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The Mycobacterium tuberculosis complex (MTBC) including Mycobacterium 
bovis (M. bovis), which primarily affects animal hosts; however, it is also capable 
of causing zoonotic infections in humans. Direct contact with infected animals 
or their products is the primary mode of transmission. However, recent research 
suggests that M. bovis can be shed into the environment, potentially playing an 
under-recognized role in the pathogen’ spread. Further investigation into indirect 
transmission of M. bovis, employing a One Health approach, is necessary to evaluate 
its epidemiological significance. However, current methods are not optimized 
for identifying M. bovis in complex environmental samples. Nevertheless, in a 
recent study, a combination of molecular techniques, including next-generation 
sequencing (NGS), was able to detect M. bovis DNA in the environment to investigate 
epidemiological questions. The aim of this study was, therefore, to apply a 
combination of culture-independent methods, such as targeted NGS (tNGS), to 
detect pathogenic mycobacteria, including M. bovis, in water sources located in a 
rural area of KwaZulu-Natal (KZN), South Africa. This area was selected based on 
the high burden of MTBC in human and animal populations. Water samples from 
63 sites were screened for MTBC DNA by extracting DNA and performing hsp65 
PCR amplification, followed by Sanger amplicon sequencing (SAS). Sequences 
were compared to the National Centre for Biotechnology Information (NCBI) 
database for genus or species-level identification. Samples confirmed to contain 
mycobacterial DNA underwent multiple PCRs (hsp65, rpoB, and MAC hsp65) 
and sequencing with Oxford Nanopore Technologies (ONT) tNGS. The ONT 
tNGS consensus sequences were compared to a curated in-house database to 
identify mycobacteria to genus, species, or species complex (e.g., MTBC) level 
for each sample site. Additional screening for MTBC DNA was performed using 
the GeneXpert® MTB/RIF Ultra (GXU) qPCR assay. Based on GXU, hsp65 SAS, and 
ONT tNGS results, MTBC DNA was present in 12 of the 63 sites. The presence of M. 
bovis DNA was confirmed at 4 of the 12 sites using downstream polymerase chain 
reaction (PCR)-based methods. However, further studies are required to determine 
if environmental M. bovis is viable. These results support further investigation into 
the role that shared water sources may play in TB epidemiology.
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1 Introduction

The Mycobacterium tuberculosis complex (MTBC) includes 
M. tuberculosis (MTB) and Mycobacterium bovis (M. bovis), which 
primarily infect human and animal hosts, respectively (1). In addition, 
MTB can spread from humans to both domestic and wild animals, 
resulting in reverse zoonosis (2, 3). Similarly, M. bovis can lead to 
zoonotic tuberculosis (ZTB) infections, whih account for an estimated 
12% of human TB cases globally (4). In African countries and among 
pastoralist communities where unpasteurized milk is consumed, the 
rate of ZTB can be higher, up to 37.7% of cases (5).

The spread of M. bovis occurs primarily by prolonged close 
contact with infected hosts through aerosols (6). However, shed bacilli 
may persist in environmental material for 1–3 months (7) and 
contribute to indirect transmission (8). Indirect transmission of 
M. bovis between animal hosts through shared food sources has been 
demonstrated experimentally (9). Furthermore, the presence of 
M. bovis in invertebrates, soil, and shared water sources near infected 
host populations suggests that environmental transmission may occur 
(8, 10–12). Evaluating epidemiological links for TB between people, 
animals, and their shared environment requires a One Health 
approach (13). However, detecting M. bovis in the environment poses 
a challenge due to the complexity and paucibacillary nature of the 
samples. In addition, the survival of M. bovis is influenced by variable 
environmental conditions (14, 15).

Other mycobacterial species also play a vital role in human and 
animal health. Non-tuberculous mycobacteria (NTMs) are ubiquitous 
in the environment but can lead to opportunistic infections in humans 
and animals (2). Infections caused by NTMs have been increasingly 
reported, especially in immunocompromised individuals (16–18). 
Members of the Mycobacterium avium complex (MAC) are common 
NTMs that have been implicated in human and animal diseases. For 
example, the MAC subspecies paratuberculosis causes Johne’s disease 
in livestock and has been associated with Crohn’s disease in humans 
(19, 20). Furthermore, exposure of human and animal populations to 
NTMs can result in cross-reactive immune sensitization, which may 
impact MTBC vaccine responses and the accuracy of diagnostic tests 
(21, 22).

Infections caused by different mycobacterial species (e.g., MTBC 
or NTMs) or ecotypes (e.g., MTB or M. bovis) may differ in 
pathogenicity, host species immune responses, and antibiotic 
resistance, requiring different diagnostic and management approaches. 
Therefore, the correct identification of mycobacterial species and 
ecotype is, crucial for favorable treatment outcomes (23, 24). 
Antemortem detection of MTBC infection currently depends on 
cytokine release assays, tuberculin skin tests, thoracic radiographs, and 
screening with the GeneXpert® MTB/RIF Ultra (GXU Cepheid, CA, 
USA) quantitative polymerase chain reaction (qPCR) assay (25, 26). 
However, these techniques cannot differentiate between infections 
caused by different MTBC ecotypes or strains (27, 28). Additionally, 
co-infections caused by NTMs may result in cross-reactive 
immunological responses, which can confound TB diagnostic test 

interpretation, especially in areas with high human and animal TB, as 
well as environmental NTM, burdens (29, 30). Therefore, culture and 
characterization of mycobacterial isolates remain the gold standard for 
detecting MTBC despite limitations such as the paucibacillary nature 
of antemortem samples, lengthy incubation times, and biosafety 
concerns associated with handling viable mycobacteria (31, 32).

