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Introduction: The purpose of this study was to investigate how in vitro gas 
production (GP) and ruminal fermentation characteristics were affected by 
increasing concentrations of green algae plant (C. reinhardtii) extracts in 
combination with nanoparticles MgO and MgS.

Methods: A solution containing 0.1 M MgCl2 was prepared in 300 mL for the green 
production of MgCl nanoparticles. The mixture was refluxed for two hours at 85°C 
using a reflux condenser after 10 mL of pomegranate plant extract was added. 
The green algal plant (C. reinhardtii), which has many non-toxic antioxidants, 
was used as a carbon source to produce carbon quantum dots (CQD). Chemical 
analysis was conducted in accordance with AOAC (2005) recommendations. 
Rumen fluid from recently slaughtered calves is used to produce in  vitro gas 
immediately following slaughter. Analysis of variance (ANOVA) was performed 
on the obtained data from the in vitro study in a completely randomized design 
using the mixed model of SAS (version 9.4; Inc., Cary NC, USA).

Results and Discussion: The variance analysis results and the average values of 
the chemical compositions were significantly influenced by the extracts (all 
p < 0.0001). In this line, the values of net gas, pH, OMD, ME, NEl, and ME were 
found to be the highest for Algae + 50 MgO and the lowest for Algae + 50 MgS, 
respectively (all p < 0.0001). These promising results imply that extracts from 
C. Reinhardtii may be able to mitigate the adverse consequences of rumen 
fermentation. To precisely ascertain the impact particular Rhodophyta on 
greenhouse gas emissions, additional investigation is needed.
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Introduction

In response to the increasing population and the need to provide 
animal protein, along with the lack of animal feed resources, humans 
and animals have competed for agricultural resources (1, 2). Thus, 
Sustainability of livestock production is currently a research priority 
due to the increasing demand for food by the growing world 
population. It has been predicted that green algae (Chlamydomonas 
reinhardtii) can provide biomass and animal feed in the future (3). 
Green algae are substantially more productive in terms of biomass 
than other photosynthetic organisms, and more crucially, growing 
microalgae does not compete with food crops on arable ground (4). It 
is possible to use the algae as a non-traditional alternative feed source 
owing to their efficacy in converting solar energy, independence from 
external environmental conditions, and high production rate 
compared to conventional crops (4).

Besides contributing to greenhouse gas emissions, methane loss 
is one of the greatest negative factors in ruminant production (5–7). 
Although causing energy loss in the rumen, CH4 production reduces 
rumen acidity and keeps the rumen environment below normal via 
using H+ ions by methanogenic bacteria (8). The concentration of 
dihydrogen in the rumen depends on factors such as methanogen 
growth and the rate of feed fermentation. Methane generation and 
volatile fatty acid production are determined by the equilibrium 
between pathways that create and combine metabolic hydrogen (9). A 
variety of methane inhibitors can prevent methane-related energy 
losses in ruminants and provide economic and ecological benefits (10).

Numerous resources have focused on the reduction of CH4 
generation, especially energy loss from methane production. In 
addition, studies on the transformation of fermentation products into 
chemicals useful for animals have been accompanied in the recent 
years. Accordingly, to reduce enteric methane production, unsaturated 
fatty acids (11, 12), lysozyme (13), organic acid salts (14), S. cerevisiae 
(15), enzymes (15), and ethyl acetate (16) are added to ruminant diets. 
Unlike specific CH4 inhibitors, these compounds generally affect and 
suppress microorganism growth (17). Consequently, the feed value is 
reduced due to adverse effects on rumen fermentation. Many 
researchers suggest that, instead of adding additives that are thought to 
affect the rumen microbiome, the use of carbon quantum dots (CQD), 
magnesium sulfide (MgS) and magnesium oxide (MgO) nanoparticles, 
which are known as hydrogen receptors, is an appropriate alternative 
(18–21). However, there is a lack of information about the evaluating 
anti-methanogenic capabilities of nanoparticles of C. reinhardtii in 
in vitro system. Thus, this study assessed, using an in vitro gas and 
methane generation approach, the green algal (C. reinhardtii) anti-
methanogenic capabilities with and without nanoparticles.

