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Diabetes mellitus is a common metabolic disease in humans and cats. Cats share 
several features of human type-2 diabetes and can be considered an animal model 
for this disease. In the last decade, sodium-glucose transporter 2 inhibitors (SGLT2i) 
have been used successfully as a class of hypoglycemic drug that inhibits the 
reabsorption of glucose from the renal proximal tubules, consequently managing 
hyperglycemia through glycosuria. Furthermore, SGLT2i have been shown to 
have cardiac, renal, and other protective effects in diabetic humans acting as a 
pleiotropic drug. Currently, at least six SGLT2i are approved by the Food and Drug 
Administration (FDA) for use in humans with type-2 diabetes, and recently, two 
drugs were approved for use in diabetic cats. This narrative review focuses on 
the use of SGLT2i to treat diabetes mellitus in humans and cats. We summarize 
the human data that support the use of SGLT2i in controlling type-2 diabetes and 
protecting against cardiovascular and renal damage. We also review the available 
literature regarding other benefits of these drugs in humans as well as the effects 
of SGLT2i in cats. Adverse effects related to the use of these hypoglycemic drugs 
are also discussed.
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1 Introduction

Glucose is an important energy source for cells and a substrate for many biochemical 
reactions. As a lipophobic substance, glucose cannot cross the membrane lipid bilayer to enter 
the cells throughout the body. Integral proteins located in the membrane of every cell called 
glucose transporters are responsible for glucose transport across the membrane. Glucose can 
be transported into the cell using facilitated diffusion (passive transport of substances across 
a biological membrane from an area of higher concentration to an area of lower concentration 
with the help of a carrier protein) or using co-transport (active transport of two molecules in 
the same direction with the help of a transport protein called symporter). Symporters rely on 
the ion moving down the electrochemical gradient (e.g., sodium) to allow the other molecule 
to move against the concentration gradient (e.g., glucose) (Figures 1A,B).

There are two main types of glucose transporters in the body. The first type is called GLUT 
(glucose transporter), and they use facilitated diffusion. GLUT proteins are encoded by the SLC2 
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genes and are members of the major facilitator superfamily of membrane 
transporters (Figure 1A). They are numbered according to their order of 
discovery. Currently, 14 GLUT proteins are expressed in humans and 
categorized into three classes based on sequence similarity: Class 
I (GLUTs 1–4, 14), Class II (GLUTs 5, 7, 9, and 11), and Class III (GLUTs 
6,8,10,12 and 13 [H+ myo-inositol transporter or HMIT]). The second 
type is called SGLT (sodium-glucose linked transporter or sodium-
glucose co-transporter) and relies on co-transport (1) (Figure 1B). SGLTs 
belong to the mammalian solute carrier family SLC5. This family 
includes 12 different members in humans that mediate the transport of 
sugars, vitamins, amino acids, or smaller organic ions such as choline. 
The SLC5 family belongs to the sodium symporter family (SSS), which 
encompasses transporters from all kingdoms of life. A summary of the 
main types of SGLTs present in the human body is presented in Table 1. 
Two SGLTs (1 and 2) are the most important ones affecting glucose 
transport in the kidneys (2–5).

In the kidney, glucose is freely filtered from the blood at the 
glomerulus. To avoid losing significant amounts of the main body’s fuel 
into the urine, glucose reabsorption occurs in the renal tubules. Both 
SGLTs type 1 and 2 are proteins in the luminal border of the epithelial 
cells of the proximal convoluted tubules, reclaiming glucose from the 
kidney filtrate and returning it to the blood (Figure 2). Filtered glucose 
first encounters SGLT2 in the initial segment of the proximal renal 
tubules, where it co-transports one sodium ion with one molecule of 
glucose across the membrane (1, 6). Previously thought to be located 
in the early S1/S2 segment, new refined techniques have suggested that 
SGLT2 is solely located in the S1 segment of the proximal renal tubules, 
at least in rats (7). The SGLT2 is a high-capacity, low-affinity glucose 
transporter responsible for 90 percent of the total glucose absorption 
in the kidney (Figure 2). The SGLT1 is found in a later segment of the 
proximal tubule (S2 and S3), transporting one molecule of glucose or 
galactose with two sodium ions across the membrane (1, 6). SGLT1 is 
a lower-capacity, high-affinity transporter that accounts for 10% of 
glucose reabsorption (Figure  2). Because of their role in glucose 
reabsorption, SGLTs became a drug target for glycemic control.

