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Impact of intragastric
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microbiomics and plasma
metabolomics
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1College of Animal Science, Xinjiang Agricultural University, Ürümqi, China, 2Xinjiang Key Laboratory of
Equine Breeding and Exercise Physiology, Ürümqi, China

Introduction: Donkey milk demonstrates closer compositional resemblance to
human milk compared to bovine milk, positioning it as an optimal nutritional
substitute for infants with cow’s milk allergy. Furthermore, its rich profile of
bioactive compounds suggests potential immunomodulatory properties. This
study systematically investigated the e�ects of donkey milk supplementation
on murine immune function and gut microbiome dynamics, thereby providing
mechanistic insights to support its clinical development in functional food
applications.

Methods: Following daily intragastric administration of 10mL/kg of body weight
of donkey milk (DM) or distilled water (DW) to the mice for 28 consecutive
days, liver tissues were harvested for immunological profiling, with concurrent
collection of blood samples for plasma metabolomic analysis and fecal
specimens for gut microbiome characterization. Subsequently, the modulatory
e�ects of donkey milk supplementation on immune parameters, intestinal
microbiota composition, and plasma metabolic profiles were systematically
evaluated.

Results: Immunity analysis revealed that intragastric administration of DM
raised the levels of IL-6 and TNF-α cytokines in mouse liver. In addition, DM
modulated the composition of both the murine gut microbiome and plasma
metabolites. One-hundred and forty-five di�erentially-produced metabolites
were identified, most prominently nicotinamide, L-valine, and β-estradiol, that
are primarily associated with valine, leucine, and isoleucine biosynthesis and
degradation, nicotinate and nicotinamidemetabolism, and unsaturated fatty acid
biosynthesis. Alterations at phylum, genus, and species levels were evident in the
fecal microbiota of mice after intragastric administration of DM. In particular, an
increased abundance of the Lactobacillus bacterium was observed. Correlation
analysis of di�erential metabolites andmicrobiomes indicated a correspondence
between Falsiroseomonas and Salipiger species and the antioxidant coenzyme
Q that has the potential to activate the immune system.

Conclusion: The data collectively suggest that DM may adjust the murine gut
microbiome and plasma metabolites thereby potentially improving immunity in
mice.
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1 Introduction

Milk and dairy products play critical roles in human diet and

nutrition. Breast milk is the main nutritional source for newborns

during early life stages due to the rich content of milk nutrients. As

well as providing essential nutrients for growth and development,

milk also improves body health (1). Research on milk and dairy

products has focused principally on cowmilk. However, milks from

diverse sources exhibit compositional differences which may affect

the biological activities of distinct types of milk (2). Interest in and

demand for non-cow milk products are growing in part due to the

increase in dairy consumption and the development of enhanced

processing technologies (3). Donkey milk (DM) is one potential

alternative to cow milk. Elucidation of the bioactive functions

and regulatory mechanisms in DM production will facilitate the

development of targeted active DM products that respond to the

changing needs of different populations for dairy products.

The composition of DM is more similar to human milk than

cow milk which renders DM an ideal substitute for infants who are

allergic to bovine milk (4). DM has a similar protein content (1.63

g/100mL) as human milk (1.42 g/100mL) and is approximately

half the content of cow milk (3.25 g/100mL). In addition, cow

milk has a relatively high casein content whereas human milk

and DM have comparatively high levels of whey proteins which

may explain why DM causes fewer allergies than cow milk (5).

Furthermore, β-lactoglobulin in DM may be digested more easily

than β-lactoglobulin in cow milk (6). DM has a lower butterfat

content than human and cow milks (7). However, DM has a high

content of essential fatty acids, including linoleic acid and linolenic

acid, which are 25% more than in cow milk (8). Moreover, DM

contains abundant water-soluble vitamins, including vitamin B and

vitamin C, and fat-soluble vitamins, particularly vitamin D (9),

which further emphasizes the high nutritional value of DM.

In addition, DM may exhibit antibacterial properties against

foodborne pathogens (10, 11). Numerous bioactive peptides with

immune-like properties, including lysozymes and lactoferrin,

have been isolated from DM (12) which suggests that DM

may play improve immune capacities. We hypothesized that

the immunomodulatory effect of donkey milk may arise from

its capacity to modulate the human gut microbiome, thereby

influencing metabolic processes. We tested our hypothesis by

administering donkey milk to mice with subsequent evaluation of

immune capabilities. In addition, the relationship between the gut

microbiome and serum metabolites of mice was characterized with

the aim of identifying biomarkers in DM that improve the immune

system which will further guide the production and application of

DM as a beneficial food product.

