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Livestock provide nutritional and socio-economic security for marginalized populations 
in low and middle-income countries. Poorly-informed decisions impact livestock 
husbandry outcomes, leading to poverty from livestock disease, with repercussions 
on human health and well-being. The Global Burden of Animal Diseases (GBADs) 
programme is working to understand the impacts of livestock disease upon human 
livelihoods and livestock health and welfare. This information can then be used by 
policy makers operating regionally, nationally and making global decisions. The 
burden of animal disease crosses many scales and estimating it is a complex task, 
with extensive requirements for data and subsequent data synthesis. Some of the 
information that livestock decision-makers require is represented by quantitative 
estimates derived from field data and models. Model outputs contain uncertainty, 
arising from many sources such as data quality and availability, or the user’s 
understanding of models and production systems. Uncertainty in estimates needs 
to be recognized, accommodated, and accurately reported. This enables robust 
understanding of synthesized estimates, and associated uncertainty, providing rigor 
around values that will inform livestock management decision-making. Approaches 
to handling uncertainty in models and their outputs receive scant attention in 
animal health economics literature; indeed, uncertainty is sometimes perceived 
as an analytical weakness. However, knowledge of uncertainty is as important 
as generating point estimates. Motivated by the context of GBADs, this paper 
describes an analytical framework for handling uncertainty, emphasizing uncertainty 
management, and reporting to stakeholders and policy makers. This framework 
describes a hierarchy of evidence, guiding movement from worst to best-case 
sources of information, and suggests a stepwise approach to handling uncertainty 
in estimating the global burden of animal disease. The framework describes the 
following pillars: background preparation; models as simple as possible but no 
simpler; assumptions documented; data source quality ranked; commitment to 
moving up the evidence hierarchy; documentation and justification of modelling 
approaches, data, data flows and sources of modelling uncertainty; uncertainty 
and sensitivity analysis on model outputs; documentation and justification of 
approaches to handling uncertainty; an iterative, up-to-date process of modelling; 
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accounting for accuracy of model inputs; communication of confidence in model 
outputs; and peer-review.
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1 Introduction

Healthy livestock populations strengthen the health and resilience 
of societies, helping people to avoid hunger, access a balanced diet, 
generate income, and provide a pathway to local and international 
trade. Ill-health presents a threat to the sustainability of livestock 
sectors threatening livelihoods, businesses and food supply as well as 
wasting finite resources. Historically, there has been no systematic 
approach to determining which populations are at greatest risk of 
animal diseases. A good understanding of animal health losses can 
support evidence-based decision making around animal diseases and 
food production; it allows for better understanding of how and when 
these instances will occur and the development of targeted 
interventions for specific societies who are most severely impacted. 
Documenting and defining the sources of uncertainties in data used 
to describe livestock production systems and the diseases affecting 
them is central to estimating overall losses.

The Global Burden of Animal Diseases (GBADs) programme is 
improving the understanding of which populations are at greatest risk 
of animal diseases, by providing relevant metrics at both local and 
global levels (1). As part of its activities, the programme is capturing 
information describing livestock production, economic efficiency, 
social equity and the environment, to understand how the burden of 
animal health loss is disaggregated across society. Burden estimates 
produced by the programme are derived from a combination of field 
data and model outputs (2).

Alongside gathering data and parameterizing models, the GBADs 
programme must document sources and types of uncertainty 
generated through this process. Uncertainty provides substantive 
challenges to generating all burden estimates and knowledge describing 
uncertainty around these estimates should be  incorporated into 
decisions for which they are used as evidence. The types of uncertainty 
in any animal production system arise from various sources. For 
example, understanding of animal health and production varies hugely 
between countries: in some localities, particularly low-income settings, 
there are many unknowns, and ascertaining baseline information, such 
as the number of animals kept, can be difficult. Additionally, data 
acquisition may be problematic (or impossible) in countries impacted 
by war, conflict and natural disaster (3). The accuracy of collected data 
in reflecting ‘true’ values can also be  uncertain. In contrast, some 
countries have developed large-scale, production system-specific 
comprehensive animal disease surveillance programmes, following 
establishment of the need for such resources (4–6).

Additional uncertainty arises from how such data is analysed. 
Point estimates of important parameters (estimable numerical 
quantities) can be  used to estimate disease burden, however they 
provide only part of the necessary understanding; the statistical, 
scenario-based and structural uncertainties around estimates, as well 
as model parameter inputs and outputs, are also important. 
Uncertainty should be minimized as far as possible, but where it is 
unavoidable it should be identified and scientifically characterized, 

with its sources clearly documented. Stakeholders in the programme 
must be confident in receiving quantitative information and knowing 
how to use it to make informed decisions (7). This paper presents a 
conversation around data and model output uncertainty against a 
backdrop of the work of the GBADs programme.

Statistics is the science of uncertainty in data and numbers. The 
predominantly statistical uncertainty discussed in this paper sits 
within a wider uncertainty framework (8). Uncertainty in its broadest 
sense has furthermore been categorized into nine types (9); epistemic, 
ontological and ambiguous, each of which can operate at substantive, 
strategic and institutional levels. Here, these types of uncertainty are 
used as a framework to understand how to describe uncertainty 
within the work of the GBADs programme. As internet and social 
media access has broadened, there has been greater opportunity for 
inaccurate information to circulate. Stakeholders, and the public, have 
more need than ever to understand what uncertainty means and to 
be  able to decide what constitutes a reliable source. Fear of the 
unknown should be replaced with a conviction that sometimes the 
greatest expression of knowledge is the simple statement “this is 
unknown,” paving the way to address knowledge gaps.

1.1 Structure for the framework

The paper begins with a broad definition of models and outlines the 
different types of models that inform GBADs activities (conceptual; 
mathematical; statistical). This is followed by a description of the different 
types of uncertainty that exist across the GBADs analytical framework 
coupled with consideration of how uncertainty impacts model outputs, 
and a discussion of statistical principles which can be used to handle 
uncertainty. We include examples, based around the work of the GBADs 
programme, to illustrate the principles described. We  conclude by 
describing a framework to manage and communicate uncertainty in its 
various forms for use by large-scale multi-partner programmes such as 
GBADs. Use of this framework will provide a common understanding 
of uncertainty and how it can be effectively handled, ensuring the rigor, 
repeatability, and transparency of GBADs outcomes.

