comparison was performed. Figure 6 shows a ternary plot 
highlighting key biomolecules driving differences among these 
groups. Supplementary Table S3 lists features identified by one-way 
ANOVA (Supplementary Figure S5). There were 43 significantly 
different features (4 polar metabolites and 39 lipids), primarily 
between single pen and group pen crocodiles. The heatmap (Figure 5) 
showed most lipids were higher in single pen crocodiles, suggesting 
more energy reserves. The group animals differed from the single 
preference animals in only four compounds (Ceramide ADS d42:1, 
Ceramide AS d18:1/24:0, N-Acetyl-L-glutamic acid, N-Hexadecyl-L-
hydroxyproline). Of these, N-Acetyl-L-glutamic acid, N-Hexadecyl-
L-hydroxyproline increased when crocodiles moved out of the group 
pen and isolated (preference group) while two lipids (Ceramide ADS 
d42:1, Ceramide AS d18:1/24:0) decreased. This may indicate some 
slight change in physiology and metabolism of crocodiles from group 
pens after they were released from the group pens, but the biological 
background remains unknown and needs future investigation. 
Additionally, lipid increases in preference group crocodiles could 
be due to recovery from startle testing.

3.5 Microbiome and the 
Firmicutes:Bacteroides (F:B) as an indicator 
of stress

The quantity of quality-filtered sequences obtained for each 
sample ranged from 2,735 to 65,860, culminating in a total of 
3,507,013 sequences (with an average of 36,915 reads per sample). 
Data filtering applied a minimum median operational taxonomic 
units (OTU) abundance threshold of 4 reads and a variance threshold 
of 10% based on the interquartile range. All rarefaction curves 
achieved saturation (Supplementary Figure S6), indicating that 
sufficient sampling depth was reached to adequately represent the 
community diversity in each sample at a rarefied library size of 2,735 
sequences. Figure 7 presents an overview of the microbial community’s 
relative abundance at the Order level. Supplementary Figures S7A,B 
display the alpha diversity (Chao1) for the single (control), group 
(control), single (startled), group (startled), and preference groups. 
The p-value t-tests for Chao1 were not significant (p-value >0.05), 
indicating a normally distributed and homogenous microbial 
community. This is anticipated for organisms in a farmed environment 
where the diet consists of a uniform food supply. The beta diversity 
analysis, shown as a Principal Coordinates Analysis (PCoA) plot 
based on Bray-Curtis distances in Supplementary Figure S7C, does 
not exhibit separation on the ordination plot, signifying consistent 
bacterial communities across the sample groups.

Figure 8 further investigates the microbial community dynamics 
by displaying the dysbiosis scores across five different sample classes: 
control, group (control), single (startled), group (startled), and 
preference. The presence of similar dysbiosis scores across the different 
sample classes suggests a relatively consistent level of microbial 
imbalance among them. The observed homogeneity in dysbiosis 
scores aligns with the alpha and beta diversity results, reinforcing the 
conclusion that microbial communities within these sample classes 
are stable and uniform, potentially due to the controlled diet and 
environment typical of farmed organisms.

The analysis of the bacterial community profile identified five 
main components of the microbiota in crocodile fecal samples, 
including Firmicutes, Bacteroidota, Proteobacteria, Fusobacteria, and 
Actinobacteria. Among these, Firmicutes (65.1–74.0%) were the most 
abundant group followed by Bacteroidota (14.8–23.0%), and 
Fusobacteriota (8.1–12.9%), which together comprised 98.2–99.8% of 
the total relative microbiome sampled. Fecal microbiome results also 
indicated that animals in the single pens were more able to cope with 
a stressful event than animals in the group pen, as evident in the 
significant increase in Firmicutes:Bacteroides (F:B) ratio (an indicator 
of stress) following the startle test in group housed animals, but not in 
the single housed animals (Figure 9). There is also a suggestion that 
group housed animals might slowly become more stressed/anxious as 
time passes, and this is maintained into the free-choice phase (possibly 
due to their continued group confinement despite having more 
opportunities to distance themselves from others).

We conducted a heat tree analysis that leverages the hierarchical 
structure of taxonomic classifications to quantitatively (using the 
median abundance) and statistically (using the non-parametric 
Wilcoxon Rank Sum test) depict taxonomic differences between 
microbial communities (87). The result from this statistical 
comparison is presented in Figure 10.