2 Materials and methods

2.1 Ethical statement

This study was approved by the Animal Welfare and

Ethics Committee of Xinjiang Agricultural University (approval

number: 2023009).

2.2 Experimental animals and sample
collection

DM samples were collected from animals in Tacheng, Xinjiang,

China, and were divided and placed into sterile polyethylene tubes

which were frozen immediately at −20◦C. DM originated from

four Xinjiang donkeys (Equus africanus asinus). The nutritional

composition of the DM is provided in Supplementary Table S1.

Samples were transferred to the laboratory in an ice bath and

then were stored at −20◦C for subsequent use. All DM samples

came from a single-time collection and were thawed with water

before use.

Twenty-eight 4-week-old Institute of Cancer Research (ICR)

mice purchased from Xinjiang Medical University (Xinjiang,

China) were kept at 22 ± 2◦C with a 12 h light/dark cycle. Mice

had free access to food and water throughout the experimental

period. Mice were divided randomly into two groups after 1 week

of acclimation. The animals were housed in groups of three or

four per cage (290 × 178 × 160mm), with males and females

maintained separately. The selected mice were fed a standard

rodent diet sourced from Sibeifu Biotechnology Co., Ltd. (Beijing,

China). The nutritional composition of the feed is provided in

Supplementary Table S2. Each group contained seven male mice

and seven female mice which were administered intragastric

injections every morning of 10 mL/kg of body weight of DM

or distilled water (DW) for four consecutive weeks. Mice were

weighed on the 1st day of each week to adjust the amount of

feed DM and DW. Body weight data for mice is presented in

Supplementary Table S3. Animals were fasted for 12 h with no

access to water for 6 h after the final feeding on day 28 (13), and then

were sacrificed on day 29. During the procedure, the experimenter

grasped the mouse tail base with the right hand, lifted it, and placed

it on the cage lid or another rough surface. The experimenter

then pressed the head and neck with the left thumb and index

finger while pulling the tail base backward and upward with the

right hand. This procedure resulted in cervical dislocation, severing

spinal cord and brain stem, and causing instantaneous death of the

animal. The animals were anesthetized with pentobarbital before

sacrifice. Livers were subsequently harvested to detect immune

indicators. Four male mice and four female mice (two per cage)

from each group were selected randomly for collection of blood

and fecal samples. Immune biomarker analysis was conducted

immediately on the harvested livers. Blood samples were collected

in vacuum tubes and allowed to stand at room temperature for 1 h

prior to centrifugation at 1,000 g for 10min to obtain sera which

were subsequently stored at −80◦C for metabolite detection. Fecal

samples were collected using sterile tubes and were frozen at−80◦C

for microbial analysis.

2.3 Immunological analysis

Livers, spleens, and thymuses were harvested, rinsed with

saline, and dried with filter paper. The organs were weighed with

the spleen and thymus indices calculated as: organ index = organ

weight/body weight × 100%. The TNF-α (MM-0132M), IFN-

γ (MM-0182M), and IL-6 (MM-0163M) levels in liver samples
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were measured by ELISA with assay kits purchased from Jiangsu

Meimian Industrial Co., Ltd. (Yancheng, China). Assays were

conducted according to the manufacturer’s instructions.

2.4 Serum metabolomics analysis

One hundred microliters of serum sample was thawed at room

temperature and transferred to a polyethylene tube. Four hundred

microliters of an 80% methanol aqueous solution was added

followed by vortexing. The sample was placed on ice for 5min,

after which it was centrifuged at 15,000 g and 4◦C for 20min. The

centrifugation step was repeated and the supernatant was collected

for LC-MS analysis.

The LC-ESI-MS/MS system from Novartis (Beijing, China) in

conjunction with the Hypesil Gold column (100× 2.1mm, 1.9µm,

ThermoFisher, USA) was used to conduct untargeted metabolite

detection in serum according to previous methodology (14).

