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Introduction: Ecological resilience is the capacity of an ecosystem to maintain

its state and recover from disturbances. This concept can be applied to the gut

microbiome as a marker of health.

Methods: Several metrics have been proposed to quantify microbiome

resilience, based on the prior choice of some salient feature of the trajectories

of microbiome change. We propose a data-driven approach based on

compositional and functional data analysis to quantify microbiome resilience.

We demonstrate the validity of our approach through applications to sled dogs

undergoing three types of exercise: running on an exercise wheel, pulling an

all-terrain vehicle, and pulling a sled.

Results: Microbiota composition was clearly impacted by each exercise type.

Log-ratio analysis was utilized for dimensionality reduction and identified 33

variables (taxa) explaining 90% of the variance. Functional principal component

analysis identified two scores (FPCA 1 and FPCA2) which explained 76% and

19% of the variability of the trajectories, respectively. More resilient trajectories

corresponded to low values of FPCA1 and FPCA2 values close to zero. Levels

of chemokines MCP-1 and KC-like, which increased significantly after exercise

and returned to pre-exercise levels within 24 h, were significantly associated with

FPCA scores as well.

Discussion: To our knowledge, this is the first study proposing a principled

approach to quantify microbiome resilience in healthy dogs and associate it with

immune response to exercise-related stress.

KEYWORDS

functional principal component analysis, canine microbiome, microbiome stability,
microbiome recovery, exercise stress

Introduction

The gut microbiota is a diverse community of microbes that play a variety of

complementary roles within an ecosystem. Numerous studies have implicated the gut

microbiota in health and disease in humans and in pets (1). Due to the high inter-individual

variability of the gut microbiota, what constitutes healthy microbiota is hard to define

and influenced by factors such as diet (2, 3), topographic location or environment (4, 5),

genetics (6, 7), and more. However, the concept of microbiome resilience has recently

gained attention and may be used as a marker of health (8). Resilience is the capacity of

an ecosystem to recover from a modulating perturbation (9). A microbiota that is unable

to recover from a perturbation may lead to a state of dysbiosis, negatively impacting the

host and potentially contributing to the development of diseases like inflammatory bowel

disease (10).

Although the microbiota is generally a stable community (11), perturbations like

changes in diet, medication usage, and even psychological stress can lead to changes in

its composition or function. For example, a diet change in dogs from a commercially
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available dry kibble diet to a highly purified diet led to

significant changes in bacterial taxa and genetic potential within

the community (12). However, after 36 weeks of being fed

the highly purified diet, the microbiota quickly reverted back

to its original state within 4–6 weeks of transitioning back

to a dry kibble diet (12). Antibiotics are also a well-known

stressor of the microbiome. In one study, dogs administered

metronidazole for 2 weeks showed marked changes in their

microbiota, with decreases in richness as well as in the relative

abundance of Bacteroidetes and Fusobacteria and increases in

Proteobacteria and Actinobacteria appearing after 7 days of

treatment (13). In this study led by Pilla and colleagues, neither

richness nor Fusobacteria relative abundance had fully recovered

to pre-antibiotic levels 4 weeks post-treatment. Dogs undergoing

transport-related stress also exhibited alterations in their fecal

microbiota. Relative abundances of Actinobacteria, Collinsella,

Slackia, Ruminococcus, and Eubacterium increased post-transport

while relative abundances of Fusobacteria, Streptococcus and

Fusobacterium were reduced (14, 15).

Physical exercise can also have an impact on the microbiota

of dogs. Oba et al. compared microbiota changes in trained

and untrained dogs subjected to exercise stress (15). In

untrained dogs, the relative abundance of several bacterial

genera was reduced, including Bacteroides, Parabacteroides,

Prevotella, Phascolarctobacterium, Fusobacterium, and Sutterella,

while Collinsella, Slackia, Clostridium, Blautia, Ruminococcus,

Megamonas, Catenibacterium were increased. Interestingly, after

training, dogs subjected to exercise challenge displayed significant

changes in the relative abundance of even more fecal bacteria than

untrained dogs. Of note, the relative abundance of Turicibacter,

Faecalibacterium, and Eubacterium, genera with bacterial species

known for their production of short chain fatty acids, increased

post-exercise (15–17). Changes in the gut microbiota may also

impact exercise performance. In endurance racing sled dogs, the

teams with the best performances showed both the lowest levels of

dysbiosis-associated bacteria [as measured by the canine dysbiosis

index (18)] prior to the race and the lowest change (decrease) in

these bacteria after the race (19).

Not only does exercise lead to changes in the gut microbiome,

but it can also cause gastrointestinal symptoms, like diarrhea,

in dogs. In racing sled dogs, this diarrhea does not seem to be

correlated with the presence of pathogens (20). In attempt to

overcome this, Gagné et al. tested a synbiotic treatment in sled

dogs. Alterations in the fecal microbiome were observed with a

significant rise in Lactobacillaceae in a group fed a synbiotic after

2 weeks of treatment. A positive correlation was found between

Lactobacillaceae and overall butyrate concentration in all dogs.