This narrative review focuses on a recent Food and Drug 
Administration (FDA) approved class of hypoglycemic drugs known 
as SGLT2 inhibitors (SGLT2i) to treat diabetes mellitus (DM) in cats. 

We summarize the human data that supports the use of SGLT2i in 
controlling human type-2 DM and protecting against the worsening 
of certain DM comorbidities. We also review the available literature 
regarding the effects of SGLT2i on cats.

2 Search strategy

One author (ABV) searched PubMed and Google Scholar for 
“SGLT inhibitors and diabetes mellitus,” “SGLT inhibitors and heart,” 
“SGLT inhibitors and kidney,” and “SGLT inhibitors and cognitive 
impairment.” Several combinations including the terms, “humans,” 
“cats,” “veterinary,” “SGLT1,” “SGLT2,” “review,” “cardioprotection,” 
“renal protection,” and “neuroprotection” were used to identify 
relevant publications up to June 2024. Manual scoping of results 
focused on original research articles, meta-analyses, systematic 
reviews, and narrative reviews. The eligibility criteria included: all 
relevant literature on SGLTi in humans and cats, relevant supporting 
literature regarding the physiology of SGLTs and pharmacology of 
SGLT2i, peer-reviewed articles written in English, and full-text articles.

3 SGLTs as pharmacological targets

The first known substance with SGLT inhibitory activity, 
Phlorizin, is a glycoside phytocompound isolated from the root bark 
of an apple tree in 1835 (8). Phlorizin showed high affinity, specificity, 
and competitive inhibition capacity for SGLT1 and SGLT2 (9, 10). 
Since then, several phlorizin analogs (gliflozins) with different potency 
and selectivity against SGLT1 and SGLT2 have been developed and 
approved for human use worldwide.

Canagliflozin was the first SGLT2i approved in the United States 
(March 2013) for use in human adults with type 2 diabetes. 
Canagliflozin has 400-fold higher inhibitory activity for SGLT2 over 
SGLT1 (11). Currently, at least six high-potency gliflozins are 
approved for use in humans in the United States (Table 2). Recently, 
the FDA approved two gliflozins for the treatment of diabetes mellitus 
in cats: velagliflozin in December 2022 (Bexacat®; Elanco) and 

FIGURE 1

Comparison between GLUTs (glucose transporter facilitators) and SGLTs (sodium-glucose co-transporters). GLUTs use facilitated diffusion (passive 
transport) for bidirectional glucose transport. SGLTs use active transport to move two molecules in the same direction, one down and one against 
concentration gradient (co-transport). Created in BioRender. Ciambarella, B. (2025) https://BioRender.com/v21n984.
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velagliflozin (12) in July 2023 (Senvelgo®; Boehringer Ingelheim) both 
with high affinity for SGLT2 inhibition. FDA-approved gliflozins for 
humans and cats are summarized in Table 2.

The initial rationale behind gliflozins’ development was to manage 
hyperglycemia by inhibiting the glucose uptake from the proximal 
renal tubule, thereby allowing the kidneys to dispose of excess blood 
glucose in the urine (Figure 1). However, after years of clinical studies, 
there is strong evidence that SGLT2 inhibitors are more than 
hypoglycemic agents and act as pleiotropic drugs with significant 
metabolic, cardiovascular, renal, and possibly neuroprotective benefits 
in humans (13–18).