Advances in molecular techniques, such as quantitative PCRs 
(qPCR) and PCR amplicon-targeted next-generation sequencing 
(tNGS), have improved the sensitivity of mycobacterial detection in 
complex samples (12, 33). In contrast to qPCR, amplicon tNGS is 
highly scalable and more suitable for characterizing multiple gene 
targets in a complex microbiome (34). Specific gene targets for genus-
level detection of mycobacteria include DNA-directed RNA 
polymerase subunit beta (rpoB) and a heat shock protein of 65-kDa 
(hsp65) (35, 36). The variation within these gene targets can be used 
for species-level identification. Moreover, sequencing additional gene 
targets can be  used to differentiate MAC and MTBC ecotypes, 
including MAC hsp65 and gyrase (gyrA, gyrB1, and gyrB2) gene 
regions, respectively (37, 38). Oxford Nanopore Technologies (ONT, 
Oxford, UK) NGS has increased the resolution of phylogenetic 
comparisons of M. bovis isolates (33, 39) to elucidate epidemiological 
links in much the same way that spacer oligonucleotide typing 
(spoligotyping) have been used for cultured isolates historically (40).

Previous studies have detected NTMs and MTBC in human and 
animal populations at livestock-wildlife-human interfaces in 
KwaZulu-Natal, South Africa (41–44). There is a high burden of MTB 
in humans and M. bovis in animals in this area and spillovers into the 
environment could occur and play an under-recognized role in MTBC 
epidemiology. Therefore, this study aimed to determine if M. bovis 
DNA was present in shared water sources in a rural area of KwaZulu-
Natal, South Africa. This is the first step in evaluating if M. bovis or 
MTB are being shed into this environment, using culture-
independent methods.

2 Materials and methods

2.1 Location and sample collection

The study areas included rural communities that span two 
municipalities within the Umkhanyakude District, KwaZulu-Natal 
province, South Africa. Shared water sources, with observed animal and 
human usage, were sampled in the Mtubatuba municipality (n = 14) and 
Big Five Hlabisa municipality (n = 49). These included areas 
surrounding local schools, residences, community areas, medical 
facilities, and farming areas (Supplementary Figures S1, S2). The 
Mtubatuba municipality communities border the Hluhluwe-iMfolozi 
Park (HiP), which contains African buffalo (Syncerus caffe) populations 
that are endemically infected with M. bovis (45). Rural communities in 
these areas practice communal grazing, where M. bovis-infected cattle 
(Bos taurus) and goats (Capra hircus) have been identified (41, 46). One 
to eight environmental samples were collected from each site into 50 mL 

https://doi.org/10.3389/fvets.2025.1483162
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Matthews et al. 10.3389/fvets.2025.1483162

Frontiers in Veterinary Science 03 frontiersin.org

conical bottom centrifuge tubes (Abdos Life Sciences, Roorkee, 
Uttarakhand, India). These samples were collected from the water’s edge 
in a single scooping motion that included a mixture of sediment and 
water. Water sources were not filtered or treated with any wastewater 
treatment prior to sample collection. All samples were boiled at 98°C for 
45 min, as required for transport of samples to Stellenbosch University, 
where they were stored at 4°C prior to downstream molecular testing.

2.2 Detection and characterization of 
mycobacterial DNA

2.2.1 DNA extraction
Prior to DNA extraction, a 10 mL aliquot from each sample was 

centrifuged at 3,200 rcf for 10 min in an Eppendorf 5810R (Eppendorf, 
Hamburg, Germany) to concentrate any microorganisms present in 
the sample. The supernatant was decanted, and 0.25 g of the pellet was 
used for DNA extraction with the Qiagen DNeasy PowerSoil Pro kit 
(Qiagen, Hilden, Germany), according to the manufacturer’s 
guidelines. Cell lysis was performed for 20 min using a Vortex-Genie 
2 (Scientific Industries, Bohemia, NY, USA) and a 12-tube adapter 
(Macherey-Nagel, Düren, Nordrhein-Westfalen, Germany). A final 
volume of 60 μL of genomic DNA was eluted per sample and stored 
at −20°C. The quantity (ng/μL) of extracted DNA was determined for 
20 randomly selected samples using the Qubit DNA Broad Range 
Assay Kit and the Qubit™4 Fluorometer (both ThermoFisher 
Scientific, Waltham, MA, USA), according to the manufacturer’s 
instructions. Moreover, the integrity of the extracted DNA was 
evaluated by electrophoresis using a 1% agarose gel. Gel imaging was 
conducted using the BioRad Chemi Doc Universal Hood III and Gel 
Documentation System (Bio-Rad Laboratories, Hercules, CA, USA) 
and the BioRad Image Lab 6.1 Software.