After 5 weeks of treatment, there was an improved fecal score and

fewer days of diarrhea in the dogs given the synbiotic (21).

Recent studies unveiled that the stability of the microbiota

is defined by two factors: first, the capability of the community

to resist and recover from the constant disturbances arising

in the environment, and second a high diversity dominated

by competitive interactions among bacteria, leading to a rich

complexity of metabolites that benefit the host (22). When the

community is no longer resilient and incapable of overcoming

stress, there is a rise of cooperative behaviors associated with a

decrease in diversity and a potential reduction of the beneficial

metabolic activity (23). For this reason, a system capable to

withstand disturbances, remaining longer within the boundaries of

the homoeostatic equilibrium, is a key requirement for a healthy

relationship between host and microbiota (8). Understanding the

mechanisms that promote resilience against the ever-occurring

perturbations is important not only to understand the relationship

between microbiota and health, but also to be able to promote the

needed microbiome changes to lead toward health when disease

occurs (24). To do so, we need methods to quantify the levels of

resilience and the tools to manipulate it when needed.

The concept of resilience has been classically considered to be

a dichotomic descriptive of a system (either it is resilient, or it

is not). However, this view has been recently discarded toward a

more quantitative perspective. As disturbances can be quantifiable

(they have a magnitude and a length), so does the capacity of

a system to withstand them and recover from them. Therefore,

different methods have been developed to characterize and quantify

resilience (8, 25). Such methods usually take two independent,

yet complementary perspectives: the first one focuses on the

length of the disturbance and the time taken to recover from it

(henceforth recovery). The second one focuses on the magnitude of

the disturbance. Such a change in perspective and its dual point of

view has brought an understanding of the mechanisms underlying

resilience. Yet, most of the methods to quantify resilience focus

on one perspective or the other and do not account for the

fact that resilience has this bivariate measurement in which both

factors (impact and recovery time) influence the resilience of

the community.

In this study we propose a new method to characterize

microbiome resilience which accounts for both the impact of the

disturbance and the recovery time. We apply this new method

to sled dogs undergoing three types of exercise: running on an

exercise wheel, pulling an all-terrain vehicle (ATV), and pulling

a sled. The method is based on the multidimensional reductional

approach of functional principal component analysis (FPCA).

Our approach will help understand the relationship between gut

microbiota and resilience and might help in disentangling the

elements of the system affecting the impact of the disturbance and

the recovery simultaneously.

Methods

Dogs and exercises

Fifteen healthy adult Alaskan husky dogs underwent three

exercise types [running on the wheel, pulling an all-terrain vehicle

(ATV), and pulling a sled] over a 6-month period. These dogs are

very active by nature, with a natural ability to pull and a high desire

to run. All exercises in the study are typically used for training

in their sport. The dogs typically exercise 2 to 3 days per week,

and samples were collected for this study on a normally scheduled

exercise bout.

– Wheel: Dogs ran in a circle where a wheel spun at a fixed rate.

Dogs were run in two groups on the same day in 7-dog and

8-dog teams. This exercise imitated a long, slow, low intensity
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run (14 miles total distance for 2-h time period averaging 7

miles/h). It was 55◦ F for this exercise. The wheel is around

40%VO2 max and is a non-pulling, aerobic exercise. The wheel

builds the aerobic base of the dogs by getting over the 90-

min threshold where glycogen stores become depleted and fat

substrate use becomes more efficient and preferred. Building

an aerobic base help support higher intensity training later

in the season. This exercise was performed first in the series

of exercises.

– ATV: Dogs ran on harness in front of an ATV for ∼30min

for 7 miles at 14 miles/h. It was 20◦F for this exercise. ATV

pulling focuses more on strength training. This means that

dogs pull more weight than they would on a sled, but the

speeds are slower. This exercise was performed second in the

series of exercises, 2 months after the wheel exercise samples

were collected.

– Sled: Dogs ran on harness pulling a dog sled. Dogs ran a

distance of 10 miles over a period of 40min at ∼15 miles/h. It

was −7◦F for this exercise. Sled pulling is the highest intensity

of the three types of exercise. Dogs pull less because resistance

is less, but they run at a faster pace. Dogs can push the 90%

VO2 max level at this intensity. This exercise was performed

last in the series of exercises, 4 months after the ATV exercise

samples were collected.

The dogs in this study were fed a commercially available

nutritionally complete and balanced dog food (Nestlé Purina

product: ∼29% protein, 36% carbohydrate, 19% fat; 1.4% fiber,

3894 ME Kcal/Kg). Dogs (8 female, 7 male) were between the ages

of 1 and 7 years old and weighed between 40 and 65 pounds.

Dogs were housed outdoors on elevated platforms in groups of

four with access to an individual insulated house. The kennel is

privately owned and located in Salcha, Alaska, USA. Exercises were

performed by trained kennel staff using an exercise wheel in the

kennel or in harness on a trail accessed directly from the kennel. All

15 dogs completed all three exercises, except for Dog 3, who only

completed the ATV and Wheel exercises.