2 The power of models in estimating 
the global burden of animal disease

Historically, the use of models to understand animal disease is 
long-established [for example, foot and mouth disease (10, 11) and 
bovine tuberculosis (12)]. However, approaches vary enormously. All 
models take inputs (parameters, informed by data or expert opinion, 
and assumptions) and process them in some way to produce outputs 
(refined information) upon which decisions may then be based. The 
GBADs programme is developing and using different types of 
statistical and mathematical population, disease and economic models 
within its analytical framework (13, 14). Data from different sources 
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are synthesized and, depending on their availability, quality and 
traceability, used according to a hierarchy of evidence ‘strength’ (15) 
to minimize introduction of bias and additional uncertainty into 
programme outputs (Figure 1).

2.1 Conceptual models

A conceptual model is often a first step in a larger modelling 
process and is used to describe how different parameters are linked in 
a system, highlight dependencies including feedback loops, and clarify 
required data flows (Figure 2). More formally, a conceptual model may 
take the form of a directed acyclic graph (DAG) (16). DAGs can help 
to identify confounding variables (which are linked both with the 
outcomes of interest and potential exposures or risk factors) (17), and 
are particularly helpful in large multi-factorial studies which draw 
upon observational data to address complicated research questions. A 
conceptual model may fulfil a research need in its own right, but its 
use is often followed by construction of a mathematical or statistical 
model which uses computational or simulation-based approaches.

2.2 Mathematical models, simulation 
models, and computational models

Mathematical models can provide a generalized representation 
of reality, for example, to facilitate the study of disease-mitigation 

interventions or in economics, to assess how changes in food 
supply will affect market prices. They are also used to simulate 
scenarios when there is insufficient data to build a statistical 
model, e.g., describing features of livestock systems and disease 
dynamics such as foot and mouth disease (10, 11), bovine 
tuberculosis (18) and the then-emergent Bovine Spongiform 
Encephalopathy outbreak in the 1990s (19). Mathematical models 
and simulation models may be  deterministic (having fixed 
parameters, with no intrinsic randomness) or can be stochastic 
(including randomness) to reflect uncertainty and/or variability in 
input parameters.

Mathematical models incorporate critical parameters and a 
range of mechanistic processes, and are either represented by 
differential equations or, in the absence of closed-form 
mathematical solutions are studied via numerical methods or 
simulation (20–23). Mathematical models are informed by a small 
set of data and require prior understanding of the system being 
represented. Models built to describe animal production and 
disease dynamics (24, 25) can be  subsequently modified to 
represent different scenarios or the impact of an intervention such 
as vaccination. They are also useful for the generation of 
hypotheses, which can then be  studied in field-based 
investigations. Mathematical models are also used for economic 
assessments of animal health, including partial equilibrium 
models focusing on selected supply chain structures such as 
livestock (26), or general equilibrium models capturing sectors 
across the economy (13, 27).

FIGURE 1

Conceptual diagram of GBADS analytical framework and data flows including example data inputs, model types and data sources, with sources color-
coded (text) to indicate the evidence ‘strength’ hierarchy, with quality decreasing from turquoise-green to red. This figure adapts an established 
framework (1). Created using online diagram and flowchart maker draw.io.
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2.2.1 Examples
Suppose interest concerns the impacts of a disease on milk yield 

of cattle in Ethiopia but there is limited primary data. Several 
published articles have, however, described this disease in other 
settings. It is possible to build a mathematical model to describe the 
milk production process based on biological knowledge. Information 
from similar countries and understanding generated through expert 
elicitation (28) can then be used to inform the values of parameters in 
the Ethiopian system, generating hypotheses about the effects of this 
disease (29, 30). These mathematical models can then be  used to 
inform the design of field studies, and data secured from these studies 
can be used to improve and refine the mathematical model.

2.3 Statistical models

Statistical modelling describes uncertainty in data sets. Statistical 
models are based on data and modelling assumptions, and should 
provide the simplest explanation for model outcomes that is not 
materially inconsistent with the data (31). A statistical model 
commonly looks for association between an outcome variable (e.g., 
disease occurrence) and one or more explanatory variables (e.g., 
environmental or behavioral factors). For the statistical model in its 
classical form, the sampling framework which has generated the data 
is important because a statistical model uses data from an appropriately-
chosen sample to make inference about a population parameter.

2.3.1 Examples
Statistical models have long been used to enhance understanding 

of disease risk factors and the effects of pathogen exposure in large 

epidemiological studies—for example, bovine tuberculosis (32, 33), 
avian influenza (34, 35), and bluetongue virus (36). Recent works have 
studied environmental factors associated with the spread of Highly 
Pathogenic Avian Influenza H5N1 virus in wild birds in Europe (37) 
and risks associated with African swine fever incursion in Romania 
(38). Using the Ethiopian dairy cattle example, a linear regression 
model using field data [e.g., from (39)], under appropriate random 
sampling-based assumptions, could be used to make inference about 
a relationship between cattle milk yield, livestock husbandry-
associated variables, and vaccination and disease status.

2.4 Summary

Helpful models, conceptual, statistical and mathematical, allow 
researchers to understand where good data already exist, and to decide 
where new data are needed to improve estimates (and reduce 
uncertainty). The steps from conceptualization to parameterization 
and interpretation are therefore critical to understanding uncertainty, 
targeting future research priorities, and guiding how uncertainty 
should be managed in the future.

The types of models and the conditions under which each might 
be deemed suitable are summarized in Table 1.

3 Uncertainty in data and models

We begin by providing a working definition of uncertainty, set 
within the context of a distinction between uncertainty and risk. A 
long-established distinction between risk and uncertainty comes 

FIGURE 2

Models in GBADs: capturing model conceptualization, statistical frameworks, sources of uncertainty and information flows.
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from the field of economics (40) and useful perspectives for 
distinguishing between risk and uncertainty have been recently 
explored (41). Risk relates to an unknown outcome, but the 
probabilistic process driving that outcome is established. In contrast, 
uncertainty is a state of knowledge and may arise as a result of factors 
such as incomplete information, complexity, randomness (variation) 
and unpredictability, so that both outcome and the probabilistic 
process driving the outcome are unknown. It is common in the mind 
of the non-specialist to confuse risk and uncertainty, so that when a 
non-specialist talks about risk, they often mean uncertainty (41). 
Decision-making is focused on situations where risks may be present, 
and decision-making in the additional presence of uncertainty is 
particularly challenging. In this paper we  principally focus on 
uncertainty, rather than risk, and the different types of uncertainty 
are outlined below.