Analytes were eluted with a velocity gradient of 0.20 mL/min under

a column temperature of 40◦C using 0.1% formic acid aqueous

solution (A) and methanol (B) or 5mM ammonium formate

aqueous solution (C) and methanol (D). After equilibration, 2 µL

of the solution were injected into each sample, with the following

linear gradients of solvent B (v/v): 0–3min, 2% B/D; 3–10min, 85%

B/D; 10–10.1min, 0% B/D; and, 10.1–11min, 2% B/D. Electrospray

ionization mass spectrometry (ESI-MSn) was performed using a

Q ExactiveTM HF/Q ExactiveTM HF-X mass spectrometer (Thermo

Fisher) with the following parameters: spray voltage = 3.5 kV;

sheath gas flow velocity = 35 psi; auxiliary gas flow velocity = 10

L/min; ion transfer tube temperature= 320◦C; auxiliary gas heater

temperature= 350◦C; and, scanning range= 100–1,500 m/z.

2.5 Metabolomics data analysis

Simple screening using Compound Discover (CD) 3.3 software

with parameters of retention time and mass-to-charge ratio was

performed on raw data of plasma metabolomics with peak areas

quantified. In addition, identifiedmetabolites were annotated using

KEGG, HMDB, and LIPIDMaps databases. Partial least squares

discriminant analysis (PLS-DA) was performed on data using

the metaX software, thereby obtaining the Variable Importance

in the Projection (VIP) value of each metabolite. The statistical

significance (P value) of each metabolite was calculated on the

basis of the t-test with fold change (FC) values determined

between the two groups. The fold change (FC) is calculated using

the formula:

FC = FC = xDW/xDM, (1)

where xDW and xDM represent the relative quantification values

for plasma metabolites in the DW and DM groups, respectively.

Screening of differential metabolites and clustering analysis

were performed based on the criteria of VIP>1, FC>1.2 (or FC

< 0.833), and P < 0.05. Metabolic pathway analysis using the

KEGG database was conducted on differential metabolites that

were identified.

2.6 Metagenomic analysis of gut contents

Genomic DNA was extracted from the gut contents of mice.

DNA concentrations were measured using a QubitTM dsDNA

Assay Kit (Invitrogen, Beijing, China, Q32854) and a QubitTM

2.0 Fluorometer (Invitrogen), and DNA purity and integrity were

assessed by 1% agarose gel electrophoresis. DNA libraries were

established using the NEBNextTM Ultra DNA Library Prep Kit for

Illumina (New England Biolabs). Libraries were diluted to 2 ng/µL

and insert sizes were measured using an Agilent 2100 bioanalyzer.

Sequencing on the Illumina PE150 platform was performed after

the effective concentrations of the libraries were quantified by

Quantitative Real-Time PCR (Q-PCR).

2.7 Metagenomic data analysis

Data analysis was performed as outlined elsewhere (15). Briefly,

raw sequencing data were processed using Readfq (https://github.

com/cjfields/readfq) to remove adaptor contaminants and reads

with low-quality bases exceeding 40 nt (threshold <38), reads with

N bases >10 nt, and reads with adapter overlap >15 nt. Bowtie2

(http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) was used

to filter reads derived from themouse host. Clean data subsequently

were assembled using MEGAHIT (1.2.8) and assembled scaffolds

were broken at the N connection points with Scaftigs not

containing N obtained. An Open Reading Frame (ORF) prediction

was conducted on Scaftigs samples (≥500 nt) usingMetaGeneMark

(http://topaz.gatech.edu/GeneMark/). Information with a length

shorter than 100 nt among prediction results was filtered out,

and redundant results were removed using CD-HIT (http://www.

bioinformatics.org/cd-hit/). Bowtie2 was then used to compare the

clean data of each sample with the initial gene catalog and the

number of reads of matched genes in each sample was calculated.

With the removal of genes with count numbers of no more than

two in each sample, a final gene catalog (unigenes) was obtained

for subsequent analysis.

Unigenes were compared and annotated against the sequences

of the NCBI NR (https://www.ncbi.nlm.nih.gov/) and KEGG

databases (http://www.kegg.jp/kegg/) using DIAMOND (https://

github.com/bbuchfink/diamond/). Lowest Common Ancestor

(LCA) algorithm in MEGAN 6 was applied to perform species

classification and annotation. The abundance information of

each sample was obtained from the LCA annotation results

and gene abundance table. Anosim analysis (R vegan package,

2.7-0) was performed to measure differences between groups.