This study was approved by the Institutional Animal Care

Use Committee at the University of Alaska Fairbanks (protocol

# 1807962-1).

Sample collections

Fecal samples or rectal swabs were collected at the following

timepoints: Pre-exercise (feces), Post-exercise (rectal swab), 3 h

post-exercise (rectal swab), 6 h post-exercise (rectal swab), 24 h

post-exercise (feces), 48 h post-exercise (feces). Pre-exercise was

collected the morning of the exercise before harnessing dogs to

start exercise. Post-exercise samples were collected immediately at

the end of the exercise bout. Naturally-eliminated fecal samples

were collected within 30min of defecation and frozen at −80◦C.

Rectal swabs were collected by a veterinarian with assistance

from trained kennel staff and then stored at −80◦C. All samples

remained at−80◦C until completion of study before being shipped

on dry ice to Nestlé Purina for immediate sample processing

and analysis.

Whole blood samples were collected at the same time points as

fecal samples above (pre-exercise, post-exercise, 3 h post-exercise,

6 h post-exercise, 24 h post-exercise, and 48 h post-exercise), as

approved in the study protocol by the University of Alaska

Fairbanks Institutional Animal Care Use Committee (protocol

# 1807962-1). Five milliliter of whole blood was collected from

each dog by a veterinarian at each time point via cephalic

venipuncture. Whole blood was put into tubes (BD Vacutainer

SST tubes # 367988), left at room temperature for 1 h, then

centrifuged for 10min at 4,500 rpms. Serum was aliquoted into

500 µl aliquots and frozen at −80◦C. Samples were shipped to

on dry ice to Nestlé Purina for immediate sample processing

and analysis.

DNA extraction, 16s rRNA sequencing, and
data processing

Fecal samples and swabs were extracted using Qiagen QiaAMP

BiOstic Bacteremia DNA Isolation kit (catalog #12240-50). For

fecal samples DNA extractions, ∼0.2 g of feces was resuspended in

450 µl MBL Solution and transferred to the PowerBead Tube for

extraction per manufacturer’s instructions. For rectal swab DNA

extractions, swabs are placed in 450 µl of MBL Solution and

vortexed at max speed for 10min. After vortexing, the swab is

removed, and the lysate transferred to the PowerBead Tube for

extraction per manufacturer’s instructions.

Library preparation of DNA extracts was performed as

described previously (26). DNA was quantified by Quant-It Pico

Green (Fisher # P7589) and run on a 1% Agarose E-Gel (Fisher #

G7008-01) with a 15Kb high range ladder (Fisher # 12-352-019)

to check for DNA integrity. Samples were normalized to 5 ng/µl

using 10mM Tris HCL, pH = 8.5 and re-quantified. PCR was

performed using 12.5µl 2X KAPAHiFi HotStart ReadyMix (Fisher

# NC029523), 2.5µl of the 5 ng/µl DNA, and 5µl of each amplicon

forward and reverse primers (1µM each). PCR was performed as

per 16S Metagenomic Sequencing Library Prep Protocol (available

from Illumina website). The resulting PCR product was quantified

by Pico Green to confirm amplification and a subset of samples

were run on a Bioanalyzer DNA 1,000 Chip (Agilent # 5067-1504)

for sizing (expected size 570 base pairs).

PCR products were cleaned using AMPure XP Beads (Fisher

# NC9933872) and two 80% Ethanol washes as per manufacturer

protocol. The plates were then air dried and 55 µl of Tris HCl is

added to each samples. The plates were placed on the magnetic

stand and 50 µl of the cleared supernatant was transferred to

a clean PCR Plate. An Index PCR was run to barcode the

individual samples. Five microliter of the first PCR product for

each sample was added to a master mix containing 25 µl of

2X KAPA HiFi HotStart Ready Mix, and 10 µl of Molecular

grade water (Fisher # BP2819-1). Five microliter Nextera XT

Index Primer 1 (N7xx) and 5 µl Nextera XT Index Primer 2

(S5xx) were added to the samples, so that each sample has a

different and unique combination of the two primers. The PCR

thermocycler conditions were 95◦C for 3min, 8 Cycles of 95◦C

for 30 s, 55◦C for 30 s, 72◦C for 30 s, and a final extension of
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72◦C for 5min, hold at 4◦C. The Index PCR products were

cleaned as above except 30 µl Tris HCl was added to each

samples. The plates were placed back on the magnetic and 25

µl of the cleared supernatant was transferred to a clean PCR

Plate. Pico Green of the PCR Product was used for quantification

and to confirm amplification. A subset of samples were run on

a Bioanalyzer DNA 1,000 Chip for sizing (expected size 630–650

base pairs).