Materials and methods

Green synthesis and structural 
characterization of CQD, MgS and MgO 
NPs

Preparation of algae extract
For the green synthesis of MgCl NPs, 300 mL of a solution 

containing 0.1 M MgCl2 was prepared. 10 mL of pomegranate algae 
extract was added to the solution and refluxed for 2 h at 85°C under 

a reflux condenser. It was then placed in a reactor via Teflon tube. 
Hydrothermal reactions were performed at 180–195°C for 4 h to 
reduce nano-particle (NP) size. The precipitated MgO NPs were 
washed first via pure water and ethyl alcohol. They were preserved in 
an atmosphere free of moisture after being dried for 48 h at 60°C in 
an oven. MgS NPs were synthesized using the same procedure. 1 mol 
of Na2S was added to the synthesis medium and the same process was 
repeated to synthesize MgS NPs. In the synthesis of CQD, the green 
algae (C. reinhardtii), known for its high non-toxic antioxidant 
content, was used as a carbon source. For this purpose, the algae 
extract was placed in a reactor containing sodium citrate as a reducing 
agent. CQD was synthesized by incubating at 180–195°C for 8 h.

Characterization of CQD, MgS and MgO NPs
Green-synthesised CQD, MgS and MgO NPs were characterized 

at the High Technology Application and Research Center of Eastern 
Anatolia (DAYTAM) at Atatürk University. X-ray microscopy (XRD) 
and FTIR analyses were performed for the characterization of CQD, 
MgS, and MgO NPs. The synthesized CQD, MgS, and MgO 
nanoparticles were characterized, including their size and morphology.

Chemical analyses
AOAC (71) guidelines were followed for chemical analyses. 

Kjeldahl was used to determine N content (AOAC, 71, Method 
984.13). For the determination of Acid Detergent Fiber (ADF) and 
Neutral Detergent Fiber (NDF), Van Soest et al. (22) were used.

In vitro gas production
In vitro gas production is performed by taking rumen fluid from 

newly slaughtered cattle (as soon as they are slaughtered), as mentioned 
by Palangi et al. (10). Using a method validated by Menke and Steingass 
(23), it was found that 0.2 g of treated (CQD, MgS, and MgO 
nanoparticles at levels of 0.50, 100 ppm) and ground (1 mm) green 
algae (C. reinhardtii) samples were incubated in rumen fluid via 100 mL 
standardized glass syringes to measure in vitro gas production. Methane 
and gas volumes of feed samples were measured 24 h after incubation.

Statistical analysis
The mixed model of SAS version 9.4 (SAS Institute, Inc., Cary, 

NC, United States) was used in a completely randomized design to 
examine the data gathered from the in  vitro study. The following 
model was used to statistically analyze the experiment:

 ij i ijY T E .µ= + +

where μ is the overall mean for each parameter, Ti is the effect of 
treatment, and Eij is residual error. Differences among sample means 
with p < 0.05 were accepted as statistically significant.

Results

Characterization of CQD, MgS, and MgO 
nanoparticles

XRD analysis
The fundamental method for examining crystal size, phase purity, 

and crystal structure is X-ray diffraction (XRD) examination. As 
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shown in Figure 1, the XRD pattern of the synthesized MgO exhibits 
various peaks corresponding to the (111), (200), (220), (311), and 
(222) reflection planes.

The particle size of the synthesized MgO NPs was determined 
from the Debye–Scherrer equation: D = K/cos (θ).

The MgO NPs’ median dimension and d-spacing values have been 
determined to be 20 nm and 0.25 nm, correspondingly.

Figure  2 shows the XRD pattern of CNPs. The XRD pattern 
exhibited an intense peak at 2θ = 22.90° and a weak peak at 
2θ = 41.60°, corresponding to the (022) and (101) diffraction patterns 
of graphite carbon, respectively.