3.1 Types of uncertainty

Uncertainty occurs in all data and models; statistical, 
mathematical, and purely conceptual. Types of uncertainty fall into 
two categories (42):

 1. Epistemic (knowledge) uncertainty refers to the state of 
knowledge and can be  reduced by collecting more data. 
Epistemic uncertainty is intuitively well-represented by 
Bayesian approaches, which represent uncertainty in terms of 
probabilities, but we  can still gain insight into epistemic 
uncertainty within a classical (otherwise termed frequentist) 
framework, for example by paying careful attention to aspects 
such as model selection. In practice, classical and Bayesian 
frameworks are both used to represent uncertainty in models, 
but there are distinctions between them [see, e.g., (43)]. 
Epistemic uncertainty can be further reduced by improving the 
fit of models to data. For example, suppose there are livestock 
growth rate estimates around which there is a large degree of 
uncertainty (reflected in wide confidence intervals around 
parameter estimates). If the population is stratified by age and 
breed prior to modelling, estimates may have less uncertainty 
around them, since growth rates within groups are likely to 
be more similar than those in different groups. We focus upon 
the acquisition of data at sub-national and production system-
specific levels precisely because there is a need to reduce 
uncertainty in estimates reported by the GBADs programme. 
Further, epistemic uncertainty depends on context and will in 
part be influenced by the knowledge at the point of modelling; 
keeping estimates regularly updated can reduce 
epistemic uncertainty.

 2. Aleatory uncertainty (sometimes termed variability) is caused 
by intrinsic randomness within systems. One cannot reduce 
aleatory uncertainty; one can only ever seek to estimate 
aleatory uncertainty more precisely. In agricultural systems, 
aleatory uncertainty can be  driven by factors such as 
environmental variation (e.g., weather and climate) which 
might cause uncertainty around future production and yield, 
as well as price variation, which can cause market uncertainty 
(44). Note that aleatory uncertainty can be a feature of both 
statistical and stochastic mathematical models; the latter may 
include specific factors that cause variability, but these are 
underpinned by truly random processes that cannot 
be explained.

That many model parameters combine epistemic and aleatory 
uncertainty should be noted. For example, a national estimate of a 
parameter provides useful information, but may be of limited use at 
local level due to variability between sub-populations exposed to 
different hazards and for whom risks differ. This was demonstrated in 
the GBADs Ethiopian case study as stakeholders appreciated national-
level estimates of disease burden but those making decisions on where 
to spend animal health resources requested more specific regional 
estimates to support their decision-making process as livestock 
keeping practices, pathogen challenge and resource allocation vary by 
region. When estimating the global burden of animal disease, intrinsic 
randomness and variability persist throughout the analytical 
framework, which makes accounting for this and describing it 
exceptionally important. Populations of individuals that vary are being 
modelled, through time, and under fluctuating environmental 
circumstances. Further, these populations operate within socio-
cultural and political contexts that affect market supply, demand and 
access, impacting price variability, and with disease burdens that vary 
through space and time depending on the hazard (individual impacts, 
density and frequency dependent transmission, etc.). All these factors 
will contribute to final model-estimate uncertainty and must be clearly 
communicated to the end users of GBADs model outputs.

All models are subject to different types of uncertainty (45). 
Epistemic (knowledge) uncertainty can be further broken down into 
different categories as follows (46):

 • Parameter uncertainty. This is the type of uncertainty that 
conventionally receives the most attention (“The best guess of the 
value is x, but it could be as low as y, or could be as high as z”).

 • Model inadequacy impacts upon how well models 
represent reality.

 • Measurement or observation uncertainty which may link to 
biases in collected data and in missing data. The reasons for data 
missingness matter.

TABLE 1 Types of models, their features and requirements.

Type of model Data Interest concerns 
process

Analytically tractable Randomness/ variation 
important

Conceptual ✓

Mathematical - deterministic ✓ ✓ ✓

Mathematical - stochastic ✓ ✓ ✓ ✓

Statistical ✓ ✓ ✓
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 • Residual uncertainty is “everything which cannot be explained or 
measured” by the model used and should be clearly reported.

 • Uncertainty in the code used to represent a model.

In general, it is not possible to run a model with every possible 
input parameter value. Practical constraints dictate that only a subset 
of scenarios can be explored, in which case the uncertainty which this 
introduces, in terms of the range of code outputs that can 
be represented, must be accommodated.

3.2 Examples of uncertainty relevant to 
understanding the global burden of animal 
disease

3.2.1 Uncertainty in mathematical models
The simplest mathematical model (47) for describing disease 

dynamics has three compartments: susceptible (uninfected individuals 
who can catch the disease when exposed); infectious (individuals who 
have the disease and are actively able to transmit it); and recovered (or 
removed), which may mean that they are immune or deceased. These 
models are commonly referred to as SIR models. Parameters which 
control the movement of individuals between these groups are 
commonly denoted β, the infectious contact rate, and γ, the recovery rate, 
and these disease-specific SIR models can be deterministic or stochastic, 
where elements of epistemic and/or aleatory uncertainty can be included 
and solvable either mathematically, or via computer simulation.

In real scenarios, mathematical models are unlikely to be  so 
simple. Commonly, levels of complexity are included in models (age 
stratification; waning immunity; environmental transmission; social 
network-based transmission) but efforts to make models realistic may 
be limited by data. In mathematical models, the nature of all these 
mechanisms is subject to the types of uncertainty described below.

3.2.2 Uncertainty in statistical models
The types of uncertainty in statistical models are well-illustrated 

by a cross-sectional study conducted in 13 regions of Borena zone, 
Ethiopia, which investigated the prevalence of Foot and Mouth 
Disease (FMD) in cattle (48):

 • The overall within-zone prevalence of FMD in Borena zone is 
subject to epistemic uncertainty. Prevalence is unknown because 
it is not practically feasible to test every single cow in this zone 
for FMD. The estimated overall prevalence in cattle across Borena 
zone from the study was 42.7% (95%: frequentist confidence 
interval (CI) 37.7–47.8). Were it possible to test all animals in the 
zone, one could, in theory, establish the true overall prevalence 
of FMD in that area. Hence, the uncertainty here is a feature of 
the state of information (which is limited by sampling).