Each sample was then normalized to 20 nM using Tris HCl

and 3 µl of each sample were combined to give a 20 nM Pool

(Library). The 20 nM Pool was quantified by KAPA qPCR (Fisher #

NC0833039). The Pool was diluted and 4 µl of the dilutions were

added to a master mix containing 2X SYBER Fast with Primer

Premix (From KAPA Kit) and Molecular grade water and run

against the six standards from the kit (Standard Curve). After the

run, a melt curve analysis was performed on the samples. Expected

melt temperature is around 85◦C. Using the concentration from the

qPCR, the pool is diluted down to 4 nm with Tris HCl and a KAPA

qPCR is run again to confirm 4 nM Pool.

PhiX control was diluted to 4 nM with Tris HCL and 0.1%

Tween 20. Both PhiX control and the Pool were denatured with

0.2N NaOH, and diluted to 20 pM using HT-1. Both the 20 pM

DNA and 20 pM PhiX control were diluted again to a final loading

concentration of 13 pM. Pool and PhiX control were combined

to yield 14% PhiX spike. The V3-V4 region of the 16S rRNA

was sequenced on an Illumina MiSeq using a MiSeq Reagent kit

v2 (500 cycles; Illumina catalog # MS-102-2003). Reads were de-

multiplexed and paired, and primer sequences were removed by

trimming the first 17 bases of the forward reads and 21 bases from

the reverse reads. The DADA2 algorithm, implemented in QIIME2

(version 2021.4), was used to denoise the data and identify and

quantify counts of amplicon sequence variants [ASVs; (27, 28)].

A naïve-Bayes classifier trained on the Silva 138.1 SSU Ref NR 99

database was used to assign taxonomy to each ASV.

Inflammatory markers

Inflammatorymarkers weremeasured in serum usingMillipore

Milliplex MAP Canine Cytokine/Chemokine Premixed Magnetic

Bead Kit (catalog # CCYTMG-90K-PX13) according to the

manufacturer’s instructions on a Luminex 200 (Thermo Fisher

Scientific catalog # APX10031). Antibody-coated detection beads

were incubated overnight at 4◦C with appropriate standards,

samples, or quality controls in 96-well plates. Serum sample

volume of 25 µl (undiluted) was used. Recombinant cytokines

were provided in the kit to serve as standards. All standards,

samples, and controls were run in duplicate. The following

cytokines and chemokines were measured at each timepoint:

Granulocyte-macrophage colony-stimulating factor (GM_CSF);

interleukins 6, 7, 8, 10, 15, 18, interferon-gamma inducible

protein-10 (IP-10), keratinocyte chemoattractant-like (KC-like),

monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis

factor-alpha (TNF-alpha). Luminex data was analyzed using the

Luminex xPONENT software (version 3.1 Build 971) to determine

concentrations of each cytokine/chemokine. All standards and

controls were within the expected concentration ranges. Missing

values indicate that the cytokine/chemokine was below the limit of

detection for the assay.

Measuring resilience

Our approach consisted in describing the evolution of the

microbial community by analyzing the trajectories that summarize

the magnitude of change at each timepoint.

The calculation of the trajectories requires the choice of a

reference time point, and a choice of a distance between two

compositions (by composition, we mean the percentages of relative

abundance of the taxa under consideration). In this study, we chose

the pre-exercise time point as reference time point. The Aitchison

distance was chosen as a metric to measure the amount of change

of the microbiome composition between two time points. The

Aitchison distance between two compositions is defined as:

d (u, v) =

[

D
∑

k=1

(

log

(

uk

g(u)

)

− log

(

vk

g(v)

))2
]1/2

where u = (u1, . . . , uD) , v = (v1, . . . , vD) are two vectors

representing the relative abundances of D taxa in two samples.

The components of these vectors are non-negative numbers, whose

sum is 1. The g(u) term is the geometric mean of the vector

u. The formula above defines a mathematical distance between

compositions, which is consistent with respect to feature selection.

This property is not shared by other commonly used measures,

including the Jensen-Shannon divergence. On the other hand,

the formula requires all the relative abundances to be non-zero,

therefore we applied the zero-replacement method cmultRepl from

the R package zCompositions as a pre-processing step before

calculating the distances.

Microbiome data is often high-dimensional: the number of

bacteria can be bigger than the number of samples. To address

the high-dimensionality and sparsity of the data, we applied log-

ratio analysis (LRA) to select a list of taxa from the full list,

for further use in the modeling. Our assumption was that the

essential information in the data lies mostly in fewer dimensions.

This assumption is supported by the observation that most of the

species, or genera, have a measured relative abundance of 0% for

almost all the dogs at almost all time points, with no discernible

pattern regarding their sparsity. Log-ratio analysis is equivalent to

a weighted principal component analysis on the center-log-ratios

of the data, with compositional part means as weights. It allowed

us to rank the variables according to their contributions to the total

variance, and we selected in each dataset the minimum number of

taxa explaining at least 90% of the variance.