2.2.2 PCR amplification
A universal bacterial 16S PCR assay was used to assess if DNA 

samples could be amplified and to confirm the absence of PCR inhibitors 
(47). Briefly, each PCR reaction consisted of 9.5 μL of nuclease-free 
water, 12.5 μL OneTaq Hot start 2× master mix with standard buffer 
(New England Biolabs, Ipswich, MA, USA), 0.5 μL forward primer, 
0.5 μL reverse primer, and 2 μL of DNA template, in a total volume of 
25 μL. Primers were ordered from Integrated DNA Technologies (IDT, 

IO, USA) and comprise a working stock concentration of 10 μL. Cycling 
conditions consisted of 1 cycle at 94°C for 10 min, followed by 35 cycles 
of denaturation at 94°C for 30 s, annealing at 65°C for 30 s, elongation 
at 68°C for 90 s, and a final elongation step of 5 min at 72°C, using an 
Applied Biosystems Veriti 96-well Fast Thermal Cycler (ThermoFisher 
Scientific Waltham, MA, USA). Gel electrophoresis was conducted to 
confirm that amplicons were the expected sizes. If DNA could 
be amplified using the 16S PCR assay, PCR was repeated with primers 
targeting additional gene targets (hsp65, rpoB, MAC hsp65, and gyrase) 
with optimized cycling conditions (Table 1). All PCRs conducted in this 
study included a positive control (M. bovis DNA) and a non-template 
control (nuclease-free water). If DNA could not be amplified with 16S 
PCR, it was not used in downstream molecular testing.

2.2.3 Sanger amplicon sequencing (SAS)
Sanger amplicon sequencing (SAS) was used to screen samples for 

mycobacterial DNA (36, 48) using Mycobacterium genus-specific hsp65 
amplicons, according to Clarke et al. (49), to provide an affordable 
prescreening option (48). The hsp65 PCR was briefly performed using 
the optimized annealing temperature and elongation times (Table 1). 
Amplicons were sent for post-PCR clean-up and Sanger sequencing at 
the Stellenbosch University Central Analytical Facility (CAF, 
Stellenbosch, South  Africa). Sanger sequences were aligned, and 
consensus sequences were produced using BioEdit Sequence 
Alignment Editor (version 7.7, Tom Hall, CA, USA). Consensus 
sequences were compared to the National Centre for Biotechnology 
Information (NCBI) database with the Basic Local Alignment Search 
Tool for Nucleotides (BLASTn) program (50).1 The percentage coverage 
(PC) and identity match (PIM) between Sanger sequences and the NCBI 
database were recorded. A PC and PIM ≥ 80% with an hsp65 sequence 
from a known mycobacterial genome was required for genus-level 
identification. If no sequences met these criteria, the DNA sample was 
not used for downstream analysis. If the sequence also matched a 
known mycobacterial species, including non-tuberculous mycobacteria 
(NTMs) or MTBC with PIM ≥ 90%, identification was reported at the 
species level. If sequences from a DNA sample matched MTBC at the 
species level, the sample was considered positive for MTBC. Since 

1 https://blast.ncbi.nlm.nih.gov

TABLE 1 Published polymerase chain reaction (PCR) primers for mycobacterial gene amplification of DNA extracted from water samples 
(Umkhanyakude District, KwaZulu-Natal, South Africa) with the target gene, amplicon size, and cycling conditions indicated.

Target Gene Amplicon Size (bp)a Annealing Temperature 
(°C)b

Elongation Time Reference

16s 1,500 65 90 s Leclerc et al. (47)

hsp65 439 62.5 30 s Telenti et al. (36)

rpoB 764 64 30 s Adékambi et al. (35)

MAC hsp65 1,621 55 90 s Turenne et al. (38)

gyrA 107 55 30 s Landolt et al. (37)

gyrB1 144 55 30 s Landolt et al. (37)

gyrB2 107 55 30 s Landolt et al. (37)

aExpected amplicon size after PCR and visualization following gel electrophoresis on a 1% agarose gel. bThe temperature for the annealing step and duration of the elongation step differed per 
PCR. Otherwise cycling conditions consisted of an initial denaturing step at 94°C for 1 min, followed by 35 cycles of denaturation at 94°C for 30 s, the selected annealing temperature for 30 s, 
elongation at 68°C for the selected duration, and a final elongation step of 5 min at 72°C.
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MTBC ecotypes or strains cannot be distinguished based on their 
hsp65 amplicon sequences, samples with MTBC DNA were further 
characterized as described in Section 2.3.2.

2.2.4 Oxford Nanopore Technologies targeted 
next-generation sequencing (ONT tNGS)

To confirm the presence of mycobacterial species detected by 
hsp65 SAS and further characterize the mycobacteriome, additional 
amplicons (hsp65, rpoB, MAC hsp65, and gyrase PCRs) from selected 
samples were sequenced using ONT tNGS. Amplicons were pooled 
for each sample in equal molar concentrations (200 fmol), then 
end-repaired and individually barcoded (39). Briefly, the pooled PCR 
amplicons (hsp65, rpoB, MAC hsp65, gyrB1, and gyrB2) from each 
sample received the same barcode using the Native Barcoding Kit v14 
(ONT), Blunt/TA Ligase Master Mix, Next Ultra II End Repair/dA 
Module, and Quick Ligation Module (all from New England Biolabs). 
Unique barcode numbers 17–73 were used for samples, while barcode 
74 was added to a no-DNA control. Due to the similar lengths of 
target sequences, gyrA amplicons were barcoded separately from the 
other amplicons (barcoded Nos. 19, 21, and 39) using independent 
barcodes (Nos. 75, 76, and 77). Barcoded amplicons from all samples 
were pooled into a single library, native adapters ligated, loaded onto 
a single R10.4.1 flow cell (>1,250 pores), and sequenced using the 
MinION mk1C device (ONT). The barcodes’ base-calling, 
demultiplexing, and trimming were performed using Guppy version 
6.4.6, with the high-accuracy option selected (51). Quality control and 
filtering reads with a Q score of <12 were performed using nanoq 
version 0.10.0 (52), FastQC version 0.11.9, and pycoQC version 
2.5.0.23 (53). Reference-free read sorting was performed using the 
amplicon sorter tool version 2023-06-19 (54). A total of 200,000 
randomly chosen reads with lengths between 50–2000  bp were 
selected for each barcode. Consensus sequences were grouped based 
on amplicon size and similarity, and relative abundancies (PRA) ≥ 1% 
retrieved, based on the representative pool of reads analyzed. 
ABRicate2 was applied to screen consensus sequences against 
customized databases for each target and generate summary report 
files, according to Ghielmetti et al. (39). The distribution of consensus 
sequences generated per target gene was visualized using the R 
package ggplot2 (55). Consensus sequences with PC and PIM < 90% 
(based on comparison to sequences from the in-house database) were 
annotated as unclassified. Consensus sequences with PC and 
PIM ≥ 90%, compared to the sequences from known mycobacterial 
genomes, were classified to genus level. Consensus sequences with 
PC ≥ 90% and PIM between 97–99% compared to sequences from a 
known mycobacterial species were manually inspected using BLASTn 
(NCBI) before the mycobacterial species with the highest identity 
match was assigned. However, consensus sequences with PC ≥ 90% 
and PIM ≥ 99% were assigned as NTMs or MTBC without manual 
inspection. If the mycobacterial species in a sample was identified as 
MTBC, the sample was considered positive for MTBC, and DNA was 
used for downstream characterization according to Section 2.3.2. If no 
species could be assigned, identification remained at the genus level.