FTIR analysis
MgO NPs are characterized using the FTIR spectrum (Figure 3). 

In ambient settings, the spectra were captured at wavelengths ranging 
from 400 to 4,000 cm−1. The peak at 651.94 cm−1 indicates the 
stretching peak vibration of Mg-O bond, confirming that the obtained 
product is magnesium oxide. Moreover, H2O adsorption on the metal 
surface is indicated by the peaks at 1552.0 cm−1 and 3520.0 cm−1.

The potential biomolecules in charge of the reduction of MgS NPs 
by green synthesis were found using Fourier transform infrared 
spectroscopy (FTIR) analysis. The FTIR spectra of MgS NPs made 
using Na2S and pomegranate algae extract are displayed in Figure 4. 
In the spectrum, bands were observed at 3603.5, 1,725, 1,550, 1,232, 
972 and 613 cm−1. Particularly, the sharp band at 1,725 cm−1 represents 
the C=O vibrations specific to the structure of flavonoids that can 
be found in pomegranate extract.

TEM analysis
The characterisation of MgO NP production using pomegranate 

extract is depicted in Figure 5A, which is an image captured using a 
transmission electron microscope (TEM). Here, the scale bars are 500 
and 200 nm. The images of TEM analysis of MgS NPs were taken and 
show the structures of MgS NPs (Figure 5B). The shape of these NPs 
was a small layer formation with a nearly spherical arrangement on 
a smooth surface. They had diameters ranging from 20–60 ± 1.6 nm 
and an average diameter of 55 ± 3.8 nm.

Chemical composition
The nutrient composition and relative feed value of algal at 

various concentrations are indicated in Table  1. The extracts 
impacted significantly the chemical compositions (all p < 0.0001). 
Regarding fiber fractions such as ADF and NDF, the highest values 
were recorded for Algae +100 MgS. In contrast, in related to the CP 
and EE fractions, Algae +50 Mgs had the highest values (p < 0.0001).

In vitro fermentation and gas production
The effects of algae extracts on in vitro rumen fermentation 

profiles are shown in Table 2. The parameters of gas production, pH, 
and OMD have influenced significantly by the different extracts (all 
p < 0.0001); the highest and lowest values regarding net gas, pH, 
OMD, ME, and NEl were observed for Algae +50 MgO and Algae 
+50 MgS, respectively. The converse mentioned trend was observed 
for Algae +50 MgO and Algae +50 MgS in related to CH4 production 
(p < 0.0001). Totally, not only measured total gas volume but also 
most of the measured parameters from the Algae-based rumen fluid 

(31.77; 111)

(37.96; 200 )

(58.76; 220)

(71.92; 311)
(80.74; 222)

0

5000

10000

15000

20000

25000

30000

35000

40000

30 40 50 60 70 80 90

In
te

ns
ity

 (c
ou

nt
s)

2 (degree)

FIGURE 1

XRD patterns of MgO.
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FTIR spectra of MgS NPs.
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were significantly influenced by the different nanoparticles 
(p < 0.0001).

VFA parameters
Table 2 shows the volatile fatty acid (VFA) composition of 

rumen fluid. The effects of extracts on total VFA (TVFA) were 

substantial (p < 0.001), with the highest value found in the 
“Algae +100 MgS” group (163.12 mM) and the lowest in the 
CON group (139.59 mM). For the individual VFA, extracts have 
resulted in fluctuated amounts between treatments, in which the 
treatments influenced the individual VFA significantly 
(p < 0.001).

(A): MgO (A): MgO

(B): MgS (B): MgS

(C): CQD NP (C): CQD NP

FIGURE 5

TEM images of (A): MgO NP, (B): MgS and (C): CQD NPs.

TABLE 1 Chemical nutrient composition and relative feed value of increasing doses of Algae at different levels of nanoparticles.