Having calculated all the distances with respect to the pre-

exercise point, we were able to trace a microbiome trajectory

for each dog and each exercise type. The next step was to

define a list of parameters, minimal in some sense, describing

the common patterns in the family of trajectories. Like PCA,

Functional Principal Component Analysis (FPCA) aims at finding

key features of the data that explain a maximum of variability;

however, while PCA applies to cross-sectional data, FPCA is

an algorithm specifically designed for longitudinal data. The
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FIGURE 1

Relative abundance of Bacteroides increases during and after the exercise, and returns to values close to the pre-exercise levels afterwards.

FIGURE 2

Relative abundance of Peptoclostridium decreased during and after the exercise, and returned to values close to the pre-exercise levels afterwards.

algorithm follows the general paradigm of functional data

analysis, whereby time-dependent measurements are seen as

samples from smooth curves. If Xi(t) represents the value

of the trajectory of individual i at time t, we can write its

Karhunen-Loève decomposition:

Xi(t) = µ(t)+
∑∞

k=1
ξkφk(t)

where µ(t) is the population average at time t, and φk are the

eigenfunctions of the covariance operator.

The FPCA scores are defined as:

ξk =

∫

(

Xi(t)− µ(t)
)

φk(t)dt

In practice, one truncates the above infinite sum to the first

N terms, the higher the N the higher the proportion of variability

explained by the sum. Empirically, we found that the first 2 terms

suffice to explain more than 90% of the variance in all the cases

we considered.

The first two FPCA scores can then be used to summarize

our data: to each trajectory we attached the pair (FPCA score 1,
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TABLE 1 Variables selected by log-ratio analysis, ordered by decreasing proportion of explained variance.

Genus Contribution Genus Contribution

[1] Lactobacillus 13.6% [18] Blautia 1.7%

[2] Prevotella_9 9.3% [19] Turicibacter 1.5%

[3] Corynebacterium 7.3% [20] Allobaculum 1.4%

[4] Catenibacterium 4.6% [21] Eubacterium_brachy_group 1.4%

[5] Peptoclostridium 4.4% [22] Escherichia-Shigella 1.3%

[6] Bacteroides 4.2% [23] Faecalibacterium 1.3%

[7] Limosilactobacillus 4.1% [24] Ralstonia 1.3%

[8] Alloprevotella 3.9% [25] Erysipelotrichaceae genus uncultured 1.3%

[9] Ligilactobacillus 3.8% [26] Streptococcus 1.1%

[10] Peptostreptococcus 3.2% [27] Peptococcus 1.0%

[11] Prevotellaceae_Ga6A1_group 2.3% [28] Sutterella 1.0%

[12]Muribaculaceae 2.1% [29] Phascolarctobacterium 0.8%

[13] Clostridium_sensu_stricto_1 2.1% [30] Dubosiella 0.8%

[14] Fusobacterium 1.9% [31] Erysipelatoclostridium 0.8%

[15] Parasutterella 1.8% [32] Ruminococcus_torques_group 0.7%

[16] Anaerobiospirillum 1.8% [33] Lachnospiraceae (genus unknown) 0.7%

[17] Bifidobacterium 1.7%

FIGURE 3

Trajectories calculated on selected variables, with respect to the pre-exercise timepoint. Each point corresponds to the (Aitchison) distance between

the composition at the given timepoint and at pre-exercise. Each chart shows the trajectories of a same dog corresponding to the three exercise

types. Dog three did not complete the sled exercise.
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FIGURE 4

The average distance and standard error were calculated for each exercise type separately and plotted as functions of time in hours.

FPCA score 2), and we related these two numbers to the degree

of resilience.

The FPCA framework can also be used to identify outliers

in the family of trajectories. The approach consists of creating a

set of convex hulls of the scores based on the bagplot method, a

bivariate generalization of the univariate boxplot. This approach

helps to detect trajectories whose shape is globally ‘atypical’ in the

population, in a data-driven way, as opposed to defining outliers

based on an a-priori choice of a single feature of the curves (e.g.,

area under the curve).

As a way to better understand the interpretation and potential

of our proposed approach, we simulated families of trajectories by

letting the 2 scores vary independently on a regular grid of values.

This gives a clear picture of how the scores jointly describe the

shapes of trajectories, and how this may be interpreted in terms

of resilience.

Results

Typically, relative abundances of bacteria in the gut are

unbalanced, with few bacteria being present in almost all samples,

and many others being absent from almost all samples. The genus

Mycoplasma, for example, was detected only in five samples out

of 263, with a maximal relative abundance of 3.3%. On the other

hand, Peptoclostridium, Fusobacterium, Fecalibacterium, Blautia,

Bacteroides, Allobaculum were always present, with an average

abundance of, respectively, 11.7%, 12.9%, 3.2%, 5.2%, 7.2%, 2.0%.

From the compositional bar plots (Supplementary Figures 1–

3) we observed some general features of the data: in the Sled and

ATV data, Lactobacillus was highly abundant in the gut microbiota

of several dogs, and nearly absent in others, Bifidobacterium

was highly abundant only in the Sled data, while Blautia and

Peptoclostridium had similar values and patterns of change in the

three exercise datasets.

