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The characteristics of the avian influenza virus and its worldwide spread have 
led to intense and unprecedented scientific activity and industrial production for 
preventive veterinary vaccines. However, knowledge gaps remain regarding the 
best strategies to prevent epidemiological events in the future. In this context, the 
present study aimed to provide a global analysis on the scientific and industrial 
production of avian influenza type A vaccines for farm animals and pets during 
the period 2019 2023. The Scopus database was used as the primary source of 
information (12,162 keywords, 2,437 scientific articles, 659 academic journals, and 46 
countries) for the academic analysis, while technical information posted on official 
institutional websites (136 commercial formulations, 24 vaccines manufacturers, 
and 17 countries) was collected to conduct the industrial analysis. 3,045, 25.0%) 
exhibited the highest levels of co-occurrence in the sciences; the journal Vaccine 
was the most productive in terms of articles (11.8%, 288/2,437), and the countries 
with the most publications were the USA (25.5%, 622/2,437) and China (23.1%, 
564/2,437). The most internationally marketed vaccines were inactivated (86.0%, 
117/136), avian (47.1%, 64/136), and combined (52.2%, 71/136) vaccines as well 
as those containing Newcastle antigens (38.0%, 27/71). In conclusion, the study 
demonstrated the fundamental role of classical production methods (based on 
the use of the whole pathogen) in avian influenza A research and the production 
of veterinary vaccines.
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1 Introduction

Avian influenza is currently a major animal health concern worldwide. It is a zoonotic 
disease that spread among wild/domestic birds and mammals (terrestrial or aquatic), including 
cattle, and humans (1, 2). The virus is highly contagious and is transmitted between infectious 
and susceptible animals, principally via the respiratory route, therefore it is considered a 
mandatory notification sickness by the Word Organization for Animal Health (WOAH).

The severity of the clinical effects usually varies according to the type of virus-those with 
low pathogenicity result in low mortality rates, while the highly pathogenic ones can cross the 
respiratory and intestinal barriers, spread through the bloodstream, damage all tissues, and 
lead to high mortality rates (3–5). In all cases, vaccines are considered as additional preventive 
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tools to limit the spread of the virus, reduce the severity of the disease, 
reduce the morbidity rate during outbreaks, improve the recovery of 
the sick animal and reduce the significant damage it causes, including 
zoonotic damage (6, 7).

Anti-influenza immunopreventive formulations have some 
limitations, such as the low capacity for generating cross-immunity and 
effectiveness dependent on the antigenic closeness between circulating 
and vaccine strains (8). The uncertainty regarding this last aspect is 
based on the abrupt genetic and antigenic changes of the etiological 
agent, caused by its ability to replicate without mutation protection 
mechanisms and by the recombination of genomes between strains 
(9–11). The hemagglutinin and neuraminidase contributes to this 
problem (12, 13), as subtle changes in the amino acids in its structure 
can lead to the emergence of new lineages, with renewed capacity to 
cross the barrier between species (10, 14, 15), and escape the defense 
of the host. These frequent mutations of the virus are the main limiting 
factor for the development of an effective vaccination (16).

Many companies and governments are considering research and 
development of veterinary vaccines against avian influenza type A 
despite these difficulties (17). Although this official projection can 
achieve technological sovereignty and self-sufficiency of vaccination 
programs, it also requires strategies to produce safe, effective, and stable 
high-yielding vaccines with high yields (18). Therefore, the WOAH has 
made recommendations to interested nations (19), providing access to 
production technology adaptable to their epidemiological realities (20). 
However, all the information mentioned is not sufficient to achieve 
success, as it is necessary to know the scientific-commercial 
environment surrounding these vaccines, the emerging production 
technologies, and the new diversity of adjuvants (21).

Unfortunately, this knowledge is often unavailable to researchers 
and entrepreneurs as it is dispersed among various scientific fields and 
is not very attainable. In view of these difficulties, technological 
surveillance studies are a useful tool for obtaining, concentrating and 
analyzing existing scientific-technological knowledge, understanding 
the global commercial environment and facilitating strategic decision-
making in the industrial sector. Based on this, the present study aimed 
to identify research, production technology and commercial trends of 
veterinary vaccines against avian influenza A in farm animals and pets 
during the period 2019–2023 globally.

