94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Vet. Sci.
Sec. Parasitology
Volume 12 - 2025 | doi: 10.3389/fvets.2025.1459791
This article is part of the Research Topic Advancing Treatments for Protozoan Diseases: From Resistance Mechanisms to Novel Therapies View all 7 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Monensin resistance in Eimeria tenella poses a significant challenge in poultry farming, compromising the effectiveness of this widely used anticoccidial drug. The present study aimed to identify candidate mutated genes in Eimeria tenella associated with monensin resistance through experimental evolution and pooled genome sequencing.The monensin-resistant (MR) strains were rapidly generated by 6 generations of serial passage under gradient monensin treatments using Houghton strain as the parental strain. Genomic sequencing was applied to uncover genetic changes during passages under drug selective pressure. Comparative analysis between resistant and control populations was performed by using the ΔSNP-index and FST values to identify loci with significant selective sweeps. Stringent thresholds were applied to pinpoint candidate genes, followed by annotation and analysis of their potential functions.The genetic diversity of MR parasites remained stable across generations, despite varying drug concentrations. Seven candidate genes with eleven missense mutations were identified in MR strains. Key genes include ETH2_0729200 (dynein motor protein), ETH2_0729400 (esterase/lipase), and ETH2_0730000 (pyridine nucleotidedisulphide oxidoreductase) annotated in both the selective sweeps by using ΔSNPindex and FST methods. Further experimental validation of these candidate genes is essential to elucidate their roles in monensin resistance. This research contributes valuable insights into the molecular basis of resistance pressure in Eimeria parasites, potentially informing future strategies for the control of coccidiosis.
Keywords: Eimeria tenella, Monensin, Resistance pressure, experimental evolution, genome resequencing
Received: 04 Jul 2024; Accepted: 12 Feb 2025.
Copyright: © 2025 Gu, Fang, Liu, Shi, Zhang, Wang, Cui and Tang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Ping Cui, Hebei North University, Zhangjiakou, China
Xinming Tang, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, Beijing Municipality, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.