2 https://github.com/tseemann/abricate

2.3 Detection and characterization of 
MTBC DNA

2.3.1 Detecting MTBC with the GeneXpert® MTB/
RIF ultra (GXU) qPCR assay

The GeneXpert® MTB/RIF Ultra (GXU) qPCR assay was selected 
as an independent method to screen environmental samples for the 
presence of MTBC DNA, despite being optimized primarily for 
human sputum samples (56). As previously described, one 10 mL 
aliquot was used per sample for GXU (57). Each aliquot was 
centrifuged at 1,000 rcf for 5 min in an Eppendorf 5810R centrifuge 
to pellet large sediment particles. Notably, 1 mL of supernatant was 
collected at the interface above the sediment pellet and transferred to 
a 5 mL tube, after which an equal volume of GXU sample reagent 
(1 mL) was added. Supernatant samples were vortexed for 10 s before 
and after a 10 min incubation at room temperature (20–22°C), 
loaded into a GXU cartridge (Cepheid), placed in the GeneXpert® IV 
instrument (Cepheid), and analyzed according to manufacturer’s 
guidelines. The GXU test outputs indicated semiquantitative MTBC 
DNA levels. In this study, the GXU was repeated if samples returned 
INVALID/ERROR. The MTB NOT DETECTED output was reported 
as a negative result (i.e., neither IS6110 nor IS1081 amplified). The 
levels of MTB detected (very low/low/medium/high) were based on 
preprogrammed rpoB cycle threshold (CT) values: very low (Ct > 28), 
low (Ct 22–28), medium (Ct 16–22) or high (Ct < 16). If MTB was 
not detected with rpoB probes but with IS6110 and IS1081, rifampicin 
resistance could not be established, and the GXU output was MTB 
TRACE DETECTED. In this study, MTB TRACE readouts were 
considered an MTBC positive result since the assay cannot 
distinguish between MTBC ecotypes or strains. If MTBC DNA was 
detected, the sample was considered positive for MTBC, and DNA 
was extracted and used for downstream characterization according 
to Section 2.3.2. If no MTBC was detected, the sample was not 
further investigated.

2.3.2 Characterization of MTBC
If GXU, hsp65 SAS, or ONT tNGS detected MTBC DNA, the site 

was considered positive, and MTBC DNA was further evaluated to 
determine which MTBC ecotype (Mycobacterium africanum, M. bovis, 
M. bovis BCG, Mycobacterium canettii, Mycobacterium caprae, 
Mycobacterium microti, and M. tuberculosis) was present using three 
PCR-based methods. First, after ONT tNGS (Section 2.2.4), gyrase 
(gyrA, gyrB1, and gyrB2) consensus sequences were compared to the 
in-house database containing gyrase gene regions from known MTBC 
ecotypes. If the MTBC-specific SNPs, described by Landolt et al. (37), 
were present and there was a match (PC and PIM ≥ 99%) with the 
ecotype M. bovis, the sample was considered positive for M. bovis 
DNA. Second, the genomic regions of difference (RD) PCR were used 
to characterize MTBC, according to Warren et al. (58). Briefly, PCR 
was used to amplify RD1, RD4, RD9, and RD12 gene regions, and 
amplicon presence or absence was visualized using gel electrophoresis. 
If the presence or absence of RD amplicons was consistent with that 
of M. bovis, M. bovis DNA was considered detected in that sample. 
Finally, spacer oligonucleotide typing (spoligotyping), performed 
according to Kamerbeek et  al. (59), was used to identify MTBC 
ecotypes and strains. Briefly, spacer sequences within the direct repeat 
(DR) gene region were amplified using biotinylated primers and 
hybridized to synthetic oligonucleotides of known spacer sequences 
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on a membrane. The spacers were visualized on X-ray film and the 
pattern translated into an octal code. If the spoligotyping pattern/code 
matched that of a known MTBC ecotype, such as M. bovis, M. bovis 
DNA was considered detected. Multiple spoligotyping patterns/codes 
may be identified as M. bovis but differ slightly, they can be used to 
differentiate M. bovis strains if pattern resolution is sufficient. Positive 
control (M. bovis) DNA and a non-template control were included for 
all three methods. The detection of M. bovis with any of the three 
methods (gyrase ONT tNGS, RD-PCR, and spoligotyping) resulted in 
the sample being considered positive for M. bovis. Additionally, 
analyses of the gyrB sequences and RD1 amplicon presence facilitated 
the differentiation of M. bovis from M. bovis BCG (58, 60). If the 
MTBC ecotype could not be identified, the sample was considered to 
contain uncharacterized MTBC DNA.