2 Materials and methods

This study was descriptive in nature, employing a methodology 
that combines qualitative and quantitative methods. It involved 
retrospective bibliometric research covering the last 5 years (2019–
2023), along with additional cross-sectional market studies conducted 
in 2023. The study was conducted from September to November 2023, 
and in no case was the use of experimental animals required.

2.1 Search for key terms and data 
extraction

2.1.1 Bibliometric study
Our analysis was restricted to scientific articles written in English, 

published in the last 5 years (January 1, 2019–October 31, 2023) and 
indexed in the Scopus database, which constitutes the largest database 

of peer-reviewed scientific literature worldwide (22).The retrospective 
analysis of the most recent literature on avian influenza 
immunoprevention in avian, equine, swine, and canine species 
exclusively took into account original article, systematic reviews, data 
analyses and short research reports.

The identification and selection of relevant publications was 
performed independently by two researchers (AD-O and ER-M) 
to enhance the methodological strength, and disagreements were 
resolved in public discussions with a third member of the 
research team (DLC-D). The fields ‘title’, ‘abstract’ and ‘keywords’ 
as well as the main terms and their grammatical variants used in 
the English scientific literature to refer to avian influenza (avian 
flu, bird flu, equine flu, swine flu, and canine flu) and selected 
animal species (bird, poultry, chicken, turkey, duck, horse, pig, 
porcine, hog, dog, and pets). Careful checks were performed to 
ensure that the initial search was as sensitive as possible and that 
any restrictions increased specificity without 
compromising sensitivity.

The processes for searching, selecting, and collecting the articles 
in the databases were conducted using keywords and Boolean 
connectors. One example search is: TITLE-ABS-KEY (“avian 
influenza virus” OR “avian influenza” OR “equine influenza” OR 
“swine influenza” OR “canine influenza”) AND TITLE-ABS-KEY 
(“influenza vaccine” OR “vaccine” OR “vaccines” OR “combined 
vaccine”). Several attributes were extracted from the selected articles, 
including frequently used keywords, principal author’s, country or 
region of origin, and journal that published the article. Articles with 
corrections, book and chapter reviews, news, discussions and retracted 
publications were excluded.

2.2 Market study

2.2.1 Data extraction
To identify candidate veterinary vaccine manufacturers, the 

database prepared by the scientific-technological observatory 
belonging to the LABIOFAM Business Group was initially consulted. 
The final list was defined through a two-stage selection process. In the 
first step, two reviewers (ADO and MP) independently identified 
candidates (n = 45) involved in the research, development, 
manufacture, export and marketing of veterinary vaccines. A 
conservative approach was adopted in this step and all vaccine 
manufacturers selected by at least one of the reviewers were retained 
for the next step. Geographic location and type of ownership (public 
or private) were not exclusion criteria.

The second step was based on the commercial availability of 
avian influenza A vaccines for use in poultry, equines, swine or 
canines. Based on this criterion, 13 companies that stated on their 
official websites that they declared not to have a formulation 
available were excluded from the study. The technical contents 
provided by the manufacturers that could characterize the vaccines 
were also analyzed, for example: production technology, adjuvants 
and antigen used in each formulation. The absence of an explicit 
description in Spanish or English excluded eight vaccines 
manufacturers. Finally, both reviewers discussed their respective 
final selections until a consensus was reached on each company (n 
= 24). In the absence of consensus, the opinion of a third reviewer 
(DLC-D) was solicited.
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2.3 Data analysis and visualization

The complete records of the retrieved articles were downloaded 
or manually entered into a Microsoft Excel spreadsheet (Microsoft 
Corporation, Redmond, WA, USA), and any discrepancy or 
disagreement was discussed and resolved with other authors. For the 
metric analysis of the extensive scientific production obtained 
(keywords: 12,162, academic journals: 659, countries: 46), a minimum 
of seven coincidences was established in order to obtain legible 
co-occurrence maps and visualize the most relevant thematic nodes. 
The retrieved records were exported to the EndNote X9 bibliographic 
reference manager, where duplicates were eliminated.