In addition, differences in the relative abundance of species

and KEGG pathways were analyzed with linear discriminant

analysis effect size (LefSe) (http://galaxy.biobakery.org/) with

different microbiomes and functions between the DW and DM

groups identified.

2.8 Integrated metagenomic and
metabolomics analysis

The Spearman rank correlation method was applied for

correlation analysis between the microbiomics and metabolomics
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data. An R-value >0.5 or <-0.5 indicated a strong correlation and

P < 0.05 indicated a significance level. Correlation heat maps were

generated using the “Complex Heat Map” package in R language.

2.9 Statistical analysis

An independent sample t-test was performed on

immunological indicators using the SPSS21 software with P

< 0.05 indicating a significance level. Graphs were plotted using

GraphPad Prism 8.

3 Results

3.1 Influence of intragastric administration
of donkey milk on mouse immune
biomarkers

Thymus and spleen indices indicate the sizes of the organs

and allow for assessment of potential changes in the immune

response following administration of external agents. Compared

with mice in the DW group, mice in the DM group exhibit a

significantly increased thymus index (P < 0.01) (Figure 1A) and

an increased spleen index without significant difference (P < 0.05)

(Figure 1B). ELISA test results show that mice in the DM group

present significantly increased levels of IL-6 (Figure 1C) and TNF-α

(Figure 1D) (P < 0.01) and an increased level of IFN-γ (Figure 1E)

with no significant difference (P < 0.05). Thus, feeding with DM

induces morphological and physiological changes in the murine

immune response.

3.2 Metabolomics analysis of mouse serum

Partial least squares discriminant analysis (PLS-DA) showed

that the serum metabolomics data exhibited significant clustering

(Figure 2A). The intercept of the Q2 regression line on the

vertical axis is below zero which indicated no presence of

overfitting and a reliable PLS-DA model (Figure 2B). A total

of 145 differential metabolites were identified under the criteria

VIP>1.0, FC>1.2 (or FC<0.833), and P < 0.05. Mice in the

DM group exhibited significantly increased levels of 28 differential

metabolites and significantly decreased levels of 117 differential

metabolites compared with mice in the DW group. These data

indicate that intragastric administration of DM alters the serum

metabolomics composition of mice (Supplementary Tables S4, S5

and Figures 2C, D). The important differential metabolites mainly

include nicotinamide, L-valine, nicotinamide, and β-estradiol.

KEGG enrichment analysis was conducted to determine the

metabolic pathways of mice through which the intragastric

administration of DM improves immunity. The altered metabolites

were associated mainly with the unsaturated fatty acid biosynthesis

pathway (Figure 2E and Supplementary Table S5). Thus, the

metabolic pathways in mice that are altered following intragastric

administration of DM principally involve the metabolism of

protein and fat.

3.3 Di�erences in gut microbiomes of mice
administered donkey milk

Metagenomic sequencing and analysis of fecal samples of

eight DW and eight DM mice showed the presence of 166

phyla, 142 classes, 256 orders, 559 families, 2,160 genera, and

9,471 microbial species. Based on the species annotation results,

the 10 most abundant phyla in each sample were selected

to plot a histogram of relative abundance (Figure 3). Gut

microbiomes of mice in the DW group at the phylum level

primarily consisted of Bacteroidota (0.4809–0.7228) and Bacillota

(0.0435–0.1773), whereas fecal microbiomes of mice in the DM

group primarily were members of the Bacteroidota (0.2602–

0.5831), Bacillota (0.1370–0.4709), and Actinomycetota (0.0123–

0.0544) phyla.

LCA was performed to assess significant differences

at the genus level between mice in the DW and DM

groups (Figure 4). The 10 bacterial genera with the

highest relative abundance among mice in the groups

were Lactobacillus, Faecalibaculum, Bacteroides, Alistipes,

Bifidobacterium, Adlercreutzia, Helicobacter, Limosilactobacillus,

Odoribacter, and Roseburia. Mice in the DM group showed

significantly reduced relative abundance of Bacteroides and

Odoribacter (both P < 0.01) and Alistipes (P < 0.05), and

significantly increased relative abundance of Adlercreutzia and

Limosilactobacillus (both P < 0.01) and Lactobacillus (P <

0.05) compared with mice in the DW group. No significant

differences were observed in the relative prevalence of other

bacterial genera.