4 SGLT2i treatment in humans with 
DM and possible mechanism of action

Gliflozins act to improve diabetic hyperglycemia by inhibiting 
SGLT2, which is responsible for 90% of the glucose filtered at the 
glomerulus (19). However, physiological changes that occur in 
response to SGLT2i increase the resorptive capacity of SGLT1 and 
maintain filtered glucose reabsorption at around 50% (20) (Figure 2). 
This compensatory reabsorption may reduce the risk of hypoglycemia, 
which is a rare event in human patients using SGLT2i (21).

Soon after the inhibition of SGLT2, glycosuria will appear, and 
consequently, blood glucose concentration will decrease independent 
of insulin. An improvement in beta cell function is expected because 
of the reduction of glucotoxicity (22). Moreover, improvements in 
skeletal muscle insulin sensitivity, positively correlated with the 
improvement in daily plasma glucose fluctuations, were reported, 
possibly secondary to the improvement in mitochondrial oxidative 
phosphorylation (23). Interestingly, the glucose-lowering effect of 
SGLT2i in humans is considered modest and probably insufficient to 
account for all clinical benefits demonstrated in patients using these 
drugs so far (15). The fall in glucose levels is less than might 
be  expected because glucagon levels increase, contributing to an 
increase in hepatic glucose production (22). Chronic treatment with 
SGLT2i also increases lipolysis and a shift to fat oxidation, which 
results in weight loss. Nonetheless, this effect is presumably 
counteracted by the compensatory increase in food intake, and the 

weight loss is usually considered mild. Additionally, with time, glucose 
oxidation decreases, and lipid oxidation increases without affecting 
protein oxidation. These changes occur probably because of the 
low-glucose, low-insulin, and high-glucagon state and maintain 
energy balance in the long term (Figure 3) (22).

Many of the benefits that are now recognized were not anticipated 
when SGLT2i was initially developed. Through different mechanisms, 
some still unknown, gliflozins produce a cascade of physiological 
benefits in major organ systems usually affected by DM (Figure 4).

In addition to the hypoglycemic effect, gliflozins act as proximal 
and osmotic diuretics, inducing natriuresis (21). This effect comes 
from the reduced activity of Na+/H+ exchanger 3 (NHE3), which, in 
normal conditions, reabsorbs 30% of the sodium in the proximal 
tubule. NHE3 is closely regulated by glucose metabolism and SGLT 
transporters, which makes it sensitive to SGLT2i (24). In diabetic 
patients, NHE3 activity is enhanced (hyper-reabsorption) and 
contributes to the decreased sodium availability at the macula densa, 
afferent arteriole vasodilation, increased intraglomerular pressure, 
and associated hyperfiltration (21). This glomerular hyperfiltration 
eventually leads to fibrosis within the glomerulus and 
tubulointerstitium and to proteinuria (25, 26). Under the action of 
SGLT2i, the unabsorbed sodium will be delivered to the macula 
densa cells in the distal nephron, normalizing afferent arteriole tone, 
intraglomerular pressure, and glomerular filtration, which probably 
decreases protein filtration and tubulointerstitial damage (21, 27, 
28). In addition, previous research showed that natriuresis is likely 
responsible for the decrease in total sodium retention (21), tissue 
sodium content (29), and the reduced interstitial volume relative to 
blood volume (30). These effects may ameliorate fluid congestion 
with less impact on tissue perfusion compared to other diuretics 
(15). Furthermore, SGLT2i have electrolyte-sparing advantages 
compared to classical diuretics (thiazides and loop diuretics). 
Although the pathophysiological mechanisms remain poorly 
understood, in general, potassium, magnesium and sodium levels 
seem to be  unaffected by SGLT2i treatment (31–34). These 
properties may provide greater flexibility regarding dose 
optimization for renin-angiotensin-aldosterone system inhibition 
drugs and mineralocorticoid receptor antagonists, which can 
be  limited by hyperkalemia, particularly with kidney function 
decline (35).

TABLE 1 Types, location, function, and characteristics of major sodium-glucose transporters (SGLT).