A clear impact of voluntary exercise stress can be observed

for the relative abundance of several bacteria when taken

individually (see, for example, Figures 1, 2): the average

abundance of Bacteroides increased from 8.3 to 14.4% before

and after the wheel exercise, while the relative abundance of

Peptoclostridium decreased from 12 to 6.1%. However, for other

taxa (e.g., Bifidobacterium, Supplementary Figure 4 and Prevotella,

Supplementary Figure 5) we did not observe a significant

time trend. Supplementary Table 1 provides a list of statistical

comparisons of the relative abundance, before and 3 h after the

exercise, for the main taxa.

Log-ratio analysis for dimensionality reduction identified 33

variables explaining 90% of the variance (Table 1). Lactobacillus

was ranked highest, followed by Prevotella and Corynebacterium.

Inspection of the trajectories (Figure 3) suggests that the

microbiome composition changed significantly during the 6 h

following the exercise, with a partial stabilization/recovery

afterwards. The average trajectory suggested a stronger

perturbation due to the ATV training, with no noticeable

differences in the recovery phase (Figure 4).

FPCA identified a first score explaining 76% of the variability

of the trajectories, and a second score explaining 19% of the

variability. The interpretation of the 2 scores can be further

understood from the observation that the first score was positively

correlated with the distance at all timepoints, and the second score

was negatively correlated with the distance until 6 h post-exercise,

and positively correlated afterwards (Figure 5). A scatterplot of

the two scores (Figure 6) helps to identify trajectories that share a

similar shape, because they correspond to points that are close to

each other, as well as outliers.

We simulated families of trajectories by letting the

two scores vary independently on a regular grid of
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FIGURE 5

The distance at each timepoint was plotted against the FPCA scores. (A) the first score is strongly positively correlated with the distance at all

timepoints; (B) the second score is negatively correlated with the distance until 6 h post exercise, there is then an inflection point between 6 and 24h

where the correlation becomes positive.
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FIGURE 6

The two scores plotted together, with each point corresponding to a trajectory. On the right side, two examples of outlier trajectories, at the two

extremes of the FPCA2 range. Numbers represent dogs 1–15, colors represent exercise type.

FIGURE 7

Top left: FPCA1 scores vary in the first quartile [−25, −6], FPCA2 scores in the first quantile [−16, −4]. Top right: FPCA1 in [−25, −6], FPCA2 scores in

the highest quartile [1, 11]. Bottom left: FPCA1 in the highest quartile [9, 30], FPCA2 scores in [1, 11]. Bottom right: FPCA1 in [9, 30], FPCA2 in

[−16, −4].

values (Figure 7). Figure 7 supports the fact that the

shapes of trajectories could not be accurately described

with only one parameter, and that both scores are

needed in combination to capture the complex patterns

of variability.

More resilient trajectories correspond to low (negative)

values of FPCA1 and values of FPCA2 close to 0 (compare

with trajectories of Dog 5-Sled and Wheel, Figures 3, 6).

Although FPCA1 was generally higher in the ATV group (4.4

± 11.3, 0.2 ± 10.0 for Sled and 0.2 ± 14.3 for Wheel), the

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2025.1486679
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Mainardi et al. 10.3389/fvets.2025.1486679

FIGURE 8

Distributions of KC-like and MCP-1, for each of the exercise types, are shown as boxplots for every time point. Above the boxplots, p-values are

shown to compare the distributions between pre-exercise and 3h post exercise, and between 3h post and 48h post-exercise. Dunn post-hoc tests

with FDR correction were used for comparison.

difference was not significant. Values of FPCA2 were −2.3

± 4.2 (ATV), 0.0 ± 4.3 (Sled), −1.5 ± 6.5 (Wheel), also

not significant.

Each dog (except Dog 3) had three trajectories in this dataset,

corresponding to the three exercise types, performed at different

times of the year. For each exercise challenge, each trajectory

was calculated using the pre-exercise timepoint as baseline.

We calculated again the trajectories using as baseline the pre-

exercise timepoint before the wheel exercise, which occurred first

chronologically. The mean distance from baseline was 10.4 ± 0.48.

By comparison, the average distance when using different baselines

was 6.2 ± 0.28, sensibly lower. Visual inspection of the trajectories

suggests a significant change of the pre-exercise time point in the

long term (Supplementary Figure 6).

Levels of chemokines MCP-1 and KC-like were impacted

by the exercise, irrespective of the type of exercise (Figure 8).

The levels of the remaining measured inflammatory markers

were either not impacted by the exercise, or the effect was not

consistent across the exercise types (see Supplementary Table 2 for

descriptive statistics). However, for some of the cytokines and

chemokines, for instance TNF-a, the proportion of missing values

(due to low levels of these markers in serum) was very high, it

is conceivable that this may have had an influence on the lack of

association. For KC-like and MCP-1, our dataset was complete.