3.4 LEfSe analysis of di�erential species of
the microbiota of mice administered
donkey milk

Twenty-four bacterial species were identified by LEfSe analysis

that were significantly different in the fecal microbiota of mice

in the DW and DM groups (Figure 5). Eighteen species in the

fecal microbiota of mice in the DM group were present at

significantly increased levels, including Lactobacillus intestinalis,

Erysipelotrichia, and L. hominis, whereas six species in the

fecal microbiota of mice in the DW group exhibit significantly

increased levels, including Mucispirillaceae and Mucispirillum.

Thus, intragastric administration of DM alters the fecal microbiota

of mice at phylum, genus, and species levels.

3.5 Functional annotation of mouse gut
microbiomes

Statistical analysis of the number of annotated carbohydrate-

active genes in the fecal microbiomes of DM and DW mice was

plotted with the CAZY database used as a reference (Figure 6).

Glycoside hydrolases presented the largest number of genes in

the microbiomes followed by glycosyl transferases, carbohydrate-

binding modules, and carbohydrate esterases, with polysaccharide

lyases and auxiliary activities contributing the fewest genes.
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FIGURE 1

E�ect analysis of intragastric administration of DM on mouse immunity. TI is the abbreviation for Thymus index, and SI is the abbreviation for Spleen
index. (A) Comparison of thymus index between DW group and DM group; (B) Comparison of spleen index between DW group and DM group; (C)
Comparison of IL-6 between DW group and DM group; (D) Comparison of TNF-α between DW group and DM group; (E) Comparison of IFN-γ
between DW group and DM group.

Metabolism presented the highest number of annotation

genes at level 1 according to the annotation results of the

KEGG database, with the smallest number of annotation genes

presented by organismal systems (Figure 7). Level 2 genes with

significantly different relative abundance in DM and DW mice

were concentrated primarily in metabolic pathways, including the

metabolism of cofactors and vitamins, energy metabolism, glycan

biosynthesis, and metabolism and biosynthesis of other secondary

metabolites, all of which presented in reduced abundance in the

DM group (Figure 8). In addition, genes for cellular processes,

most notably cellular community in prokaryotes, showed increased

prevalence in the DM group, whereas genes involved in cell

growth and death, and transport and catabolism displayed

decreased abundance in this group. Furthermore, genes for

membrane transport in environmental information processing,

human diseases, and the endocrine system within organismal

systems all presented with increased abundance in the DM group

compared to DWmice.

3.6 Correlation analysis between serum
metabolites and gut microbiomes after
intragastric administration of donkey milk

Pearson correlation analysis was conducted to elucidate the

relationship between gut microbiomes and serum metabolites

of mice in the DM and DW groups. This analysis also was

used to identify the coordinated or opposite changes in gut

microbiome structures and serum metabolites of mice after

intragastric administration of DM.

Correlations between five differential bacterial genera

and important differential metabolites of mice in the DW

and DM groups revealed that the Falsiroseomonas genus

was significantly and negatively correlated with L-Valine,

and positively correlated with 1-[(3,5-dimethylisoxazol-4-

yl)sulfonyl]piperidine. Candidatus Micrarchaeum was significantly

and positively correlated with the beta-carboline alkaloid

norharman, whereas the Puniceibacterium genus was significantly
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FIGURE 2

Metabolomics analysis of mice after intragastric administration of DM. (A) PLS-DA clustering analysis of mice in the DW and DM groups. (B) PLS-DA
permutation test. (C) Volcano plot of di�erential metabolites of mice in the DW and DM groups. (D) Clustering heat map of di�erential metabolites of
mice in the DW and DM groups. (E) KEGG enrichment bubble plot of di�erential metabolites of mice in the DW and DM groups. R² represents the
proportion of data variance or dispersion that the current model can explain, while Q² reflects the proportion of data variance that the current model
can predict.
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FIGURE 3

Relative abundance of mouse gut microbiomes at the phylum (p) level.