SGLT 
types

Location Function Characteristic

SGLT 1 The apical membrane of small intestinal 

cells

Glucose absorption from the intestines High affinity for glucose, low capacity

Distal (S3) cells of the proximal tubule Glucose reabsorption from urine filtrate (10%) High affinity for glucose, low capacity

SGLT 2 Proximal convoluted tubule (S1 and S2) 

cells

Glucose reabsorption from urine filtrate (90%) High affinity for glucose, high capacity

SGLT 3 Intestine, testes, uterus, lungs, brain, 

thyroid gland

Glucose sensor for controlling glucose levels in the gut and brain. 

High affinity for iminosugars (carbohydrate analogs)

Low affinity for glucose, high capacity

SGLT 4 Intestine, kidney, liver, brain, lung, uterus, 

pancreas

High affinity for absorption or reabsorption of mannose. Less 

affinity for 1,5-anhydro D-glucitol, fructose, and glucose

Lower affinity for glucose compared to 

mannose, capacity unknown

SGLT 5 Renal cortex Transport of mannose and fructose with high affinity and 

galactose, glucose, and 1,5 anhydro D-glucitol with less affinity

Lower affinity for glucose compared to 

mannose and fructose, high capacity

SGLT 6 Intestine, kidney, brain Transport D-chiro-inositol and myo-inositol with high affinity Low affinity for glucose, capacity unknown

Adapted from Navale and Paranjape (1).
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Gliflozins also seem to have antioxidant and anti-inflammatory 
effects. Antioxidant effects were related to the increased expression and 
activity of haem oxygenase, an enzyme involved not only in the 
degradation of haem but also in reducing oxidative stress, inflammation, 
apoptosis, and thrombosis (36–39). The anti-inflammatory effects of 
SGLT2i might be the result of combined actions. First, SGLT2i reduces 
the production of pro-inflammatory cytokines, including IL-6 and IL-8 
(40–42). Second, these drugs increase β-oxidation of free fatty acids, 
increasing ketone production, especially in diabetic patients (43–45). 
Last, the ketone β-hydroxybutyrate can suppress pro-inflammatory 
cytokine release (e.g., IL1β and IL-18) by blocking the murine and 
human NLPR3 (NLR family pyrin domain containing 3), a protein 

expressed predominantly in macrophages and as a component of the 
inflammasome. Activated NLRP3 would trigger an immune response 
(46). Furthermore, patients using canagliflozin for over 2 years showed 
reduced levels of markers and mediators of fibrosis compared to 
patients receiving glimepiride (47). It is unclear if this anti-fibrotic 
action is mediated by antioxidant and anti-inflammatory mechanisms 
or independent anti-fibrotic mechanisms (48).

In addition to the above mechanisms, SGLT2i may reduce 
sympathetic hyperactivity (49–51), which is a common finding in 
patients with diabetes, obesity, hypertension, and chronic kidney 
disease, and can lead to vasoconstriction and increased risk of fatal 
arrhythmias (52, 53).

FIGURE 2

Role of SGLT2 and SGLT1 in glucose re-absorption within the proximal renal tubules with and without SGLT2 inhibition. Created in BioRender. Uerj, L. 
(2025) https://BioRender.com/v55m360.

TABLE 2 Approved high-potency sodium-glucose transporter 2 inhibitors (SGLT2i) for use in humans and cats in the United States.

Generic 
agent

Brand Year FDA-
approved

Target 
population

FDA-approved indications for all SGLT2i Off-label uses 
for all SGLT2i

Canagliflozin Invokana 2013 Human adults* Improvement of glycemic control in type 2 DM