 • The district prevalence of FMD in the zone is additionally subject 
to aleatory uncertainty because it varies from district to district 
throughout the zone. The study noted that estimates of prevalence 
in individual districts ranged from 25.6% (95%: CI 13.8–41.0%) 
to 65.5% (49.4–78.5%).

3.2.3 Uncertainty arising from data and data flows
The data used in models provide the first level of uncertainty due 

to numerous factors including, but not limited to:

 • Incomplete knowledge of how data is collected or imputed;
 • Inconsistencies in collection and storage;
 • Inconsistencies in availability of some types of data;
 • Incomplete or missing provenance and/or metadata.

We can draw useful insight from FAOSTAT.1 On examination of 
the population numbers for animals in FAOSTAT table QCL, which 
provides information on production of crops and livestock products, 
one finds that each data point (population per species per country per 
year) has a flag that corresponds to Official, Estimated, Imputed, and 
Non-FAO. It can be  difficult from associated metadata to make 
detailed estimations on the uncertainty to be attached to each data 
point. While metadata provides a guide as to how data points have 
been estimated or imputed, this process itself might be affected by the 
nature of the data collection within countries and the time at which 
this data point was estimated/imputed. It is important to be able to 
answer questions such as “does this quantity vary over time?”

It can be  difficult from data sources which describe animal 
populations to know when numbers were collected. This is important 
since the point in the life cycle at which the census is taken will affect 
the size of the population. Some data sources, such as the Irish 
Agricultural Census, provide multiple population sizes with the dates 
at which they were collected, and variations in numbers likely reflect 
a combination of different types of uncertainty. Within this temporal 
collection framework, uncertainty is more pronounced for certain 
species because of the length of lifespan and the production system 
being used. For example, in all-in-all-out systems in which animals 
are bought in, fattened, and sent for slaughter (e.g., broiler chickens or 
intensive growing pig units), populations will fluctuate from a 
maximum to zero in a short space of time.

There can be  inconsistencies in data sources, including large 
increases or decreases (>100%) in population numbers and 
inconsistent reporting of zero populations. For example, if a species is 
not present in a country should that be represented by a zero in the 
dataset, or an absence of reporting on that species? Clarity of meaning 
of zeros is important for accurate interpretation and subsequent 
appropriate usage of data.

The most important source of information about data is the 
metadata or provenance of every data point. Many agricultural 
datasets have limited (or no) metadata to explain how the data were 
collected and processed. Many groups are focusing on creating strong 
governance procedures to improve comparability across agricultural 
data sources. Without machine readable metadata using standardized 
metadata vocabularies (such as schema.org), the process of estimating 
uncertainty is hampered.

3.2.4 Uncertainty arising from data access
An additional source of uncertainty arises when there are 

constraints around data access. The research community must work 
together to ensure that data can be shared safely wherever possible, 
and the FAIR principles (Findability, Accessibility, Interoperability, 
and Reusability) offer several valuable guiding points (15).

First, ‘FAIR’ principles encourage the provision of richly annotated 
metadata (78), reducing a source of uncertainty and allowing for the 

1 https://www.fao.org/faostat/en/#home
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uncertainty that is present to be  better understood. For instance, 
structure and quality of data may introduce uncertainty in models (see 
section 4.2.2. “Ignoring uncertainty in data”). If the structure and 
quality is included in the metadata, the level of uncertainty within the 
data can be better understood.

Secondly, data types that include probability distributions (see 
section 4.3 “Acknowledge uncertainty, but not reflecting it properly”), 
can be expected to be stored, documented, and disseminated using 
different, yet complimentary data infrastructure, compared to raw 
data. Beyond the utility of metadata to ensure data are documented 
and uncertainty can be  accessed swiftly and consistently, the 
framework presented in this paper describes the types of data that can 
be  expected across models. This information is useful when 
conceptualizing how GBADs expects to disseminate FAIR data (e.g., 
“born FAIR” data) to avoid idiosyncrasies that may introduce 
uncertainty when new analysis reuses distributions which were 
primarily created for GBADs modelling. Further, as models, 
parameters, and outputs are updated and move up the evidence 
hierarchy (Figure 3), data documentation and versioning becomes 
important to ensure that the estimates are reproducible and can 
be traced with proper provenance.

While adhering to the FAIR Guiding Principles can allow 
practitioners to better understand the level of uncertainty in their 
models, reduce uncertainty in parameters and outputs, and allow 
others to understand the uncertainty in inputs and outputs, the 
livestock sector has been identified as data and metadata-poor (49) 
and without consistent or adequate data standards (50). A way forward 
is to use cases of secondary data (livestock population, weights, etc.), 
and to identify the information required for understanding the 

potential sources of uncertainty in the data. This information can take 
the form of additions to pre-existing metadata standards (schema.org, 
Dublin Core Metadata Initiative (DCMI), etc.), acting as domain-
specific requirements and contributing to FAIR data. That is, rather 
than a user searching for documentation about data, metadata can 
include useful and standardized information and be provided to the 
user at the time of data discovery.

3.2.5 Uncertainty in economic models
Dealing with uncertainty in economic modelling is achieved in 

several ways. First, economic models are structurally specified (firms 
supply and consumers demand), calibrated, and then validated. 
Calibration is an iterative process of comparing the model with 
outcomes of the economic baseline, then revising the model structure 
and parameters if necessary, and so on, until a model is accepted or 
validated (in or out of sample). Parameters in the structural equations 
of the model are specific to consumers and producers, meaning that 
uncertainty of behavior of these agents is identified and channeled 
through specific equations and relationships. Second, economic 
models which are downstream of other GBADs activities, take as input 
data outputs (e.g., changes in offtake or production) from modelling 
components within the GBADs analytical framework. If these inputs 
include a distribution of outcomes, then this can be simulated through 
the economic models to provide a distribution of economic outcomes. 
Subsequently, point estimates and confidence regions can be generated 
for relevant economic outcomes. Thirdly, sensitivity analysis can 
be  applied to determine how changes in parameters affect the 
prediction of outcomes. Finally, Bayesian approaches can be applied 
to generate credible regions for economic outcomes, such as producer 

FIGURE 3

Hierarchy of Evidence used to parameterise models used to estimate the burden of animal diseases. Created using online diagram and flowchart 
maker draw.io.
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or consumer surplus (51) and to address uncertainty through model 
averaging (52).