FPCA scores were associated with the levels of the chemokines

MCP-1 (Figure 9). A mixed linear model with random intercepts

was fitted to the data, with the chemokine levels as outcome

and the FPCA scores as predictors, together with interaction

terms to model the theoretical effect of the exercise type. KC-like

levels were significantly higher in the Sled group (Table 2) and

were associated with FPCA1 only through exercise type. MCP-1

levels were lower in the sled group (Table 3) and were positively

associated with FPCA2.

Discussion

Microbiota stability is an important ecological feature as it

might impact the homeostasis of the host. Loss of homoeostasis

may lead to dysbiosis and affect the host either locally in

the gastrointestinal tract or systemically through its interaction

with the immune system (1). Hence, assessing the levels of
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FIGURE 9

Values of MCP-1 plotted against values of FPCA1. Each dot corresponds to a sample.

stability of the gut microbiota, and its resilience to environmental

disturbances is a key question that might depend of the nature of

the disturbance.

Consistent with findings reported by other authors (15), we

observed a change in the composition of the gut microbiota

after intense physical exercise in a population of trained

Alaskan sled dogs. The intensity of this change reached a

peak between 3 and 6 h after the exercise. These observations

make the exploration of intense physical exercise as a potential

disturbance appropriate.

Another open question is the methodology to quantify

resilience in the ecosystem. The choice of a metric determines

the way different trajectories are labeled as ‘resilient’. Indices that

have been previously proposed (25) translate a prior view of which

characteristics should be encoded in the definition of resilience.

Typically, proposed indices measured resilience with one number,

derived from the choice of some salient features of the trajectory,

for example a slope between two points. Depending on this choice,

these metrics try to capture either the resistance or the recovery

of the ecosystem. A few studies have jointly considered multiple

attributes of resilience (25, 29). It was already identified (25)

that recovery time, or perturbation, does not provide a complete

and sufficient description of the resilience of an ecosystem. In

line with the bivariate framework proposed by Ingrish and Bahn

(25), our proposed data-driven approach suggests an intrinsic 2-

dimensional parametrization of the family of trajectories describing

the response to a perturbation. The application of functional

PCA aims to describe the trajectories with a limited number of

parameters, or scores, each corresponding to a mode of variation

with respect to themean. This dual nature of resilience is confirmed

in the exercise study, where the first 2 scores explained 95% of

the variability.

Due to the high-dimensionality and sparsity of the microbial

composition, we applied a data-driven technique to select a smaller

list of taxa to be used for the analysis. This selection is dataset-

specific and is based on the variability of the taxa, independently

on their average abundance; in other words, the process does not

favor highly abundant taxa, but low abundance bacteria can also

be selected, as long as they contribute significantly to the total

variance in the data. An alternative approach might consist in

an a priori choice of bacteria that are known to be affected by

the stressor, based on prior knowledge. In our case, little was

known about the effect of physical exercise on the gut microbiome.

Gagné et al. (21) have investigated the alterations in fecal quality,

short-chain fatty acids, and the fecal microbiome in two groups

of training sled dogs fed a synbiotic or microcrystalline cellulose
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TABLE 2 Summary table for the linear mixed model KC_like ∼ FPCA1 +

FPCA2 + FPCA1∗Exercise_Type + FPCA2∗Exercise_Type + (1|ID).

KC-LIKE

Predictors Estimates CI p

(Intercept) 259.12 195.97 to 322.27 <0.001

Exercise type [Sled] 44.42 16.58 to 72.26 0.002

Exercise type [Wheel] 30.96 4.57 to 57.34 0.022

FPCA1 1.28 −0.62 to 3.18 0.187

FPCA2 4.26 −0.60 to 9.13 0.086

Exercise type [Sled] ∗FPCA1 −3.78 −6.35to−1.21 0.004

Exercise type [Wheel] ∗FPCA1 −0.52 −2.88 to 1.84 0.664

Exercise type [Sled] ∗FPCA2 1.94 −4.71 to 8.59 0.566

Exercise type [Wheel] ∗FPCA2 −4.91 −10.58 to 0.75 0.089

Random e�ects

σ
2 5679.85

τ00 Dog 13626.38

ICC 0.71

N Dog 15

Observations 264

Marginal R2/conditional R2 0.055/0.722

Values in bold indicate significant p-values. Asterisks indicate interaction between two terms.

placebo, highlighting the role of Lactobacillus. Interestingly,

Lactobacillus was also selected by our procedure, and was ranked

highest, increasing significantly after the exercise from 2 to 5–6%.

Prevotella_9, Bacteroides and Peptoclostridium were also ranked

as top contributors. It is known that Prevotella_9 and Bacteroides

are highly variable between dogs (30). In our study, the relative

abundance of Bacteroides increased significantly after the exercise

and recovered afterward. The relative abundance of the genus

Blautia decreased significantly between pre- and post-exercise. In a

previous study, Blautia was found to be more abundant in healthy

dogs, compared to dogs with chronic enteropathy (18).