Type 2 DM and established CVS disease

Decrease the risk of CVS hospitalization and death for HF in HFrEF 

patients

Decrease the risk of eGFR decline and hospitalization in CKD patients

Improvement of CVS outcome in HFpEF patients

Approved for HF treatment across the full spectrum of LVEF patients

Management of obesity 

in combination with 

GLP-1 receptor agonists

Nonalcoholic fatty liver 

disease

Alzheimer’s disease

Dapagliflozin Farxiga 2014 Human adults*

Empagliflozin Jardiance 2014 Human adults*

Ertugliflozin Steglatro 2019 Human adults*

Bexagliflozin Brenzavvy 2023 Human adults*

Sotagliflozin Infepa 2023 Human adults*

Bexagliflozin Bexacat 2022 Cats

Diabetes Mellitus

Insulin resistance in 

obesitya

Enhancement of GFRb

Velagliflozin Senvelgo 2023 Cats

FDA, Food and Drug Agency; DM, Diabetes Mellitus; CVS, cardiovascular; HF, heart failure; HFrEF, HF with reduction ejection fraction; GFR, glomerular filtration rate; CKD, chronic kidney 
disease; HFpEF, HF with preserved ejection fraction; LVEF, left ventricular ejection fraction; GLP-1, glucagon-like peptide-1.
*FDA has not yet approved SGLT2is for use in children.
aHoenig et al. (118).
bGal et al. (130).
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Finally, treatment with gliflozins also seems to induce 
vasodilation and reduce vascular resistance in animal models, 
probably secondary to an increase in the bioavailability of nitric 
oxide (54, 55). The effects induced by nitric oxide likely add to 

the vascular benefits of sympathetic inhibition and together 
could contribute to the favorable cardiac reverse remodeling 
(e.g., reduction in ventricular mass) reported with SGLT2i 
use (56).

FIGURE 3

Beneficial effects of SGLT2 inhibitors on the pathophysiology of type 2 diabetes in humans.

FIGURE 4

Beneficial effects of SGLT2 inhibitors (SGLT2i) on cardiovascular and renal function in diabetic human patients.
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5 Cardiovascular protective effects of 
SGLT2i in humans

Atherosclerotic cardiovascular disease (CVD) is the leading cause 
of morbidity and mortality in people with DM. Currently, the FDA 
recommends cardiovascular (CV) outcomes trials (CVOTs) for all new 
hypoglycemic drugs to monitor the safety of these agents in people with 
either established CVD or at higher risk of development of 
CVD. Furthermore, clinical guidelines are frequently based on CVOTs 
results (57, 58). Some of the most convincing data about CV protective 
effects of SGLT2i came from early CVOTs using canagliflozin and 
empagliflozin (59, 60). These data showed that SGLT2i could reduce the 
risk of cardiovascular events (e.g., hospitalization for heart failure and 
cardiovascular death) in diabetic patients with established 
atherosclerotic cardiovascular disease (60). Subsequent trials in patients 
with heart failure and reduced or preserved left ventricular ejection 
fraction demonstrated that SGLT2i also has beneficial effects on heart 
failure outcomes (15). At present, both the American College of 
Cardiology (ACC) and the European Society of Cardiology (ESC) 2024 
updates recommend the use of SGLT2i (dapagliflozin and empagliflozin) 
for patients with heart failure with or without diabetes mellitus (57, 58).

6 Renal protective effects of SGLT2i in 
humans

Diabetic nephropathy is a major complication of DM in humans, 
which results in chronic kidney disease (CKD) (61, 62). Humans with 
DM are 10 times more likely to develop end-stage kidney failure, and 
40% of diabetic patients might develop the final stage of this disease 
(63). The nephroprotective effects of SGLT2 inhibitors in humans are 
well established and have been tested in randomized controlled trials 
in nearly 100,000 human adults (64). Research trials using empa-, 
cana- and dapagliflozin showed impressive results in renal outcomes 
for patients with DM (59, 60, 65). SGLT2i reduces the risk of kidney 
disease progression in people with or without diabetes and the risk of 
acute kidney injury. Furthermore, since SGLT2i do not affect serum 
potassium levels, there is a reduced risk of hyperkalemia compared to 
other drugs commonly used in diabetic nephropathy (e.g., 
angiotensin-converting enzyme inhibitors) (18). Because SGLT2i 
significantly reduces or normalizes the glomerular hyperfiltration seen 
in diabetic patients, there is probably a decrease in the physical stress 
placed on glomerular capillaries. By decreasing the glomerular 
filtration of tubulo-toxic factors (e.g., albumin and advanced glycation 
end products), there is a decrease in hypoxia, oxidative stress, 
inflammation, fibrosis, and progression of CKD (66). Currently, 
empagliflozin and dapagliflozin are approved for the treatment of 
CKD with or without diabetes mellitus in human adults. No research 
or approval exists for the use of gliflozins in children with CKD (64).