Items Treatment SEM p-value

Algae 
Control

Algae +50 
Carbon

Algae +100 
Carbon

Algae 
+50 Mgo

Algae +100 
Mgo

Algae 
+50 MgS

Algae +100 
MgS

CP, % 34.17ab 34.68ab 32.65b 35.98ab 32.25b 37.23a 37.08a 1.49 <0.0001

DM, % 95.26ab 95.86ab 93.31b 95.97ab 96.80a 95.22ab 94.69ab 0.86 <0.0001

Ash, % 28.40abc 29.69a 29.43ab 27.87bc 28.77abc 27.46c 28.51abc 0.59 <0.0001

EE, % 1.25b 1.78b 1.42b 1.17b 1.48b 2.82a 1.68b 0.31 <0.0001

NDF, % 31.98abc 32.92ab 32.67ab 33.28ab 28.94c 30.09bc 34.15a 1.22 <0.0001

ADF, % 21.79a 20.97ab 21.45ab 21.90ab 20.96ab 20.62b 21.04ab 0.38 <0.0001

ADL, % 11.54 11.69 11.88 11.96 10.57 10.40 12.14 0.73 0.069

CP, Crude protein; DM, Dry matter; Ash, ash; EE, Ether extract; NDF, Neutral detergent fiber; ADF, Acid detergent fiber; ADL, Acid detergent lignin. a-c, means within the column with unlike 
superscript differ significantly (P < 0.01).
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Discussion

Characterization of CQD, MgS, and MgO 
nanoparticles

XRD analysis
The observed peaks demonstrate the cubic structure of MgO and 

assign it to the pure phase of periclase MgO. In the spectra of other 
phases, no additional peaks could be  seen. It confirmed that the 
prepared MgO was crystallized and was free of impurities. In addition, 
the presented peaks exhibit higher intensity and narrower spectral 
widths, indicating the product is in good condition. The XRD graph 
obtained for the crystallographic analysis of synthesized MgS 
nanomaterials is given in Figure 6. The 2θ values for MgS NPs peak at 
37.94° (200), 45.42 (220) and 58.71° (221) at 200, 210 and 222. The 
characteristic peaks of the XRD spectrum at 2θ = 45.45° can 
be indexed at (220). Literature-based findings are consistent with the 
results obtained (24).

FTIR analysis
This is defined as OH stretching and bending, respectively. The 

metal-oxygen frequencies for the respective metal oxides published in 
the literature and observed frequencies coincide reasonably well. Using 
this method, MgO NPs can be analyzed for their chemical composition 
and surface properties (25). The -C-H bending vibrations in the 
aromatic amine groups of the flavonoid structure are linked to the 
absorption band at 550 cm−1. Additionally, the peak at 972 cm−1 shows 
the existence of MgS NPs as well as the distinctive C-S bond structure 
peaks. Under the aliphatic chain structure, the observed 613.4 cm-1 
peak is part of the  –CH2 group. The pomegranate algae extract’s 
bioactive components were verified using FTIR spectrum (26). Using 
this analysis, it is possible to determine the biomolecules involved in the 
synthesis of MgS NP. Figure 7 displays the carbon quantum dots of NP 
according to FTIR spectra. The band at around 3,242 cm−1 is indicative 
of OH stretching vibration, which may arise from either the hydroxyl 
groups found in C black NP or water absorption. The peak recorded at 

1,652 cm−1 was exclusively found in pure CB and was ascribed to the 
material’s C=C stretching vibration. Peaks at 2,040, 2,166, and 
2,015 cm−1 are ascribed to the nanocarbon structure’s carbonyl group 
and C–O stretching (27).

TABLE 2 Effects of nanoparticles on in vitro gas, methane production quantities, and rumen fermentation variables of algae.