2.4 Statistical analysis

The detection of MTBC DNA using hsp65 SAS or ONT tNGS was 
evaluated compared to the GXU, which is widely used for MTBC 
detection and is an independent PCR method (61). The percentage 
observed agreement (po) was calculated for all 63 sites with INVALID/
ERROR GXU results considered as negative for MTBC. The chance 
agreement (pe) was calculated based on column and row sums with 
the equation (proportion of Test A that is positive for MTBC × 
proportion of Test B that is positive for MTBC) + (proportion of Test 
A that is negative for MTBC × proportion of Test B that is negative 
for MTBC). The equation K = (po – pe)/(1 – pe) was then used to 
calculate Cohen’s kappa statistic (62, 87). The 95% confidence interval 
(CI) was calculated in GraphPad Prism version 10 (GraphPad 
Software, Boston, MA, USA). A scale used by Landis and Koch (63) 
was used for interpretation agreement as absent (values ≤0), slight 
(0.01–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial 

(0.61–0.80), or near perfect (0.81–1.00). Cohen’s kappa statistics were 
also used to evaluate the detection of M. bovis DNA using ONT tNGS 
or RD-PCR compared to spoligotyping according to the 
above methodology.

After MTBC DNA was detected with GXU, SAS, and ONT tNGS, 
the PRA or CT values of samples that tested positive with all three 
methods were compared with samples that tested positive based on 
one or two methods. To this end, a one-way analysis of variance 
(ANOVA) using Excel version 16 and the XLSTAT add-in (Microsoft 
Office, Microsoft Corporation, Redmond, WA, USA) was used.

3 Results

3.1 DNA extraction, PCR, and sanger 
amplicon sequencing (SAS)

Sample DNA was extracted from 63 sites and screened for 
mycobacterial species, including MTBC. According to Qubit results, an 
average of 576 ng/μL (SD: 221 ng/μL) of DNA was extracted. Intact 
DNA was observed using gel electrophoresis. Although multiple 
samples were taken from some sites, the results were summarized per 
site to aid interpretation (Figure 1; Supplementary Table S1). The DNA 
from all 63 sites, except two (sites 2 and 53), could be amplified with 16S 
PCR and, therefore, did not contain PCR inhibitors. The Mycobacterium 
genus-specific PCR (hsp65) and SAS detected the presence of 
mycobacteria in samples from 40 sites. Of these, mycobacterial DNA 
could be identified at the mycobacterial complex or species level for 23 
sites. Samples from 5 of these sites (7, 11, 25, 30, and 35) had detectable 
MTBC DNA (Figure 2; Table 2), while 10 sites had sequences matching 
MAC DNA. In addition, a variety of other NTM species were identified, 
including Mycobacterium canariasense/cosmeticum, Mycobacterium 
crocinum, Mycobacterium madagascariense, Mycobacterium 

FIGURE 1

Flowchart outlining study methods and outcomes for PCR-based detection of Mycobacterium tuberculosis complex (MTBC) DNA and characterization 
as M. bovis from water sources in the Umkhanyakude District, KwaZulu-Natal, South Africa. Numbers in parentheses represent the number of sample 
sites tested and results at each step. Steps which did not result in MTBC detection or warrant further downstream analysis are indicated in grey text. 
Created in BioRender. Matthews, M. (2025) https://BioRender.com/t74p898.
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novocastrense, Mycobacterium parmense, Mycobacterium 
saskatchewanense, Mycobacterium parafortuitum, Mycobacterium 
paraense, Mycobacterium vaccae, and Mycobacterium nebraskense.

3.2 Oxford nanopore targeted 
next-generation sequencing (ONT tNGS)

Since environmental samples were expected to have a 
complex mycobacteriome, multiple mycobacterial PCR amplicons 
(hsp65, rpoB, MAC hsp65, and gyrase) underwent ONT tNGS to 
evaluate the PRA and diversity of the mycobacterial species 
present. Barcoded samples had an average of 202,544 reads (SD: 
85,003) and an average read quality score of 16 (SD: 0.39). The 
ONT tNGS of the hsp65 gene target indicated the presence of 
mycobacterial DNA at 38 sites, including NTMs (MAC, 
M. crocinum, M. canariasense/cosmeticum, M. madagascariense, 
M. novocastrense, M. parmense, and M. saskatchewanense) at 11 
sites, and MTBC in samples from 8 sites (Nos. 4, 7, 11, 14, 25, 30, 
35, and 48). The PRA of MTBC DNA ranged from 1 to 100% 
(Table 2; Supplementary Table S1). All five MTBC-positive sites 
identified by screening with hsp65 PCR and SAS (Nos. 7, 11, 25, 
30, and 35) were confirmed by ONT tNGS (Figure 2; Table 2; 
Supplementary Table S1). In contrast, ONT tNGS of the rpoB 
gene target detected mycobacterial DNA at genus level at 30 sites, 
NTMs to species level at four sites (Nos. 22, 34, 48, and 52), but 
no MTBC DNA. After ONT tNGS, MAC hsp65 consensus 

sequences could not be  classified to the species level using 
a ≥ 90% PIM threshold and were not differentiated further. Based 
on these results for rpoB and MAC hsp65 ONT tNGS, they were 
excluded from Supplementary Table S1.