7 Other benefits of SGLT2i treatment 
(blood pressure, weight loss, hepatic 
lipidosis, neuroprotection)

The benefits of SGLT2 in humans go beyond the hypoglycemic 
effect and cardiovascular and renal protection. Gliflozins can modestly 
decrease systolic and diastolic blood pressure without significantly 

increasing the risk of hypotensive episodes (67). Additionally, the 
glycosuric effect of SGLT2i results in calorie loss (elimination of 
60–80 g of glucose per day in the urine), which consequently induces 
mild weight loss from the first weeks of treatment, which could 
be maintained for up to 4 years (19, 68–75). Furthermore, treatment 
with SGLT2 improves liver outcomes in people with metabolic 
dysfunction-associated steatotic liver disease (43, 76–82). Moreover, 
since SGLT2i still have some affinity for SGLT1 receptors in the brain 
and can cross the blood–brain barrier, they have been studied for 
neuroprotective effects (83–85). Gliflozins demonstrate anti-
inflammatory and antioxidant properties in the nervous system and 
inhibit acetylcholinesterase, which could contribute to cognitive 
improvement (16, 86).

8 Ketoacidosis, urogenital infection, 
and SGLT2i treatment in humans

Placebo-controlled trials and real-world cohort studies using 
gliflozins have reported favorable adverse effect profiles of these drugs 
in humans (15, 17, 87). Nevertheless, there is up to 0.3% increase in 
the risk of ketoacidosis development in people with diabetes using 
SGLT2i (18, 88). Although ketoacidosis is usually associated with 
hyperglycemia, glucose levels can be normal or modestly elevated in 
affected patients treated with SGLT2i, so-called euglycemic 
ketoacidosis (89, 90). The mechanisms by which gliflozins slightly 
increase the risk of DKA are probably related to reduced insulin 
secretion or increased insulin resistance and stimulation of glucagon 
secretion, increasing ketone body synthesis (91). In human medicine, 
this increased risk is mitigated by using several strategies, including 
withholding the agent when unwell and stopping therapy 3 days 
before any procedure that requires fasting, bowel preparation, or 
hospital admission (90).

No increased risk of urinary tract infection has been reported in 
SGLT2 trials (92). On the other hand, humans with DM receiving 
therapy with SGLT2 inhibitors were associated with 2.3–6.4% 
increased risk of genital mycotic infections in major clinical trials 
(93–95). Studies reporting the same risk in people without DM who 
received SGLT2i have had conflicting results (96–99).

9 Current knowledge about SGLT2i 
treatment in cats with DM

Until recently, diabetic cats were primarily treated with insulin 
injections and a high-protein, low-carbohydrate diet (100, 101). 
Although insulin is an effective treatment, it requires daily injections 
and personal commitments, which can impact the daily routine and 
quality of life of owners and cats (102–105). Several oral hypoglycemic 
drugs have been evaluated in healthy, experimentally hyperglycemic, 
obese, and diabetic cats in the past (106–111). Overall, only 
sulfonylurea glipizide is an acceptable treatment option in some cats 
(112, 113). Because of its mechanism of action stimulating insulin and 
amylin production, sulfonylureas can increase pancreatic amyloidosis 
and lead to beta-cell destruction (114–116). While both insulin and 
glipizide can induce hypoglycemia in cats, SGLT2i demonstrate an 
overall lower risk of hypoglycemia in humans when compared to 
other drugs (117).

https://doi.org/10.3389/fvets.2025.1480977
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Vieira et al. 10.3389/fvets.2025.1480977