To explore the co-occurrence relationships of keywords, academic 
journals and countries together with their respective scientific 
collaboration networks, the software tool VOSviewer 1.6.18, developed 
by Jan van Eck and Ludo Waltman of Leiden Nees University, was 
used. Knowledge maps based on academic articles were represented 
by circular nodes (n = 68), connecting links and colors for the different 
clustering clusters. The intensity of relationships between nodes was 
estimated as a function of their proximity and the thickness of the 
connecting lines: close labels and thick connecting lines were 
interpreted as high co-occurrence rate (23).

The public platform SCImago Journal & Country Rank,1 
developed by the SCImago group based on information from the 
Scopus database, was used to assess the quality of scientific articles 
(n = 2,437) on veterinary vaccines against avian influenza published 
in academic journals from 2019 to 2023. The quartile in which each 
journal is located (Q1-Q4), the SCImago Journal Rank index 
(indicator of the prestige of academic journals that takes into account 
the number of citations received and the prestige of the journals from 
which the citations originate), and h-index were considered (number 
of h citations a journal has received in other publications).

The market analysis included technical information on 136 
commercial formulations from 24 company in 17 countries. The data 
were previously registered and coded in an electronic Microsoft Excel 
spreadsheet (2019) for organizational and control purposes. The 
variables-animal species, production technology (traditional or 
modern), type of vaccines (inactivated, live attenuated, recombinant, 
subunit and RNA vaccines), adjuvants, vaccine strains (subtypes and 
host of origin), and types of formulation (monovalent, polyvalent, and 
combined)-were summarized and expressed in absolute (n) and 
relative frequency (%). Groups of formulations with similar profiles 
were subsequently identified, and the existing associations between 
their attributes were determined through multiple correspondence 
analyses using the FactoMineR software package, version 4.3.1 (USA).

The selected variables for exploring possible relationships were 
production technology, formulation, and animal species. Subsequently, 
significant differences in the frequencies of vaccine strain use (high 
and low pathogenicity) and types of formulation across animal species 
(avian, swine, equine, and canine) were identified using the 
independent chi-square test. Once it was confirmed that the 
frequencies of use were not homogeneous (p-value <0.05), the 
pairwise chi-square test was employed using the R package, version 
0.7.2 (USA). The p-values obtained were adjusted using the 

1 https://www.scimagojr.com

Holm–Bonferroni method to reduce errors incurred when performing 
multiple tests.

3 Results

3.1 Scientific trend

3.1.1 Knowledge map
The complex co-occurrence network or knowledge map, 

consisting of keywords (n = 12,162) found in scientific articles 
(n = 2,437) on the veterinary prevention of avian influenza, is shown 
in Figure  1. The nodes visualized (n = 68) using the VOSViewer 
clustering algorithm formed five important clusters (green, yellow, 
dark blue, red, and light blue), all with intense collaboration links 
between them. The most frequently used descriptors were “influenza 
vaccine” and exhibited the highest frequency of use in specialized 
publications (50.5%, n = 6,144) during the period 2019–2023 and was 
located near the center of the map.

The thick and numerous connecting lines displayed indicate high 
levels of co-occurrences with numerous nodes, highlighting the 
controlled study (25.0%, n  = 3,045), inactivated vaccine (11.8%, 
n  = 1,440), immunological adjuvants (9.0%, n  = 1,100), and the 
recombinant vaccine (n = 1,005, 8.2%). It is important to note the 
closeness and strong co-occurrence links it established with other 
nodes outside its thematic cluster, such as live vaccine (red, n = 720) 
and canine vaccine (yellow, n = 510), while with horse (red, n = 19) it 
maintained little links and co-occurrence.

Cluster 1 (green, n = 21, 30.9%) exhibited the greatest strength 
and breadth in the visualized knowledge map. It focused on 
inactivated, recombinant, and DNA vaccines; adjuvants; and study of 
immunogenicity. Meanwhile, cluster 2 (yellow, n = 19, 27.9%) was 
associated with controlled studies, field strains, specific-pathogen-free 
chicken embryos, in vitro and in vivo studies, and dogs. Cluster 3 (dark 
blue, n = 14, 20.6%) was particularly related to hemagglutinin, virus 
antigen, virus isolation, virus genome, phylogeny study, genotype, and 
avian species. Cluster 4 (red, n = 10, 14.7%) was linked to disease 
surveillance, influenza A subtype H5N1, H5N2, H7N7, H7N3, H7N9, 
H1N1, zoonoses, pig, clinical trials, safety, and live vaccines. Cluster 5 
(light blue, n = 4, 5.9%) had the least representation among all and was 
located on the periphery of the map, focusing on research on cross-
protection, epitopes, and universal vaccines (Figure 1).