3.3 Why does uncertainty matter?

Poor understanding of uncertainty can impact upon the ability to 
make good decisions. Exclusive focus on point estimates neglects 
uncertainty in its entirety, and this has impacts for the decision maker. 
On the other hand, a poorly-represented measure of uncertainty can 
be as damaging as no measure at all. An incorrect representation of 
uncertainty can either make the decision maker overly and artificially 
confident, or unnecessarily cautious. When uncertainty is described 
well the decision-maker has a full range of scenarios at their disposal. 
For example, suppose a study based on a random sample of one 
hundred herds of cattle in a region of India finds fifteen of those herds 
positive for an emerging disease agent. The point estimate of the herd 
prevalence of this new agent is then (100 × 15/100)% = 15%. The 
simple calculation of a Binomial confidence interval, which relates the 
sample-based estimate to what may be occurring in the population 
from which those herds were sampled, suggests that the true herd 
prevalence of this new agent could be anywhere between 8.7 to 23.5%, 
with 95% confidence.

Suppose now that the threshold for an intervention to control the 
disease is a prevalence of 15%, with action deemed necessary if 
prevalence is greater than 15%. If uncertainty is ignored, and action is 
based upon this point estimate alone, no intervention will take place. 
Alternatively, if the decision-maker understands the uncertainty, they 
may take a different decision since it is quite likely that the true 
prevalence is higher than the action level. For example, given data of 
15 out of 100 positives, under certain simple statistical assumptions, 
the probability that the true prevalence is greater than 0.15 (meaning 
action would not be taken when it is needed) is 0.55.

Uncertainty also matters because levels of uncertainty may 
be linked with either the economic prosperity or the political and/or 
military stability of a country. For example, in lower income countries, 
which may be  impacted by war, numerous factors can impact 
availability of and access to key sources of data and information (44), 
increasing uncertainty around estimates derived from such data and 
leading to more challenges for decision makers.

4 Considerations for managing 
uncertainty in estimating the global 
burden of animal disease

Uncertainty can be overlooked in a number of ways, with different 
difficulties arising as a result (53). Uncertainty is problematic when:

 1. A priori objectives of a study are unclear;
 2. Uncertainty is ignored;
 3. Uncertainty is acknowledged, but not properly reflected;
 4. Focus is placed on tangible but trivial uncertainties (rather than 

major, harder to quantify uncertainties);
 5. Uncritical faith is placed in models and their outputs.

Points (1) to (5) (53) provide a useful framework for reflecting on 
and evaluating the impacts of the various types of uncertainty intrinsic 

to models used across the GBADs programme, where major, difficult-
to-quantify uncertainties are commonplace.

4.1 Unclear a priori objectives

A first stage in any study should be to specify the research 
question. An intrinsic part of this involves consideration of the 
precise goal of the activity. If a priori objectives are unclear, for 
example, if there is a poor disease case definition, it can 
be difficult to establish benchmarks against which change can 
be measured.

4.2 Ignoring uncertainty

4.2.1 Ignoring uncertainty in models
All mathematical models are an uncertain representation of a real-

world context, and as such, mathematical models are only as good as 
the approximations they contain. An example from a recent GBADs 
Ethiopia case study (54) is use of the dynamic population model to 
estimate draught power production. Draught rate was only applied to 
castrated male animals, as this is the most common source of draught 
power and was supported by available data. However local knowledge 
of the system tells us barren female cattle are also occasionally used 
for draught power. This is an example of the model structure not fully 
representing reality and thereby introducing uncertainty, which may 
not be random.

In a deterministic mathematical model, every output is 
determined uniquely via the combination of input values. This is 
unlikely to be the case for most biological processes but may be a 
necessary step in the modelling process due to lack of data availability 
or resources to undertake more complex approaches. In other settings, 
where the assumption is that the model represents a sample of the 
wider population, and where data are available, a stochastic 
mathematical model, which allows for variation in input parameters, 
will be  a better fit, allowing a direct reflection of at least some 
uncertainty. Models to estimate the global burden of animal disease 
incorporate stochasticity wherever data availability, quality and 
access allow.

As an example, animals vary in their body weight through time, 
but it would be  too computationally expensive to model each 
individual, each day, to estimate population biomass. Thus in biomass 
and dynamic population models, individuals are grouped into age-sex 
strata at a level that the data allows (e.g., for Ethiopian census data 
cattle are 0–1 year, 1–2 years, 3 < year), and a distribution of average 
body weights for the mid-point of that age-sex group (95% credible 
interval) is sampled from 10,000 times, to produce a body weight 
value (biomass (kg)) that is representative of the population stratum. 
Uncertainty exists in the estimates here because we  do not know 
exactly the body weight of each animal in the stratum. Conversely, 
when body weights are known, for example in intensive pig and 
poultry production, animals can be weighed through the growing 
process; individual animal body weights through time could be used 
to parameterize live weight (an example of using primary data from 
the top of the evidence hierarchy) in a dynamic population model, and 
thus these biomass model outputs would have less associated 
uncertainty (55).
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4.2.2 Ignoring uncertainty in data
The source, structure and quality of data used in models has the 

potential to introduce multiple layers of uncertainty. Uncertainty 
occurs when survey or surveillance data are treated as though they 
are exact, when in fact these data represent only a sub-sample of the 
population (56, 57). Even where all individuals in a population are 
accounted for, such as in a census count, the resulting number is true 
only at the time of the census, introducing uncertainty if the resulting 
value is used to represent the same population at a different time. 
Survey, snapshot census and surveillance data feature lower down the 
evidence hierarchy in comparison to datasets that monitor all 
individuals in a population over time. For example, in the UK and 
Ireland, every bovine is identified from birth and followed through 
its life to death using a passport and centrally recorded data (58) 
(strong data structure, less uncertainty). Contrasting this, in Ethiopia 
no similar data collection structure exists; in this setting GBADs 
relies on survey and census data to infer estimated livestock 
population size and structure (weaker data structure with greater 
uncertainty) (59).