The quantification of resilience also depends on a reference

composition, considered as a stable state with respect to which the

successive states are compared. In our exercise data, we observed

a significant variability in the pre-exercise state compared to the

change induced by the physical exercise. The high degree of

variability of the pre-exercise timepoint between exercises could

reflect seasonal oscillations. It has been demonstrated that the gut

microbiota is impacted by temperature. The gut microbiota of

mice exposed to extreme cold (−5◦C) and extreme heat (35◦C)

for 2 months differed significantly from those living at room

temperature [25◦C; (31)]. Indeed, outside temperature for both

the ATV and sled exercises was below freezing. Therefore, outside

temperatures could be impacting the variability in the microbiota

that we observed within each dog in the pre-exercise time point

and how the microbiota responds to the exercise. However, in the

current study, weather and ground conditions limited when each

exercise could be completed.

TABLE 3 Summary table for the linear mixed model MCP-1 ∼ FPCA1 +

FPCA2 + FPCA1∗Exercise_Type + FPCA2∗Exercise_Type + (1|ID).

MCP1

Predictors Estimates CI p

(Intercept) 315.38 271.30 to 359.45 <0.001

Exercise type [Sled] −38.09 −69.66 to−6.53 0.018

Exercise type [Wheel] −36.67 −66.77 to−6.58 0.017

FPCA1 −1.05 −3.17 to 1.08 0.332

FPCA2 6.12 0.63 to 11.62 0.029

Exercise type [Sled] ∗FPCA1 −0.58 −3.50 to 2.33 0.694

Exercise type [Wheel] ∗FPCA1 4.10 1.45 to 6.74 0.003

Exercise type [Sled] ∗FPCA2 3.40 −4.12 to 10.91 0.374

Exercise type [Wheel] ∗FPCA2 −4.92 −11.32 to 1.49 0.132

Random e�ects

σ
2 7478.31

τ00 Dog 5203.23

ICC 0.41

N Dog 15

Observations 264

Marginal R2/Conditional R2 0.112/0.477

Values in bold indicate significant p-values. Asterisks indicate interaction between two terms.

In this study, rectal swabs were utilized in order to capture the

changes to the microbiota at distinct time points after the exercises.

Although the reference composition (pre-exercise sample) was

determined by a fecal sample, not a rectal swab, several human

studies have shown that the fecal microbiota are comparable to

the communities obtained from a rectal swab (32–34). While this

comparison has yet to be studied in canines, a comparison of piglet

fecal microbiota samples and rectal swab samples also showed

that samples clustered by individual and not sample type (35).

While utilizing the same sample type throughout the longitudinal

sampling is preferred, waiting for natural defecation by the sled

dogs would have likely resulted in missing the full magnitude of

the disturbance due to exercise.

The chemokines KC-like and MCP-1 increased significantly

after the exercise and returned to levels comparable to pre-

exercise after 24 h, providing further evidence of a significant

physiological stress imposed by the intense training. Their levels

were significantly different between the three exercise types,

reflecting the different nature and intensity of each exercise. In

dogs, KC-like is a chemokine similar to human and murine CXC

motif ligand 1 (CXCL1) and attracts primarily neutrophils to

sites of injury or infection. CXCL1 has previously been shown to

be increased in serum of mice after exercise, a response that is

regulated by muscle-derived IL-6 (36). Serum IL-6 was significantly

increased after ATV exercise in our study, however, it has been

shown that several factors, including exercise intensity, exercise

duration, and the type of muscle contraction can have an impact

on the degree and timing of systemic IL-6, which in turn may
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be impacting serum KC-like levels in these dogs (37–41). MCP-

1 is a chemokine that helps regulate migration and infiltration

of monocytes and macrophages. In another study with sled dogs,

MCP-1 was increased at the mid-point and immediately after the

race compared to the starting concentration (42). We found that

levels of MCP-1 were associated with the FPCA scores: FPCA2

was positively associated with MCP-1 and FPCA1 was positively

associated with levels of MCP-1 and KC-like but only through its

interaction term with the exercise type. While these associations

point in the direction of an effect of the intensity of the physical

stress on the temporal patterns of change of the gut microbiome,

further investigation will be needed in order to better understand

the nature of this interaction. In particular, the three exercises were

performed at different times of the year, so that we cannot exclude

seasonality or other environmental factors having contributed to

the variability on the performance and the microbial community.

Our approach can be applied to describe and analyze data

from any longitudinal microbiome study, providing a framework

to model the evolution over time of the microbial composition

in a multi-variate way. The method is therefore a valuable tool

to compare and cluster subjects, based on how their microbiome

responds to external perturbations. The method is flexible and can

be applied, in theory, to any longitudinal study design. However,

the number and the regularity of the time points will have an

impact on the ability to recover the actual trajectories from

the sampled data. Strategies to define optimal designs in this

context have been investigated by several authors and are an area

of active research (43, 44). To our knowledge, this is the first

study proposing a principled approach to quantify microbiome

resilience in healthy dogs. The mathematical approach is actually

applicable to a different choice of host and can also be applied in

human studies.
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