3.1.2 Publication sources
The associative analysis between relevant academic journals on 

the topic of vaccines against avian influenza (n = 659), their 
publications (n = 2,437), and the respective citations generated 
(n = 23,332) showed that only 3.6% (n = 24) had the highest 
productivity (Figure 2). When arranged in descending order based on 
their impact, the latter showed a high scientific level as a whole, where 
50.0% (12/24) were Q1, 33.3% (8/24) were Q2, 16.7% (4/24) were Q3, 
and none of them were classified as Q4. From a country standpoint, 
37.5% (9/24) of the most productive journals were from the 
United  Kingdom, followed by the Netherlands (25.0%, 6/24), the 
United States (20.8%, 5/24), Switzerland (12.5%, 3/24), and Austria 
(4.2%, 1/24), thus demonstrating the dominance of the Anglo-Saxon 
language in the production and impact of scientific research on 
veterinary avian influenza vaccines.
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The most active journal (n = 288, 11.8%) and with the highest 
citation levels (n = 2,899, 12.4%) in this topic during the period 2019–
2022 was Vaccine, which occupied the central core of the bibliometric 
map. It was followed by others of similar prestige and scientific 
influence, such as PLOS One (153 publications and 1,819 citations), 
Viruses (88 publications and 529 citations), Veterinary Microbiology 
(70 publications and 970 citations), and Journal of Virology (63 
publications and 1,868 citations). All citations accounted for 27.2% 
(n = 662) of publications worldwide, and 34.7% (n = 8,085) of them 
were linked to the topic of veterinary vaccines against influenza.

The bibliometric analysis also revealed that the five journals had 
in common their origin in developed countries, their indexations in 
Q1 and Q2 since 2019, SJR ≥1.49, and h-indices ≥114, in addition to 
their publication of articles in multiple thematic categories. It is 
remarkable that among the relevant journals on the subject (n = 659), 
Pakistan Veterinary Journal (Q1, SJR: 0.53, and h-index: 37) and the 
Veterinary World of India (Q2, SJR: 0.48, and h-index: 48), both from 
developing countries, had a total of 76 publications and 22 citations 
during the period 2019–2023.

3.1.3 Academic collaboration
Figure 3 shows the countries that participated in publications on 

veterinary vaccines against avian influenza (n = 46) and their 

collaborative links (n = 391). Distribution based on country revealed 
six clusters: the United States (dark blue) in the center, surrounded by 
China (red), Egypt (yellow), the Netherlands (purple), Italy (green), 
and Mexico (light blue). The six countries mentioned above accounted 
for 66.3% (n = 1,616) of all scientific publications related to the topic 
(n = 2,437) during the period 2019–2023, with the United States as the 
main contributor (n = 622, 25.5%), followed by China (23.1%, 
n = 564) and Egypt (6.6%, n = 160).

A similar hierarchical order was observed when analyzing the 
international collaboration groups, led once again by the United States 
(n = 36 countries) and China (n = 28 countries). However, the 
scientific network had significant participation from six Asian 
countries (South Korea, Vietnam, Japan, India, Pakistan and Iran), 
seven European countries (Belgium, Poland, Spain, Italy, Germany, 
the Netherlands and Russia), Canada and Egypt.

3.2 Business trend

3.2.1 Characterization of the selected companies
Technical information from 136 vaccines developed, produced, 

and marketed by 24 biopharmaceutical companies was used to 
characterize the global market for veterinary vaccines against avian 