3.3 Detecting MTBC DNA with the GXU, 
SAS, or ONT tNGS

As an independent rapid screening method for MTBC DNA 
detection in this pilot study, the GXU was performed on a separate 
sample aliquot from the 63 sites (Figure 1; Supplementary Table S1). 
Samples from four sites (Nos. 34, 39, 48, and 51) had INVALID/
ERROR results, even after GXU was repeated. Of the remaining 
samples tested, the majority had no detectable MTB. However, eight 
sample sites (Nos. 7, 8, 11, 12, 25, 35, 53, and 62) had an MTB TRACE 
detected result, which was considered positive for MTBC in this study. 
The CT value for positive samples ranged between 23.9 to 35 (Table 2; 
Supplementary Table S1). A comparison of MTBC DNA detection 
results between GXU, hsp65 SAS, and ONT tNGS is shown in Figure 2 
and Table 2. There was moderate agreement between GXU and SAS 
(kappa statistic of 0.57) or ONT tNGS results (kappa statistic of 0.43), 
respectively (Supplementary Table S2). The DNA from four sites (Nos. 
7, 11, 25, and 35) tested positive using all three methods and showed 
higher median PRA (72.5%) and lower CT values (27.6) compared to 
samples that were positive in only one or two tests. The differences 
were, however, not significant (p > 0.05).

FIGURE 2

Map of 12 water sample sites (out of 63) where Mycobacterium tuberculosis complex (MTBC) DNA was detected, including 4 sites identified to contain 
Mycobacterium bovis (site number highlighted in bold) DNA within the Umkhanyakude District, KwaZulu-Natal, South Africa. Detection was based on 
results from GeneXpert® MTB/RIF Ultra (GXU)a, qPCR assay, Sanger amplicon sequencing (SAS)b of hsp65 PCR amplicons, and Oxford Nanopore 
Technologies (ONT) targeted next-generation sequencing (tNGS)c of hsp65 and gyrase PCR amplicons. Sites with MTBC DNA detected by any method 
are shown with the site number and a black location pin on the map. If MTBC DNA could be characterized as M. bovis, the site was marked with a 
white location pin on the map.
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3.4 Characterization of MTBC

To further speciate MTBC DNA detected at 12 sites (Nos. 4, 
7, 8, 11, 12, 14, 25, 30, 35, 48, 53, and 62) based on GXU, hsp65 
SAS or ONT tNGS, three PCR-based methods were used in 
parallel (Figures 1, 2; Table 2). At four sites (Nos. 7, 11, 25, and 
35), M. bovis DNA was confirmed to be  present based on 
spoligotyping. Although the spoligotyping pattern was consistent 
with M. bovis, the blot was too faint to assign a strain or 
spoligotype specific code conclusively. Using RD-PCR and gyrase 
ONT tNGS, M. bovis was detected at two (Nos. 7 and 11) and 
three (Nos. 7, 11, and 25) sites, respectively. Moreover, there was 
moderate (kappa statistic 0.57) and substantial (kappa statistic 
0.80) agreement between spoligotyping and RD-PCR and ONT 
tNGS results, respectively (Supplementary Table S3). Overall, 
M. bovis DNA was confirmed in 4 sites (Nos. 7, 11, 25, and 35) 
with one or more PCR based methods, while MTBC DNA was 
considered detected but could not be characterized further at the 
remaining eight sites (Nos. 4, 8, 12, 14, 30, 48, 53, and 62).

4 Discussion

In this study, GXU, hsp65 SAS, and ONT tNGS were combined to 
enhance culture-independent detection of MTBC DNA from water 
sources in KZN. Further differentiation of MTBC was based on 
RD-PCR, spoligotyping, and gyrase ONT tNGS. Environmental 
samples from 12 sites at livestock-wildlife-human interfaces were 
found to contain MTBC DNA, with four sites confirmed to contain 
M. bovis DNA, in selected areas with high burdens of human and 
animal TB (43). Although eight samples with MTBC could not 
be  identified at the ecotype level, it is possible these sites were 
contaminated by either M. bovis or M. tuberculosis since both animals 
and human rural communities used the locations. The presence of 
either MTBC ecotype is essential for understanding the potential role 
of the environment in TB epidemiology (13).

The detection of M. bovis/MTBC DNA in environmental samples 
is an arduous process but has been successful in the United Kingdom, 
France, and Portugal (11, 33, 64). Although a previous attempt to find 
environmental M. bovis in South  Africa was unsuccessful (65), 

TABLE 2 Multiple PCR-based methods were used to detect and differentiate Mycobacterial tuberculosis complex (MTBC) DNA extracted from water 
sources in Umkhanyakude District, KwaZulu-Natal, South Africa.