Item Treatment

Algae 
Control

Algae +50 
Carbon

Algae +100 
Carbon

Algae +50 
MgO

Algae 
+100 MgO

Algae 
+50 MgS

Algae +100 
MgS

SEM p-value

pH 6.77 6.79 6.76 6.78 6.77 6.75 6.79 0.02 0.074

CH4, % 18.18bc 17.14bc 19.12bc 16.11c 20.77b 28.98a 25.93ab 1.23 <0.0001

CH4, mL 5.87 5.27 6.09 5.11 5.92 6.30 5.71 0.57 0.152

Gas, mL 32.32a 30.64a 31.67a 32.04a 28.59a 21.81b 21.99b 1.94 <0.0001

TDMA, mg 364.7 389.17 355.83 370.2 395.4 390.41 365.88 13.52 2.672

ME, mj/kg KM 5.91ab 5.85ab 5.79ab 5.99a 5.59ab 5.53b 5.52b 0.14 <0.0001

MPSE, mg 83.10c 84.88ab 83.69b 83.36b 86.45ab 89.29a 88.75a 1.04 <0.0001

NEL, mj/kg KM 3.19 3.21 3.10 3.26 2.96 3.09 2.97 0.11 0.065

OMD, % 30.26a 29.81a 30.01a 30.23a 28.91a 26.82b 26.94b 0.66 <0.0001

PF, mg/mL 364.7 389.17 355.83 370.2 395.4 390.41 365.89 13.52 1.281

TDD, % 70.25b 75.00ab 69.86b 71.23b 78.89a 75.98ab 71.48b 2.43 <0.0001

a–c, means within the column with unlike superscript differ significantly (p < 0.05). TDMA, true digested matter amount; ME, metabolizable energy; MPSE, Microbial protein synthesis 
efficiency; NEL, net energy lactation; OMD, organic matter digestion; PF, Partition factor; TDD, true digestion degree; SEM, standard error of means.
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FTIR spectra of CQD NPs.
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TEM analysis
TEM analysis is a very critical methodology to describe the particle 

size distribution, average particle size and shape of NPs. The produced 
MgO nanoparticles are less than 10 nm in size and spherical, as 
confirmed by TEM examination, despite being aggregated (28). The 
current green synthesis method approach has enabled the use of a 
simple and low-cost reducing agent for single-phase MgS NPs. This 
approach offers an effective method to synthesize MgS NPs in a 
non-toxic manner (24). Transmission electron microscopy (TEM) 
evaluated the morphology of pure carbon NP samples. These NPs are 
the samples showing the highest level of modification and are shown in 
Figure 5C. The TEM image shows semi-spherical primary particles with 
an average size ranging from 15 to 65 nm. These primary particles were 
formed and held together by agglomeration, resulting in agglomerates. 
The results corroborate other published studies in the literature, and the 
conclusions are consistent with current literature (29).

Chemical composition
The present results on the chemical composition of macroalgae 

were in line with previous reports (30, 31). In disagreement with our 
findings, a recent meta-analysis of 47 published papers containing a 
broad variety of macroalgae was conducted and demonstrated that the 
average content of CP, NDF, ADF, and organic matter (OM) was 734.2, 
189.2, 321.3, and 208.5 g/kg DM, respectively (32). Additionally, to 
confirm our findings Min et al. (33) published the different levels of 
CP (7.8 to 38.1% DM), NDF (16.6 to 43.1% DM), ADF (6.6 to 13.1% 
DM), and EE (0.3 to 3.9% DM) across eight macroalgae species. It’s 
important to note that the chemical composition and bioactive 
content of macroalgae are impacted by their taxonomic classification 
(brown, green, or red), and vary across genera and species. Seasonal 
fluctuations may also impact their composition during the growing 
and harvesting periods (31, 34). All algae and nanoparticles tested in 
our study had acceptable chemical compositions, particularly as a 
protein source; however, they should be included in a TMR ration to 
determine their potential advantages.