Differences between the single startled cohort and the group 
startled cohort include a relative increase in Erysipelotrichales (bd; 
p = 0.0295), Bacteroidota (ai; p = 0.0950), and Bacteroidia (ad; 
p = 0.0949); and a decrease in Unknown Clostridia (as; p = 0.0855) 
and Oscillospirales (ax; p = 0.0426) in the group startled cohort of 
crocodiles compared to the single startled cohort. However, when the 
group cohort were given a preference to isolate or not, there was an 
increased abundance in the Unknown Clostridia members (as; 
p = 0.07155).

Increases in Erysipelotrichales have been linked to the onset 
of cancer in humans, and decreases have been associated with 
Crohn’s and IBS (88). However, perturbation of Erysipelotrichales 
has been reported to be associated with host metabolic disorders 
and inflammatory diseases (89), which could explain an increase 
in the group startled cohort herein and its association with 
elevated stress. Oscillospirales were significantly correlated with 
short-chain fatty acids and lipid metabolism (90), which was 
perturbed in the group startled cohort. The interplay between 
Clostridia, the microbiome, and stress in wildlife has been studied 
(91, 92). Clostridia is an order of bacteria in the gut microbiome 
that significantly influences various physiological processes like 
stress responses (93), and was observed to be  increased in the 
preference cohort crocodiles when compared to the group 
startled cohort.

Stress greatly affects the gut microbiome’s makeup and function. 
Gut bacteria like Clostridia can impact the body’s stress responses 
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FIGURE 6

Ternary plot of the analyzed crocodile fecal samples from the single (startled), group (startled) and the post-trial preference for isolation groups.

FIGURE 7

Relative bacterial order abundance in the sampled crocodile faces obtained from 16S rRNA bacterial amplicon sequencing.
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by influencing neurotransmitters such as serotonin and GABA, key 
for mood regulation. Clostridia also affect the hypothalamic–
pituitary–adrenal (HPA) axis, the central system for stress response 
(94). The fecal microbiome of the group (startled) crocodile cohort 
generally suggested a potential stress response, evident by the 

increased presence of Clostridia and other taxa. These findings 
align with other data that shows the group cohort experienced 
higher stress levels when startled compared to single crocodiles. 
Prolonged exposure to heightened stress conditions could lead to 
gut dysbiosis (95). Further research is necessary to assess this 

FIGURE 8

Violin plot showing the distribution of Dysbiosis Scores across five sample classes: Control, Group (control), Single (startled), Group (startled), and 
Preference. The Dysbiosis Score reflects microbial community imbalance, with higher scores indicating greater dysbiosis. The width of each violin 
represents the density of samples at each Dysbiosis Score, while the black dot and line indicate the median and interquartile range for each class. The 
black dots within each plot indicate the median Dysbiosis Score, while the vertical black lines represent the interquartile range (IQR), capturing the 
middle 50% of the data.

FIGURE 9

Fecal microbiome Firmicutes:Bacteroides (F:B) ratio in each phase of the study (Boxplot represents all datapoints in each phase of the study with 
statistical outliers removed following the ROUT outlier method based on the False Discovery Rate (FDR) of Q% = 1).
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possibility within a farm setting and its implications for 
crocodile production.

The analysis of metabolic pathways in various animal pen 
samples throughout the trial revealed significant enrichment in 
several pathways (Supplementary Table S4). Notably, purine 
metabolism showed significant differences between the control and 
single startled groups (p = 0.045) and between group startled and 
preference groups (p-value = 0.023). Propanoate metabolism was 
significantly different between control and single startled groups (p-
value = 0.019) and between single startled and group startled groups 
(p-value = 0.048). Glycolysis/gluconeogenesis and glycerolipid 
metabolism had significant differences in multiple comparisons. 
These pathways are important for regulating glucose levels during 
stress. Stress enhances gluconeogenesis and glycolysis to fulfill energy 
requirements, which may lead to metabolic problems if sustained 
over a long period (96). Additionally, methane metabolism, 

phenylalanine, tyrosine, and tryptophan biosynthesis, and thiamine 
metabolism were significantly enriched in the single startled vs. 
group startled comparison. The production of methane within the 
body is associated with oxidative stress responses (97). Stress can 
influence the biosynthesis of phenylalanine, tyrosine, and tryptophan, 
as these amino acids are precursors to neurotransmitters such as 
serotonin and dopamine that are essential for mood regulation (98). 
Additionally, stress can lead to a depletion of thiamine levels, 
resulting in neurological and psychiatric symptoms (99). These 
findings highlight the impact of different environmental conditions 
on metabolic pathways in animal samples.