Disease-reporting data, that in GBADs is used in attribution of 
the animal health loss envelope (AHLE) (60), must be assessed to 
check if it accounts for the fact that most microbiological tests are 
imperfect. Correcting for this can both reduce uncertainty and 
reduce bias; a prevalence estimate corrected for uncertain 
Sensitivity and Specificity will include a greater amount of 
uncertainty overall than the uncorrected prevalence, but will 
present a more realistic representation of the true state of knowledge 
concerning the true number of infected animals or people in the 
population of interest.

4.3 Acknowledging uncertainty, but not 
reflecting it properly

Sometimes, the presence of uncertainty is acknowledged, but 
approaches to representing uncertainty vary in their robustness. A 
good example of where uncertainty can be reflected uncritically is 
through the arbitrary selection of probability distributions, for 
example a triangular distribution to represent a parameter in a 
process-based model. A triangular distribution may at first seem an 
attractive option due to its intuitive parameterization in terms of its 
minimum, most likely and maximum values. For the incorporation of 
expert opinion, when it is easy for an expert to provide a guess at a 
minimum, most likely and maximum value for a parameter, or for 
survey data from relatively small samples, this distribution can 
be favored. However, this distribution is likely a flawed representation 
of most biological processes as the triangular distribution is fixed as 
linear between the minimum, mode and maximum with artificially 
strict lower and upper bounds and heavier tails than is likely to 
be  realistic (61). Limitations of such distributions must 
be acknowledged, and it is important that GBADs models, parameters 
and outputs are regularly updated, moving up the evidence hierarchy, 
when more complete data become available, through a transparent 
dataflow processes. A modification of the triangular distribution is a 
Pert distribution, which is less heavy in its tails and has been used to 
parameterize sections of the dynamic population models in the 
GBADs analytical framework applied in Ethiopia, Senegal and 
Indonesia [for example (62)].

4.4 Tangible but trivial uncertainties

Tangible but trivial uncertainties are uncertainties to which people 
can relate but which have very minor impact should they occur. 
Examples include uncertainty around the probability that one cattle 
feed will produce a greater milk yield than another cattle feed; this is 
a parameter to which people can relate, but the choice of one feed or 
another is likely to have minimal impact upon milk yield, if both have 
been shown in previous studies to perform well. Contrast this with 
uncertainties which may or may not be tangible, but are important – 
for example, the probability of a catastrophic drought in the next 12 
months (tangible, in that people can conceive what it means, and 
important, because the impacts it may have are clear); or the 
probability of an as-yet unseen infectious disease emerging in the next 
decade (less tangible, an example of an “unknown unknown,” and 
important, because it has the potential to make ill or even destroy 
animals and/or humans, and will need to be managed when it occurs). 
Sensitivity analysis (63), can be  a useful body of methods to 
understand where these tangible but trivial inputs are, and what their 
effects on overall output uncertainty might be.

4.5 Uncritical faith in models and outputs

No model outputs should be communicated as “the truth,” only as 
a fair and/or likely representation of reality with the associated 
uncertainties clearly described (64). For example, a mathematical 
model for one disease applied directly to represent another has the 
capacity to mislead if the underlying population structure, disease 
dynamics and interactions within the population differ. In any attempt 
to apply a model from one context to another, areas of uncertainty and 
key assumptions must be documented and this is a critical stage in the 
framework for handling of uncertainty in estimates contributing to 
the assessment of the global burden of animal disease. As data 
availability increases, GBADs models will continue to be refined to 
represent production system specific scenarios and locally relevant, 
population and pathogen dynamics and economies.

Model uncertainty and the impact of different model assumptions 
can be explored in a number of ways. Model averaging, as described 
in (65), is an approach to estimation which accommodates model 
uncertainty by taking a weighted average of estimates from candidate 
models, where weights in some way reflect how plausible the model is 
for the scenario under study. Alternatively, fully Bayesian approaches 
have been proposed (45) which can be tailored to calibrate model 
outputs against known data sources. Note that these approaches 
require a high-level understanding of statistics and are best 
approached with specialist statistical input.

5 Towards an uncertainty framework 
for estimating the global burden of 
animal disease

In the following section we  summarize recommendations for 
dealing with uncertainty to strengthen the value and reliability of 
outputs from the large-scale GBADs programme, which draws 
extensively upon models of multiple types. Figure 2 summarizes the 
role of models in the programme across the analytical framework.
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Important authors in the field of uncertainty define a set of “ten 
commandments for good policy analysis” (66). We use these and ideas 
of others around management of uncertainty (67, 68), together with 
our own reflections and experience within the programme so far 
(69), to,

 1. Outline a hierarchy of evidence (Figure 3) which is intended to 
guide movement (Figure 4) from worst through to best-case 
sources of information to inform modelling, and

 2. Suggest a suitable framework setting out an overall position for 
handling uncertainty in estimating the global burden of animal 
disease (Figure 5).

The means by which GBADs deals with uncertainty and supports 
users of our information in its interpretation for decision making on 
animal health are many-fold. For an “optimal” approach to uncertainty 
in a programme of this nature, we suggest that the following steps 
(visualized in Figure 5) should be followed:

 1. Background preparation should involve thorough scoping of 
the literature, the relevant body of experts, and end-users of the 
global animal disease burden that constitutes the principal 
GBADs output. The specific problem being addressed should 
shape the chosen analysis (66), commandments 1 and 2.

 2. The analysis should be as simple as possible, but, no simpler 
(66), commandment 3—a parsimonious model. A simple 
model can be easier to explain and for people to understand, 
and as a bonus generates less parameter uncertainty; but an 
analysis that is over-simplified risks missing important features 
(for example, neglect of a particular disease transmission route 
or production process).

 3. All assumptions feeding into the modelling process must 
be clearly stated (66), commandment 4, and there must be a 
clear understanding of how the outputs are going to 
be  used, and what the criteria for making decisions are 
going to be (for example, if more than 5% of animal health 
losses are due to disease X, routine vaccination will 
be implemented), commandment 5.

 4. Multiple types of evidence must be brought together across the 
GBADs analytical framework to provide a comprehensive 
overview of the costs of animal health losses (1). The quality of 
all data should be ranked according to an evidence hierarchy; 
we suggest the hierarchy in Figure 3.