Frontiers in Veterinary Science 07 frontiersin.org

In the last few years, studies have emerged highlighting the utility 
of SGLT2i in the treatment of feline DM. One study evaluated for the 
first time the effect of velagliflozin in obese cats (118). Placebo or 
velagliflozin (1 m/kg, PO, q24 h) was administered to two groups of 
six neutered obese cats matched by gender for 35 days. Authors 
documented an increase in urinary glucose excretion and suggested 
that velagliflozin could be beneficial for the treatment of diabetic cats 
(118). Using 252 newly diagnosed and insulin-treated cats, another 
study evaluated the effect of velagliflozin once daily as a standing-
alone therapy compared to insulin injection therapy (119). Cats were 
administered velagliflozin (1 mg/kg, PO, q24 h) regardless of blood 
glucose level, and evaluated on days 2 or 3, and days 7 and 30 and then 
monthly. Of the 252 cats enrolled, only 198 were evaluated. From this 
population, 175 (88.4%) were considered a treatment success on day 
30 based on improved glycemic control and clinical signs. The most 
common adverse effects were diarrhea and vomiting, and the most 
serious adverse event was DKA, which occurred in 5% of the naïve 
diabetic cats and 18% of cats previously treated with insulin (119).

Recently, a prospective, randomized, positive controlled, open-
label, noninferiority field trial using client-owned diabetic cats (127 
safety and 116 efficacy assessment) was published (120). Authors 
compared velagliflozin (1 mg/kg PO, q24 h) with porcine lent insulin 
(titrated Caninsulin, q12 h) and concluded that velagliflozin treatment 
was non-inferior to Caninsulin injections, and cats showed good 
quality of life and glycemic control without developing clinical 
hypoglycemia (120). Although porcine lent insulin can be used for 
cats, the author’s choice of insulin in cats is studies comparing SGLT2i 
and basal insulins like glargine will.

A second SGLT2i, called bexagliflozin, induced maximal renal 
glucose excretion at a dose of 15 mg/cat, PO, q24 h during pre-clinical 
research, according to the manufacturer (121). Not many studies have 
investigated this drug in cats so far (122, 123). One study evaluated the 
effect of bexagliflozin associated with insulin in five client-owned cats 
with poorly controlled DM (122). Cats were treated with bexagliflozin 
for 4 weeks, and all of them had a significant reduction in insulin dose 
requirement, and insulin was discontinued in two cats. Moreover, 
there was a significant decrease in blood glucose concentration 
obtained from blood glucose curves. No cats had any documented 
hypoglycemic episode, and adverse effects were considered mild (122). 
Another clinical trial evaluated the safety and effectiveness of 
bexagliflozin (15 mg/cat, PO, q24 h) as a monotherapy for newly 
diagnosed diabetic cats (123). In an open-label, historically controlled 
prospective clinical trial, authors evaluated the effect of bexagliflozin 
(15 mg/cat, PO, q24 h) in client-owned cats. Of the 84 cats enrolled, 
only 81 were evaluated on day 56. Eighty-four percent of these cats 
were considered treatment successes based on improvements in 
glycemic control and clinical signs. Commonly observed adverse 
events included emesis, diarrhea, anorexia, lethargy, and dehydration. 
The most important adverse event recorded was euglycemic DKA, 
diagnosed in three cats (3.6%) and presumed present in a fourth (123).

While the results of SGLT2i use in cats are promising, studies have 
not been conducted as independent clinical trials. Additionally, long-
term oral medication can be challenging for some cats, even if it is 
taken once daily, and SGLT2i treatment could require the same life-
long commitment as insulin usually does. Furthermore, bexagliflozin 
and velagliflozin are unavailable worldwide and may be  cost-
prohibitive for some cat owners. The dose recommendation is once 
daily, but not all diabetic cats are candidates for this monotherapy. The 

suggested criteria for use in newly diabetic cats can be found elsewhere 
(124, 125). When this review was published at the beginning of 2025, 
veterinary bexagliflozin was priced at around $ 120, and velagliflozin 
at around $ 280 per month per cat in the USA. For comparison, a 
bottle of human bexagliflozin (Brenzavvy®, 20 mg/30 tablets) is 
currently priced around $50, and a bottle of 10 mL of porcine lent 
insulin (Caninsulin®/Vetsulin®, Merck) costs around $70, which, 
according to the manufacturer, should be discarded after 42 days. 
Also, a 3 mL pen of glargine insulin costs around $100 and, in the 
author’s (ABV) experience, can be used safely for up to 3 months if 
stored in the fridge, considering that most cats receive 1–3 U/
BID/daily.