An analysis of the correlation between metabolites and microbial 
members (Order) in animal pen samples during the trial identified 
several significant relationships (Supplementary Table S5). For 
instance, Enterobacterales showed a correlation with 
dihydroxyacetone phosphate (R2 = 0.294, p = 0.056) and 

FIGURE 10

Heat tree analysis plot of taxonomic differences between the microbial community members within (A) the single startled cohort and group startled 
cohort of crocodiles, and (B) the group startled cohort, and the preference cohort of crocodiles sampled. Note that (bd) is Erysipelotrichales; (ba) is 
Lactobacillales; (ai) is Bacteroidota; (ad) is Bacteroidia; (as) is Unknown Clostridia; and (ax) is Oscillospirales.
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hypoxanthine (R2 = 0.283, p = 0.066) in the Control vs. Single Startled 
group. Dihydroxyacetone phosphate is involved in glycolysis and 
gluconeogenesis, which are critical for energy production (100). 
Hypoxanthine is a metabolite involved in purine metabolism and can 
act as a stress marker (101). Its correlation with Enterobacterales 
suggests that these bacteria might influence stress responses by 
modulating energy metabolism and cellular stress pathways. 
Additionally, Unknown Clostridia was correlated with 
N-acetylneuraminic acid (R2 = −0.022, p = 0.887) in the same group. 
In the Group Startled vs. Preference comparison, galactonic acid was 
negatively correlated with microbial orders (R2 = −0.324, p = 0.114), 
while hypoxanthine showed a positive correlation (R2 = 0.165, 
p = 0.431). For the Single Startled vs. Group Startled group, 
4-guanidobutyric acid and D-gluconic acid showed correlations with 
microbial orders, with R2 values of −0.211 (p = 0.239) and 0.204 
(p = 0.256), respectively. D-Gluconic acid is involved in carbohydrate 
metabolism and 4-Guanidobutyric acid is involved in amino acid 
metabolism, impact stress responses by affecting neurotransmitter 
levels and energy metabolism (102, 103). These correlations suggest 
possible associations between these bacteria and metabolites, 
although none are statistically significant. This implies that while 
there may be some patterns, they are not strong enough to draw 
definitive conclusions about their relationships under 
stressful conditions.

4 Conclusion

The study investigates the metabolic stress in single and group 
housed farmed saltwater crocodiles (C. porosus) by analyzing their 
fecal metabolome and microbiome. Under the parameters of the 
current study, group housing appears to induce an increased stress 
response in the studied crocodiles compared to the single pen system, 
specifically:

 • Crocodile faces comprise a complex mixture of metabolites 
associated with a range of metabolic activities. The study 
identified 564 metabolic features within the analyzed fecal 
samples. Among these, 15 metabolites were annotated as part of 
the cortisol biosynthesis pathway.

 • Crocodile fecal metabolites originate from different sources. Our 
analysis revealed that 128 metabolites originated from the host 
crocodile, 151 from the microbiota, and 400 metabolites could 
not be matched to their origin. The host-related metabolites 
were primarily associated metabolism (79.27%), organismal 
systems (4.88%), cellular processes (7.32%), environmental 
information processing (6.10%), and genetic information 
processing (2.44%).

 • Conventional stress response measures found no significant 
differences in fecal corticosterone levels between single and 
group penned crocodiles, indicating no stress was observed in 
these animals. However, the mean relative abundance of 
corticosterone was lower for single and preference group pens 
compared to the control group.

 • Conversely (to corticosterone levels), metabolic variations 
between single and group housed crocodiles were observed and 
associated with stress. A pairwise comparison between single 

and group pen arrangements showed distinct metabolic 
responses to stress. Single pen crocodiles exhibited a 
downregulation of 9 compounds and upregulation of 12 
compounds compared to group crocodiles. These differences 
impacted pyrimidine metabolism and purine metabolism 
pathways, which are linked to altering energy pathways.

 • Changes to the microbiome community between individual and 
group housing arrangements revealed a higher 
Firmicutes:Bacteroides (F:B) ratio in the fecal microbiome of 
group-housed saltwater crocodiles. This elevation is indicative 
of increased stress and is corroborated by a greater relative 
abundance of Clostridia taxa, which commonly rises in the gut 
under stress conditions.

These findings suggest that the fecal metabolome and microbiome 
can provide additional insights into the metabolic stress and overall 
health of farmed saltwater crocodiles. Furthermore, these findings 
support those of Campbell et  al. (29), which indicated that the 
presence of a dominance hierarchy in the group pen may have had 
negative impacts on the animals. Further work is required to 
understand if this approach can be  applied to different stressors, 
different species and different age groups of crocodilians, and to 
develop the approach to a point at which it can be utilized to guide 
management decisions.
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