 5. There should be an ongoing process amongst all partners of 
striving to move up the evidence hierarchy whenever possible. 
Models and estimates should be kept current and data used for 
parameterization should be refreshed at each opportunity as 
better sources or methods become available, allowing the 
analytical process to climb up the hierarchies of evidence 
ladder in a timely and systematic way.

 6. Proposed approaches to any necessary modelling should 
be  documented and justified. Mathematical, statistical and 
simulation models are all within scope; in each case, the 
approach should be  justified in terms of the insights it will 
bring and its suitability for the task.

 7. Data sources should be  documented and described in 
associated metadata and data flows as completely as possible. 
Any barriers to data access and data sharing should 
be identified early in the process, alongside any stipulations 
around where and how data should be hosted, requirements 
around data security and governance. Transparency in the use 
of data and documentation is paramount.

 8. All sources of uncertainty should be  described and 
documented as early as possible in the process (66), 
commandment 6. This should include consideration of 
qualitative uncertainties, for example organizational and 
political uncertainty, alongside data-associated considerations. 
This should be  followed by discussion around which 
uncertainties matter and which, a priori, are believed to have 
most impact upon results.

 9. Thorough sensitivity and uncertainty analysis should 
be undertaken as part of this process (66), commandment 7 
and should inform priorities in data collection.

 10. Proposed approaches to the incorporation of uncertainty in 
each of the selected models should be  documented and 
justified. Bayesian and classical statistical approaches should 
be a first choice when useable data have been identified and 

FIGURE 4

Stepwise pathway to ensure appropriate considerations of 
uncertainty are embedded at all stages of estimation of the global 
burden of animal diseases.
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sourced; expert opinion-based approaches may be used (see 4 
and 5); alternately, a more arbitrary choice of probability 
distributions to describe uncertainty may be used but choice of 
both technique and distribution should be clearly argued and 
documented, along with a consideration of any weaknesses or 
biases introduced by the chosen approaches.

 11. All parts of the process should be iterative, so that the statement 
of the problem is refined should it be needed, and the analysis 
methods refined accordingly (66), commandment 8. All parts 
of the process should be  supported by clear and complete 
documentation (66), commandment 9.

 12. For a given context, there should be  a final assessment of 
overall quality of outputs, which accommodates the accuracy 
and quality of inputs from the previous stages.

 13. Residual uncertainty should always be  documented and 
described as fully as possible. It is important that all 
stakeholders are clear about what a model can and cannot 
explain. Confidence intervals or credible intervals describing 
uncertainty should be reported rather than p-values whenever 
possible. To justify this, it is helpful to reflect upon the fact that 
a p-value in isolation, without associated reporting of 
uncertainty, is of little value to the decision maker, but a 
confidence interval provides a range (68), that is, an estimate 
of best- and worst-case scenarios (“the effect could be as small 
as this, or as big as this”) which can be  very useful when 
scrutinized against the appropriate background context for 
informing decisions.

 14. All outputs should be subjected to a process of peer review (66), 
commandment 10.

The framework presented in Figure  5 draws upon a similar 
framework (66) which refines a stepwise process to ensure that clear 
scrutiny of what is known well, what is uncertain, and what is 
completely unknown, is embedded in decision-making processes. In 
the spirit of reporting uncertainty in full at all stages, it is not sufficient 
to multiply point estimates together to produce a model output. Point 
estimates for key model parameters should be reported, carefully, but 
it is equally important that any “best guesses” are accompanied by 
measures of uncertainty, represented by probability distributions 
where possible.

5.1 GBADs example

A recent case study attributing Ethiopian animal health losses to 
high-level causes can be  used as an exemplar of the GBADs 
uncertainty framework in action (69). The paper describes a method 
for undertaking an expert elicitation to obtain the data needed to 
attribute an Animal Health Loss Envelope AHLE—a novel GBADs 
metric (60, 70) to infectious, non-infectious and external causes. The 
AHLE is calculated using a dynamic population model to simulate 
herd growth and expenditure.

 • First, the problem was defined and a thorough background 
scoping review undertaken, including identification of 
attributable causes of animal heath loss, exploration of possible 
data sources (both primary data and literature), flagging of the 
likelihood of data gaps, and exploration of possible methods for 

filling those data gaps, including evaluation of the appropriateness 
of different methods for structured expert elicitation (step 1).

 • Although no complex models were needed for this study, data 
collection was structured to provide the most information in the 
simplest form, important to ensure adherence to step 2 of the 
GBADs uncertainty framework and also to ensure clarity of 
understanding by experts. Experts were asked for their minimum, 
maximum and most likely estimates for each type of high-level 
cause. A beta-Pert distribution was chosen to model these 
estimates over, for example, a simpler but rather more crude, 
triangular distribution, which incorporates bias and can be overly 
confident in the distributional tails (step 2).

 • The inherent assumptions that accompany the selected 
approaches were documented and discussed (step 3). The data 
were collected and analysed in the context of a well-defined 
downstream aim (i.e., high-level attribution of an AHLE in 
Ethiopian livestock).

 • Data were derived from a single source, structured expert 
elicitation, and so ranking of the data source was not required 
(step 4).

 • The limitations of expert opinion are acknowledged in the study 
and the intrinsic superiority of richly data-based methods 
drawing upon a variety of sources that, at the time of writing, 
were in preparation is recognized (step  5). Although elicited 
expert opinion is low down on the (GBADs) hierarchy of 
evidence (Figure 3) steps were taken to mitigate this: first, in 
step 1, other potential sources of data for this study were explored 

FIGURE 5

A generalized framework for uncertainty in estimating the global 
burden of animal disease.
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and were found to be  unavailable at the time of the study; 
secondly, a structured, transparent and well-documented method 
(the IDEA protocol), which has been subjected to peer review in 
previous studies (79), was used to collect the data from 
recognized experts in the local domain of interest. This enabled 
biases in the data to be recognized and minimized.

 • The paper documents and justifies all analytical approaches 
(step 6) via a thorough description of the structured elicitation 
protocol and choice of probability distributions (models).

 • The methods of data collection, processing (including 
anonymization) and analysis are described. Raw data is made 
available in the supplementary materials (step  7) of the 
manuscript (69).