The current study’s findings about NDF and ADF were congruent 
with those of Mahmood Ameen (35). Feeds typically comprise 
100–120  g/kg DM of ash. The crude ash levels of the feeds were 
comparable to those reported by Kamalak et al. (36) and Karabulut et al. 
(37). Differences in nutrient composition of feeds between studies may 
be qualified to numerous elements, such as climate, fertilization, species 
and type, harvesting time, feed storage conditions, and vegetative phase 
(36, 38). Also, it has been stated that the in vitro gas production level is 
affected by the nutrient composition of feedstuff, the presence of 
compounds inhibiting (such as tannins) gas production, the microflora 
and microfauna content of the rumen fluid (donor animal’s diet), and the 
quality of fermentation provided (36, 38).

Microalgae have mass balances ranging from 630 to 1,170 g kg−1, 
although proximate analysis seldom provides 100% (39). Our 
investigation’s findings regarding the mass balance deficit suggest that 
other soluble components such as B vitamins, nonprotein nitrogen, 
chlorophyll, and soluble carbohydrates may be  responsible. 
Microalgae fiber is low in hemicellulose and lacks lignin, even though 
it has a high fiber content (50–55% of total carbohydrate) (40). This 
enhances the probability that the protein will be readily available due 
to its lack of lignin complexation. In addition, the cell wall fraction 
in microalgae is highly digestible (41). Drewery et al. (42) found that 
supplementing post-extraction algal residue (CP = 179 g kg−1 DM) 

increased OM digestibility in steers fed oat straw (CP; 45 g kg−1 DM). 
Similarly, Tetracystis sp., N. bacillaris, and C. vulgaris have a higher 
lipid content, which improves the calorie density of the diet. It has 
been widely shown that lipids frequently diminish enteric CH4 
emissions from ruminants (43, 44).

In vitro fermentation and gas production
The post-fermentation pH ranged from 6.75 to 7.79 among algal-

extract treatments, demonstrating that algae supplementation 
promotes a more alkaline environment during microbial 
fermentation. Carbohydrates are the primary source of substrate for 
the creation of acetate and butyrate during ruminal fermentation, and 
as byproducts, CO2 and hydrogen (H2), are used by methanogenic 
archaea to produce CH4 (9). Furthermore, according to Kholif et al. 
(45), microalgae promote carbohydrate fermentation by rumen 
microbes, which is consistent with what was observed with the 
addition of microalgae and was attributed to the microalgae’s fulvic 
acids, which can provide carbon to ruminal microorganisms (46) and 
thus favor microbial growth and increase DMD. In turn, the increased 
degradability resulted in higher production of SCFA and ME, 
ascribed to enhanced carbohydrate degradation (45).

Although not investigated in the current study, the increase in 
SFCA and ME with microalgae might be due to increased activity of 
the fibrolytic bacteria (47) and increased propionate production. In 
contrast, decrease of SFCA and ME are attributed to a reduction in 
other SCFAs, such as acetate (48). In the meantime, the effects on 
DMD and SCFA associated with the content and degradability of feed 
carbohydrates may be reflected in the computed variations in CH4 per 
unit of SCFA, ME, and OM (49).

Biogas production (BG) is intimately related to feed 
degradability and, as a result, the availability of highly-fermented 
nutrients for rumen microbial activity and growth (15). Although 
their production is predominantly reliant on the fermentation of 
carbohydrates to SCFA and proteins, and BG is mostly made up 
of CO2 and CH4, their contribution to BG is negligible in 
comparison to that of carbohydrates (50). Furthermore, the 
production of acetate and butyrate during rumen fermentation 
produces more gas than the formation of propionate, accounting 
for the majority of the BG (51).

Natural compounds of microalgae have been proposed as 
potential methods for controlling rumen fermentation, contributing 
to CH4 generation (52, 53). A previous in vitro investigation (54) 
demonstrated that Schizochytrium spp. inhibited CH4. Furthermore, 
several research (55, 56) found an increase in CH4-producing bacteria 
and protozoa, demonstrating that not all microalgae have CH4-
reducing properties.