FIGURE 4

Relative abundance of gut microbiomes at the genus (g) level in DM and DW mice.

and negatively correlated with L-valine and 16(R)-HETE which

is a CYP450 metabolite of arachidonic acid. In addition,

Salipiger was significantly and negatively correlated with

monoacylglycerol MAG (18:3) and β-estradiol, and positively

correlated with phosphatidylcholine O-42:9 and adenosine

diphosphate ribose. Sulfitobacter was significantly and positively

correlated with prostaglandin D2, phosphatidylcholine O-38:9 and

1-[(3,5-dimethylisoxazol-4-yl)sulfonyl]piperidine (Figure 9).

4 Discussion

DM exerts detectable effects on immunoregulation and

increases the levels of cytokines involved in the immune response,

including IL-1, IL-6, and TNF-α (16), and also induces the release

of the IL-10 anti-inflammatory cytokine (17) in animal model

studies. In addition, whey proteins in DM stimulate mouse spleen

cells to produce specific immunoregulatory cytokines, including

IFN-γ (18). We showed here that mice exhibit increased IL-6

and TNF-α levels after intragastric administration of DM which is

consistent with results of previous studies (18). These observations

suggest enhanced immune capacities of mice as a consequence

of DM treatment which may be related to whey proteins in DM.

Fibrinogen β chain, annexin A1, and Toll-like receptors, which all

are components of whey proteins, play roles in the first line of

defense during natural immunity (19). Furthermore, DM is rich

in lactoferrin (20) which demonstrates diverse biological activities

(21) and is readily digestible by gastric fluid and duodenal digestive

enzymes (22). These factors may contribute to the regulatory effects

of DM on the immune system. DM also is rich in immunoglobulins

(23) which also may impact immunoregulation. The thymus is the

largest peripheral immune organ in animals and plays a key role in
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FIGURE 5

LEfSe analysis of fecal microbiota of mice in the DW (green) and DM (red) groups. p, phylum; s, species; c, class; o, order; f, family; g, genus.

FIGURE 6

Statistical analysis of carbohydrate-active enzymes in the mouse fecal microbiome.
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FIGURE 7

Relative abundance of gene functional annotation at level 1. Level 1
is the first level of the KEGG metabolic pathways which
encompasses six major metabolic pathways.

adaptive immunity. Here, mice showed an increased thymus index

after intragastric administration of DM which is another indicator

that DM enhances immune functions.

Diverse metabolites regulate the functions of immune cells

thereby modifying immune capacity (24). L-valine promotes the

activation of PI3K/Akt1 in macrophages (24), which serves as

an upstream activating factor of mTORC1 (25). This activation

subsequently stimulates the mTORC1/S6K signaling pathway

to enhance IL-12 production (26), thereby regulating immune

responses. In our study, we observed a significant decrease in

serum L-valine levels in mice from the DM group which suggests

that the mTORC1/S6K signaling pathway may be inhibited in

these mice, leading to a reduction in IL-12 production with a

consequentl enhancement of immune function. However, we did

not measure the concentration of IL-12. Nitric oxide serves as a

signaling messenger that improves immune cell activity (27, 28).

L-valine stimulates the production of nitric oxide by inhibiting

arginase activities (24, 29). The reduction in L-valine levels

observed in our study indicates that feeding with DMmay suppress

nitric oxide production, thereby mitigating inflammation. In

addition, nicotinamide is an important factor in immune regulation

that dampens the production of pro-inflammatory cytokines

by suppressing the expression of cyclooxygenase-2 (COX-2) in

macrophages and inhibiting the production of prostaglandin E2

(PGE2) (30). Nicotinamide levels were significantly reduced in

mice that were administered DM which demonstrated that DM

may contribute to the reduction of pro-inflammatory cytokine

production. Nicotinamide is a precursor of nicotinamide adenine

dinucleotide (NAD+) (31) which is a crucial cofactor in diverse

metabolic networks, including glycolysis, the tricarboxylic acid

cycle, and oxidative phosphorylation (32). The energy required

by immune-related macrophages primarily comes from glycolysis

and oxidative phosphorylation (33). Thus, nicotinamide, as the

FIGURE 8

Relative abundance of gene functional annotation at level 2. The
most prominent classes of genes in DM and DW mice are shown in
red and blue, respectively. Level 2 is the second level of 57 seed
pathways in KEGG metabolism. *Indicates q-value < 0.05 and
**Indicates q-value < 0.01.
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FIGURE 9