 • Uncertainty receives primary consideration throughout the study 
and was integral to the development of the study design (step 8). 
For example, qualitative uncertainties are acknowledged from the 
outset in that different experts will have different opinions. The 
IDEA protocol was used to account for this, through discussion 
between experts and statistical aggregation of individual 
opinions. Additional quantitative sources of uncertainty were 
acknowledged and accounted for through the choice 
of distributions.

 • Critical uncertainty analysis was undertaken and approaches to 
tackling uncertainty informed and was informed by how data 
was collected (see above). Consideration of the impacts of 
uncertainty on the estimation of high-level attribution is 
explained (step 9) and clear documentation of the approach used 
to represent uncertainty is included (step 10).

 • In all GBADs activities there is a commitment to ongoing 
refinement of models as new information sources become 
available (step 11). This study represents an initial estimation of 
high-level attribution of animal health losses but work is ongoing, 
both the move up the data hierarchy by developing data-driven 
attribution methods (13, 70) and where expert elicitation 
approaches are needed to refine and improve these methods to 
minimize and better capture uncertainty.

 • Critical assessment of the results of this study, both in term of the 
expert’s estimates and their implications for attribution of health 
losses to external, non-infectious and infectious causes, was 
undertaken and discussed at length (step 12).

 • Throughout, all results are communicated in terms of uncertainty 
intervals (step 13) and finally, the whole exercise was subjected to 
peer review resulting in its publication in an internationally-
recognized journal (step 14).

6 Discussion

Complex analytical frameworks that involve running multiple 
types of model, using data from a range of sources (from national 
statistical databases to expert elicitation), have provided the 
foundations for the work undertaken to estimate the Global Burden 
of Diseases in human populations, which has helped to focus 
investment in human health at a global scale (71, 72). The Global 
Burden of Animal Diseases (GBADs) programme is now working 
towards improving investments in animal health using similar 
analytical approaches, employing a variety of models, and even more 
varied sources of data given the de-centralised nature of animal health 
information. As outlined in this paper, uncertainty, around data inputs 

and outputs, as well the models themselves, is an unavoidable aspect 
of such analyses, but identifying sources of uncertainty and taking 
steps to account for and reduce them, are vital to producing estimates 
of animal disease burdens that can best inform decision makers.

Decision makers who use models to inform their decisions should 
never assume that their models equate to reality; the eminent statistician 
George Box famously said “all models are wrong, some are useful.” A key 
acknowledgement should be  that the outputs from a model do not 
provide a correct representation of the real world. Nevertheless, when 
used well, model outputs can improve the decision-making process 
when compared to using raw data alone. Instead of relying on model 
outputs, the scientist or the decision maker must always ask:

 • Given that I  cannot assume this model is correct, is this 
model useful?

 • If so, how?

A key part of being able to judge whether a model is useful is 
making sure that uncertainty at all levels and of all types is recognized, 
documented, and approaches to handling that uncertainty are 
transparent. This paper sets out a framework which can help to ensure 
that this end is achieved, and that uncertainty in its various forms 
means the same thing to all partners in a large and complex programme.

There are many types of uncertainty. Our focus here has been on 
the impacts of quantitative uncertainty as is evidenced in mathematical 
and statistical models and data, but there can be additional uncertainty 
around the behavior of individuals, organizations, policy makers and 
around, for example, the impacts of factors such as political instability. 
Given this, a trans-disciplinary programme such as GBADs is ideally 
equipped to establish a common language for uncertainty, and to take 
account of uncertainty in its multiple forms – in terms of designing 
models and important processes to be taken into consideration, as well 
as more obvious quantitative considerations. All of this moves to an 
approach to accommodating consideration of “total uncertainty” in a 
large and complex programme.

A formal framework for following the modelling process and 
ensuring common approaches to uncertainty throughout is important 
because it ensures repeatability of the analysis and guarantees 
transparency of approach and assumptions. It is important that any 
future user, who is equipped with a description of the chosen 
approaches and data sources, would be able to replicate the findings.

There is a clear need to separate the quality of the evidence from 
the strength and consequence of the recommendations, and from the 
consequences of the decisions made using model outputs. Evidence 
quality might be  graded in qualitative terms (“weak,” “average,” 
“strong” evidence) or where possible quantitative terms (probability 
that the evidence is reliable, perhaps accompanied by an assessment 
of the degree of confidence in the estimated probability) (see, for 
example, (73)). Consequence of the recommendations again might 
be expressed qualitatively (“no consequence,” “mild consequences,” 
“severe consequences,” with positive and negative angles both being 
possible). Consequence of decisions might then involve exploring a 
range of “what if ” scenarios, which could themselves be studied using 
risk assessment frameworks, which can either be parameterized in 
qualitative or quantitative terms.

The quality of inference for models of animal diseases can 
be impacted by a number of factors, for example a system in which 
funding for the study of animal diseases is low in comparison with 
funding for human diseases can result in a paucity of data (74) and this 
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brings its own challenges. This is the reality for much of GBADs work 
in the animal health domain, particularly in low and middle-income 
countries, so strengthening disease surveillance and livestock 
production data collection structures is key to reducing uncertainty in 
burden estimates.

In terms of parting conclusions and suggestions, a key writer in 
this field (75) argues that, in line with many pastoral societies, 
we should look to embrace uncertainty as an unavoidable feature of 
life, rather than looking to eliminate it; the authors argue that this 
approach places society in the best position to respond to 
unanticipated events when they happen. Their working paper is 
clear to draw the fundamental distinction between risk and 
uncertainty, and a strength of our proposed framework is that it 
does the same. In Scoones’ work there is an interesting discussion 
around the fact that many disease control efforts, frequently 
politically underpinned, centre around early warning systems 
which are framed in terms of the language of risk and emergency 
and which are, by design, pathogen-driven. Diverse cultures can 
provide useful information about effective disease control strategies 
for their communities, which are based upon cultural practices and 
may draw upon input from senior respected figures. Examples are 
documented in human health, for example, the role of religious 
leaders in messaging around HIV prevention in Uganda (76) and 
building trust around COVID-19 vaccines in vulnerable 
communities in Ethiopia (77). For uncertainty to be reduced as far 
as possible and its effects mitigated, the widest perspective on what 
uncertainty means is important; this incorporates societal, cultural 
and political alongside scientific perspectives. All perspectives, 
especially representing those on the margins, have an important 
role to play in the handling of uncertainty.
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