Site Informationa MTBC Detection MTBC Differentiation M. bovis 
confirmedh

GXUb SAS (hsp65)c ONT tNGS 
(hsp65)d

ONT 
tNGS 

(gyrase)e

RD-
PCRf

Spoligo-
typingg

No. LAT LONG Result CT Result PC PIM Result PRA Result Result Result

4 −28,268 32,037 NEG ND NEG 0% 0% POS 2% ND ND ND No

7 −28,291 31,995 POS 23.9 POS 100% 99% POS 67% M. bovis M. bovis M. bovis Yes

8 −28,302 31,995 POS 34 NEG 0% 0% NEG 0% ND ND ND No

11 −28,359 31,998 POS 28.3 POS 95% 91% POS 46% M. bovis M. bovis M. bovis Yes

12 −28,180 31,868 POS 30.3 NEG 0% 0% NEG 0% ND ND ND No

14 −28,212 31,829 NEG ND NEG 0% 0% POS 5% ND ND ND No

25 −28,144 32,150 POS 26.9 POS 98% 98% POS 78% M. bovis ND M. bovis Yes

30 −27,993 32,109 NEG ND POS 99% 100% POS 96% ND ND ND No

35 −27,717 32,494 POS 30.7 POS 100% 100% POS 100% ND ND M. bovis Yes

48 −27,858 32,429 INV ND NEG 0% 0% POS 1% ND ND ND No

53 −27,853 32,454 POS 35 NEG 0% 0% NEG 0% ND ND ND No

62 −27,804 32,450 POS 25.5 NEG 0% 0% NEG 0% ND ND ND No

NEG, negative; POS, positive; INV, Invalid; ND, not determined; CT, cycle threshold; PC, percentage coverage; PIM, percentage identity match; PRA, percentage relative abundance. Samples from 
12 sitesa had detectable MTBC DNAb,c,d. Extracted DNA from these samples underwent further tests to speciate MTBCe,f,g. Mycobacterium bovis (M. bovis) was confirmed in samples from four 
sites, while samples from eight sites contained undifferentiated MTBC DNA. aThe site information including site number (No.) and location in latitude (LAT) and longitude (LONG) indicated 
to three decimal points. bSamples were screened using the GeneXpert® MTB/RIF Ultra (GXU) qPCR assay. If GXU detected MTBC DNA, the sample was considered positive, and the cycle 
threshold (CT) value was recorded. If no gene targets were detected, the sample was considered negative. If the GXU internal control failed, the result was considered ‘invalid’. cExtracted 
sample DNA underwent hsp65 PCR and Sanger amplicon sequencing (SAS). Sequences were compared to the National Centre for Biotechnology Information (NCBI) database. If the sequence 
had a percentage coverage (PC) and identity match (PIM) ≥ 90% with known MTBC genomes, the sample was considered MTBC positive. If the sequences were below this threshold, the sample 
was considered negative for MTBC DNA. dIn parallel with SAS, hsp65 amplicons were sequenced using Oxford Nanopore Technologies targeted next generation sequencing (ONT tNGS) and 
compared to an in-house curated database. Sequences that matched MTBC had PC and PIM values of 100%. The relative abundance (PRA) of MTBC sequences was indicated as a percentage of 
the total reads assigned per sample site. If no reads matched MTBC above the threshold (PC ≥ 90% and PIM ≥ 97%), the sample was considered negative for MTBC. eThe ONT tNGS of gyrase 
(gyrA, gyrB1 and gyrB2) amplicons and comparison to the in-house database was used to differentiate MTBC. If MTBC specific SNPs (37) were present and sequence matched known M. bovis 
genomes, M. bovis was considered detected. In this study, M. bovis positive sequences had PC and PIM values of 100%. If no MTBC ecotype could be assigned, the MTBC differentiation result 
was considered not determined ‘ND’. fRegion of difference (RD) PCR was used to differentiate MTBC, according to Warren et al. (58). If the presence/absence of RD1, RD4, RD9 and RD12 
amplicons was consistent with M. bovis, M. bovis was considered detected. If no MTBC ecotype could be assigned, the MTBC differentiation result was considered not determined ‘ND’. 
gSpacer oligonucleotide typing (spoligo-typing) was used to differentiate MTBC, according to Kamerbeek et al. (59). If the MTBC spoligo-type was consistent with known M. bovis patterns, M. 
bovis was considered detected. If no MTBC ecotype could be assigned, the spoligo-type result was not determined ‘ND’. hDetection of M. bovis DNA, based on a positive result in gyrase ONT 
tNGS, RD-PCR or spoligo-typing, was used to confirm the presence of M. bovis at the site. Positive results for MTBC/M. bovis are indicated in bold.
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advances in molecular tools improved this study’s detection feasibility. 
The presence of M. bovis DNA in shared water sources in KZN 
suggests that the source of contamination could be  infected local 
livestock or wildlife and, less likely, human populations. This is not 
surprising since epidemiological links have been shown between 
environmental M. bovis and infected local animal populations in a 
previous study (33). Moreover, the porous boundaries of HiP facilitate 
interactions at livestock-wildlife-human interfaces, leading to 
potential spillover between the park and local communities (43, 46). 
In addition, sharing untreated water sources by people and animals 
could result in MTBC contamination and increased infection risk. 
Increased MTBC surveillance in humans, animals, and the 
environment would provide a more comprehensive approach and is 
especially important due to the presence of other human diseases such 
as human immunodeficiency virus (HIV)/acquired immunodeficiency 
syndrome (AIDS) (43, 66). However, managing MTBC environmental 
contamination would entail enforcing disease management and 
sanitation practices that limit risk. For example, maintaining barriers 
between wildlife and domestic animals, bactericidal water treatments, 
and timely disposal of animal excrement and carcasses (8, 67, 68, 88). 
Therefore, further investigations are needed to understand the 
complex TB epidemiology in these systems and inform health 
interventions (13, 42) to minimize risk.