Correlations between gut microbiomes and serum metabolites. TUDCA, taurochenodeoxycholic acid; ADPR, adenosine diphosphate ribose; PGA2,
prostaglandin A2; THB, tetrahydrocorticosterone; PGD2, prostaglandin D2; 8-iso PGA2, 8-iso prostaglandin A2; PGA3, prostaglandin A3; DSP,
1-[(3,5-dimethylisoxazol-4-yl)sulfonyl]piperidine; TA, testosterone acetate.

principal source of NAD+ (34), exerts an important role in immune

function regulation. Estrogen receptors are activated by binding

of estradiol which modulates gene transcription and expression.

Thus, estradiol activates downstream signaling pathways and

regulates gene expression thereby modifying immune functions

(35). The level of β-estradiol was reduced in mice that were fed

DM which may be attributable to the entry of β-estradiol into

the body which activated signaling pathways and thus improves

the immune function of the animals. Moreover, our findings

indicated that nicotinamide levels were significantly decreased in

the DM group which suggests that DM may contribute reduced

production of pro-inflammatory cytokines (36). In addition, DM

regulates gene expression (37) which may be attributable to

metabolites such as β-estradiol. Further pathway analysis of mice

treated with DM demonstrated that L-valine is enriched via

the valine, leucine, and isoleucine biosynthesis and degradation

pathways. Moreover, TNF-α and IL-6 activate branched-chain

α-ketoacid dehydrogenase to enhance valine metabolism (38)

which is boosted significantly in the liver during inflammatory

responses. Mice that were administered DM exhibited significantly

elevated levels of TNF-α and IL-6 which indicates increased

decomposition of L-valine and leads to a decrease in plasma L-

valine concentrations. This decrease also may elucidate why plasma

L-valine levels decrease following camel milk feeding whereas

immunity improves.

Lactobacillus regulates the immune system response. The

bacterium promotes local mucosal immune reactions and

stimulates the production of B cells secreted by IgA on the

intestinal mucosa (39). In addition, Lactobacillus increases the

concentrations of certain cytokines, including IL-4 (40), thereby

exerting a pronounced immunoenhancement effect. Mixing of

Lactobacillus in swine feed raised the level of INF-γ in swine

serum (41) which emphasizes the effect of this bacterium in

regulating immunity. Here, mice that were administered DM

had an increased abundance of Lactobacillus in feces, as well

as an elevated plasma concentration of IL-6 which may reflect

the immunoregulatory properties of Lactobacillus in the murine

gut after intragastric administration of DM. Furthermore,

L. intestinalis and L. murinus enhance the production of

TNF-α in mice (42). Here, mice in the DM group exhibited

increased abundance of these two species, as well as elevated

TNF-α levels, compared to animals in the DW group. Thus,

in addition to the effects of small molecules described above,

DM may regulate the immunity of mice via modulation of the

gut microbiome.

Coenzyme Q has the potential to activate the immune system

by affecting pro-inflammatory markers, as well as the function

of mitochondria, lysosomes, and peroxisomes (43). These effects

may be attributed to the antioxidant properties of the enzyme

which combats free radicals and prevents lipid peroxidation (44).

In addition, an increased concentration of coenzyme Q10 mitigates

the effects of coenzyme Q2 deficiency on the immune system (45).

Correlation analysis of metabolomics and microbiomics data here

showed that Falsiroseomonas and Salipiger are both correlated with

coenzyme Q in mice administered DM. Furthermore, coenzyme

Q is advantageous for improving immune function (46, 47)

and alleviating oxidative stress (46, 48). Thus, DM may affect

coenzyme Q levels in mouse plasma by regulating the levels

of Falsiroseomonas and Salipiger and accompanying metabolites,

thereby further impacting the mouse immune system.

5 Conclusions

This study analyzed the influence of intragastric administration

of DM on the gut microbiome, plasma metabolites, and immune

cytokine levels of mice. The animals exhibited increased levels of

immune cytokines in liver, showed modulated gut microbiome

compositions, and displayed altered metabolites in plasma. Thus,

DM regulates immunity by transforming gut microbiomes and

plasma metabolites. These findings will facilitate the development

of methods for improving health by leveraging the intervention and

regulation of DM on gut microbiomes.
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