The anti-methanogenic effect observed in this study has been 
reported in studies involving other microalgae (Spirulina platensis, 
Chlorella vulgaris, and Schizochytrium spp.). The studies attribute this 
effect to the presence of docosahexaenoic acid (C22:6 n − 3) and 
eicosapentaenoic acid (C20:5 n − 3), polyunsaturated acids that decrease 
the concentration of acetate and increase propionate, which results in 
reduction the abundance of methanogenic archaea, the primary 
microorganisms producing CH4 (15, 51, 52). Likewise, Sheng et al. (57) 
found that humic compounds, including fulvic and humic acids, can 
lower CH4 production in ruminants. They ascribed this to a decrease of 
the molar proportion of protozoa and acetate populations (58), which 
minimizes the amount of H2 available for CH4 production (59).
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The addition of the microalgae reduced BG production in the 
current study, which is in line with Elghandour et  al. (15), who 
observed that the BG decreased with the addition of the microalgae 
Schizochytrium spp. and associated it with the antimicrobial and 
cytotoxic effects of the compounds of the microalgae (60), as well as 
the long-chain fatty acid profile (48). Also, it is likely that the 
microalgae have modified the structure of the microbial community 
during fermentation which is caused variations in the final 
fermentation products, including the SCFA profile (61).

Among the treatments, the highest amount of gas produced was 
observed for the MgS nanoparticles group. Additionally, the MgO 
treatments demonstrated a notable decrease in the production of 
methane, which indicate the ability of MgO nanoparticles to meet the 
needs of rumen bacteria during the incubation period (62). The two 
main sources of in  vitro gas generation are carbon dioxide and 
methane, which are derived directly from microbial fermentation, and 
carbon dioxide released from a bicarbonate buffer, obtained indirectly 
by buffering short-chain fatty acids. Menke and Steingass (23) affirm 
that the only variables influencing gas generation are the feed’s 
physical and chemical composition. The fermentation rate, however, 
could be impacted by modifications in ruminal microbial activity.

VFA parameters
Volatile fatty acids (VFAs) have been considered one of the most 

significant factors in achieving anaerobic fermentation. According to 
Makkar (63), fluctuations in gas production might alter the amounts 
or ratios of VFA produced. VFAs’ hydrophobic qualities enable them 
to penetrate the bilayer structure of the bacterial cell’s plasma 
membrane (64). Therefore, by changing the membrane structure and 
increasing its flowability and permeability, they can lower the rate of 
bacterial growth (65).

Previous research has shown that adding red algae (Asparagopsis 
taxiformis) and lipid-extracted microalgae to forage diets dramatically 
boosted propionate and butyrate levels in the rumen (66). This is 
deemed advantageous since previous research demonstrated that the 
energy from propionate was used more efficiently than energy from 
acetate (67, 68). Lodge-Ivey et  al. (68) found that adding lipid-
extracted algae (Chlorella or Nannochloropsis) to the diet increased 
total rumen VFA content, which is in consistent with our findings. In 
contrast to our findings, it has been proposed that the high lipid 
content of Chlorella may suppress cellulolytic bacteria in the rumen 
and finally reduction of total VFA (53). Furthermore, adding algae to 
a corn silage-based diet raised ruminal pH and reduced total VFA by 
up to 18% after 19 days (69). Other in vitro investigations (53–55, 70) 
found that supplementation with DHA-rich microalgae or marine 
algae increased ruminal propionate while decreasing overall VFA and 
CH4 synthesis. The differences could be attributed to variances in 
supplementation levels and oil extraction.

Conclusion

The results of our study indicate that the use of Algae+50 Mgo 
nano-particles, viable feed additive, highest in CP and EE, can reduce 
methane emission and gas production. Furthermore, all the treatments 
containing Algae decreased in vitro gas production. Also, addition of 
the Algae+50 Mgo nano-particles improved fermentation kinetics, 
VFAs, and nutrients’ degradability compared to the other experimental 

treatments. These results are promising and suggest that the applied 
extracts could mitigate undesirable outcomes of rumen fermentation. 
Although more research is necessary to clarify the exact effects of the 
extracts on the aforementioned indices.
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