In this study, MTBC DNA was detected more frequently with 
GXU or ONT tNGS than with SAS. However, the GXU and ONT 
tNGS results were discordant at 50% of sites. According to Verma et al. 
(69), GXU detected environmental MTBC at “trace” levels, which is 
beyond the limit of detection of the rpoB probes but not IS6110/1081 
probes. This complicates interpretation and means positive GXU 
results confirmed by ONT tNGS are likely more reliable (70). Similarly, 
discordant GXU negative results could be due to platform-specific 
limitations when using complex samples, including PCR inhibition. 
For example, sample site 30 was GXU negative, although strong 
sequencing signals were observed with SAS and ONT tNGS. This 
highlights the potential for false negative GXU results and the 
importance of using a multi-modal approach. As with GXU, the 
detection of MTBC DNA varied across (hsp65, rpoB, and gyrase) gene 
targets when evaluating ONT tNGS results. As shown in previous 
research, variation in the hsp65 gene region appeared more 
informative than rpoB for species or complex-level detection of 
mycobacteria (71). Furthermore, MTBC detection based on the hsp65 
sequences only correlated with detection and characterization based 
on gyrase sequences in 25% of sites. The differences in gene target 
performance could be explained by sample composition, amplicon 
size, and nucleotide content, which affect PCR and tNGS efficiency 
(72). Future assay validation should, therefore, determine sensitivity 
per gene target using a dilution series of target DNA within different 
sample matrices. Due to the variations in performance between gene 
targets and sequencing methods, multiple molecular assays should 
be used in parallel rather than as a simple screening hierarchy for 
reliable environmental MTBC surveillance.

As NTMs are ubiquitous in the environment (73), it was 
unsurprising that hsp65 SAS and ONT tNGS identified several NTMs. 
Unlike SAS, ONT tNGS could provide PRA estimates and detect NTM 
with or without MTBC. Of the NTMs detected, MAC, 
M. madagascariense, and M. nebraskense have previously been 
reported in water and soil samples from KZN (74), as well as from 
livestock, wildlife, and people in this province (41, 44, 74). 

Unfortunately, differentiation based on MAC hsp65 was impossible 
due to low sequence quality and poor homology with known MAC 
sequences in the database. Other gene targets, such as IS900 and 
IS901, should be investigated for differentiating MAC strains in the 
future studies (19, 75). Of the NTMs detected, some were not 
previously reported in KZN. These findings provide useful 
information for comparison with future human clinical or veterinary 
mycobacterial isolates from these communities. Although this study 
identified NTMs and MTBC, incorporating a mycobacterial mock 
community (76) in the future studies would facilitate a more 
standardized comparison between mycobacteriome projects across 
different environments.

Although M. bovis detection could be confirmed by RD-PCR, 
spoligotyping, or gyrase ONT tNGS, these methods could not 
differentiate the MTBC ecotype in 8 of the 12 positive samples. 
Therefore, it was impossible to determine if contamination was due to 
MTB or M. bovis. In addition, the M. bovis spoligotyping could not 
be assigned, which could have provided an epidemiological link with 
infected animal populations in the area (39, 43). In samples where 
MTBC was detected, but the ecotype could not be assigned, it was 
likely that DNA from M. bovis or other MTBC was present but at 
levels too low for differentiation (77). Therefore, different approaches, 
such as magnetic bead capture techniques, should be  explored to 
enrich MTBC in samples pre- or post-DNA extraction (33, 78). 
Moreover, if the methods by Pereira et al. (33) were used, the diversity 
of M. bovis strains based on SNP diversity (33) rather than 
spoligotyping could be  explored. The complex nature and 
heterogeneity of mycobacterial species present in environmental 
samples could also have led to challenges in attributing a single MTBC 
ecotype using the techniques employed in this study, due to the 99.9% 
genetic similarity of members in this group (79).

A limitation of this study was that although the PRA of MTBC 
ONT tNGS hsp65 sequences and GXU CT values provided a crude 
estimate of MTBC concentrations per sample, the effect of 
environmental conditions and animal density could not be explored 
due to the limited sampling time (4 days), resources and data 
availability. According to a study by Courtenay et al. (64), the quantity 
of M. bovis DNA alone in soil may provide some insights into the 
infection status of animal populations, as shown in a study of local 
badgers and proximal cattle farms. In contrast, a study by Martínez-
Guijosa et al. (80) found detection of environmental M. bovis DNA 
was not correlated with host animal prevalence or disease. Still, it was 
associated with certain environmental conditions. These variables 
should be explored in the future studies, especially as research has 
predominantly focused on environmental NTMs, or MTBC in general 
(13, 81, 82).

A significant limitation of this study was the requirement (from 
the South  African Department of Agriculture) to heat-inactivate 
samples before transport, which precluded mycobacterial culture. This 
would have provided additional confirmation of viable mycobacteria 
present and potentially increased detection of MTBC since the 
expected paucibacillary nature of these samples may have been below 
the limits of detection (15). However, despite heat treatment, high 
quantities of amplifiable DNA could be  extracted, amplified, and 
sequenced. Moreover, in this study, ONT tNGS was moderately and 
substantially comparable to more traditional molecular assays for 
MTBC and M. bovis detection. The amplicon-targeted approach was 
chosen as it was more sensitive for culture-independent detection of 
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specific environmental microorganisms compared to shotgun 
sequencing (83, 84). The disadvantage is that using PCR for target 
enrichment prior to tNGS, may introduce bias, producing results not 
reflective of the original mycobacteriome (85). Additional culture-
independent techniques that should be explored in the future studies 
to quantify viable M. bovis preferentially could include fluorescent 
labeling and sorting of MTBC cells with flow cytometry (86).

Despite the limitations of this study, M. bovis and MTBC DNA were 
successfully detected in environmental samples collected from a high TB 
burden area within KZN, South Africa, suggesting possible contamination 
by infected animal and or human populations. Environmental sources of 
MTBC should be investigated further to improve our understanding of 
TB epidemiology in complex multihost systems.
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