Studies in diabetic cats using human SGLT2i, like dapagliflozin, 
are needed. This drug, for example, is one of the most popular in 
human medicine. The same brand (Farxiga® 10 mg/30 tablets) is 
widely available at lower costs in countries like Brazil ($38), Australia 
($43), Canada ($76), and the United Kingdom ($90). Finally, SGLT2i 
treatment is compatible with most other glucose-lowering agents 
(126), and used in human patients with a wide range of comorbidities, 
but currently, its use in diabetic cats with concurrent illnesses is 
discouraged (124, 125).

10 Future perspectives for the use of 
SGLT2i in cats with other diseases

As in humans, cats commonly develop CV disease, CKD, obesity, 
hepatic lipidosis, and cognitive impairment as they age. Most of these 
diseases share similarities with human conditions, and some, like DM 
and cognitive dysfunction syndrome, were already considered a 
natural animal model for human studies (127–129). Currently, there 
is very limited knowledge regarding the effects of SGLT2i on other 
feline diseases.

A study evaluated the effect of velagliflozin (1 mg/kg/PO, q 24 h, 
for 35 days) or placebo in two groups of six neutered adult obese cats 
(118). Different parameters were evaluated before and after treatment. 
Significant changes after treatment with velagliflozin included a 
decrease in respiratory exchange ratio, an increase in cholesterol, a 
small increase in albumin, and a rise in beta-hydroxybutyrate and 
nonesterified fatty acids. Less insulin was secreted during an 
intravenous glucose tolerance test, suggesting improved insulin 
sensitivity. Treatment did not affect the intravenous insulin tolerance 
test, glucagon, leptin, or adiponectin. Water intake, urine output, 
urinary glucose excretion, and the glucose/creatinine ratio but not 
urinary electrolytes were significantly higher post-treatment (118). 
Currently, there are no studies regarding the long-term effects of 
SGLT2is in obese cats with or without DM.

A randomized 2-way controlled crossover study investigated the 
effect of dapagliflozin on glomerular filtration rate in eight adult 
castrated male healthy cats (130). Cats received or not 10 mg of 
SGLT2i per day for 5 days in each of the four trial periods, with 
washout periods of 7 days in between. Urine and blood were sampled 
on the first and fifth day of each trial to analyze serum urea, creatinine, 
symmetric dimethylarginine, and 24-h sodium and chloride urinary 
excretion. Glomerular filtration rate was accessed using iohexol 
clearance on the fifth day of each trial. Compared to controls, healthy 
cats treated with dapagliflozin significantly increased mean glomerular 
filtration rate. No significant changes were seen for other parameters. 
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Authors believed that dapagliflozin-mediated delivery of sodium and 
glucose distal from the proximal convoluted tubule induced 
compensatory increased sodium absorption at the thick ascending 
loop of Henle that resulted in decreased sodium delivery to the distal 
tubule leading to tubuloglomerular feedback-mediated glomerular 
hyperfiltration (130). Currently, there are no studies on the effects of 
SGLT2i in cats with CKD or naturally occurring heart disease.

11 Conclusion

SGLT2 inhibitors have opened new possibilities for managing 
type-2 DM in both humans and cats. Cats share many similarities with 
human diseases and can develop obesity, heart failure, CKD, hepatic 
lipidosis, and cognitive dysfunction as they age. Future research in 
small animal medicine must address the benefits and adverse effects 
of SGLT2i treatment not only as a new hypoglycemic agent for feline 
DM but also as a pleiotropic drug with expected effects in many other 
physiological systems.
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