FIGURE 1

Co-occurrence of keywords and links established between the thematic areas dedicated to veterinary vaccines against avian influenza type A during 
the period 2019–2023. Source: Authors’ own elaboration with VOSviewer® v1.6.18 software based on data obtained from Scopus®.
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influenza type A in avian, equine, swine, and canine species during 
2023. Based on the geolocation declared for their headquarters, 
America was the best represented, with 13 companies (Avimex, 
Laboratorios Avilab, BioChemiq, Elanco, Farvet, Instituto Rosenbusch 
S.A., Lapisa, Microsules, MSD Animal Health/Merck & Co., Sanfer, 
Veterquimica, Viren S.A., and Zoetis), followed, in descending order, 
by Europe with six (Bioveta Ltd., Boehringer Ingelheim, Ceva Santé 
Animale, Dechra Pharmaceutical, Laboratorios Hipra S.A., and 
Vaxxinova), Asia with four (Navetco, Qilu Animal Health, Razi 
Vaccine & Serum Research Institute, and Stavropol Biofabrika), and 
Africa with one (Mevac). Distribution based on country showed that 
Mexico was leading with five companies, followed by the United States 
of America with three, Argentina with two, and the remaining 
participating countries such as the Czech Republic, Germany, France, 
England, Peru, Spain, Egypt, Uruguay, Vietnam, China, Iran, Russia, 
the Netherlands, and Chile, each with one.

It was found that 100% of the 24 companies selected showed a 
strong association in the use of similar technologies to produce 
veterinary vaccines against avian influenza (Figure  4). Vaccines 
manufactured with traditional technology (inactivated) were the most 
common on the international veterinary market (86.0%, 117/136), 
followed in decreasing order by modern vaccines (recombinant, 
subunit and RNA vaccines) with 13.9% (19/136).

In general terms, 98.5% (134/136) of commercial veterinary avian 
influenza vaccines were found to be highly dependent on adjuvants. 
The strategy for industrial use of adjuvants was diverse: 81.3% 
(109/134) of the formulations contained a single immunostimulant, 
while the remaining 18.7% (25/134) included mixtures of two or 
more. The catalog of licensed adjuvants was dominated by oily 

compounds (52.2%, 70/134), commercial mixtures such as Havlogen®, 
Amphigen®, MetaStim® and Carbimmune® (18.7%, 25/134), 
compounds of natural origin such as saponins, polymers and 
carbomers (16.4%, 22/134) and, finally, aluminum hydroxide (12.7%, 
17/134).

3.2.2 Animal species
A second distinctive feature of the avian influenza veterinary 

vaccine market was the existence of significant differences between 
observed and expected frequencies of use across all species analyzed, 
suggesting that influenza vaccine use varies significantly by animal 
species (Table 1). In particular, there were two extremes of higher and 
lower frequency of use; birds showed significant values of higher 
association, while canines use it the least.

All species included in the study have inactivated vaccines for 
immunoprotection (85.2%, 116/136), but only the canine has a 
commercial vaccine based on RNA technology (Nobivac® NXT 
Canine Flu, H3N2). The avian species was the most favored by the 
companies included in the study (47.1%, 64/136), followed, in 
descending order, by the equine (34.6%, 47/136), porcine (13.2%, 
18/136) and canine species. (5.1%, 7/136). Figure 5 shows that equids 
are the animal species with the greater diversity of vaccines, of which 
87.2% are inactivated (41/47), 6.4% (3/47) are recombinant, 4.3% 
(2/47) are subunit vaccines, and only 2.1% (1/47) are live attenuated 
vaccines. (Flu Avert®, H3N8).

3.2.3 Commercial vaccine strains
Regarding influenza strains used for industrial purposes, Table 2 

summarizes the observed and expected frequencies according to 

FIGURE 2

Most productive scientific journals on veterinary vaccines against avian influenza type A during the period 2019–2023. Source: Authors’ own 
elaboration with VOSviewer® v1.6.18 software based on data obtained from Scopus®.
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FIGURE 3

Most productive countries and their collaborative links in terms of veterinary vaccines against avian influenza type A during the period 2019–2023. 
Source: Authors’ own elaboration with VOSviewer® v1.6.18 software based on data obtained from Scopus®.

FIGURE 4

Global manufacture of veterinary avian influenza vaccines grouped by production technology, animal species and formulation. Source: Scientific-
technological observatory of the Grupo Empresarial LABIOFAM.
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animal species during 2023. The absence of homogeneity at the 
international level was observed. All species showed significant 
differences in the use of low and high pathogenicity strains, except for 
canines. Avian vaccines used approximately 3.0 times more highly 
pathogenic strains in their formulation, while swine vaccines used 
24.0 times more low pathogenic strains. This indicates that the 
selection of strain type may be influenced by the animal species and 
its context of use.

A diverse range of subtypes (n = 13) used in the production of 
commercial vaccines was identified (Figure 6). The H5Nx subtype 
(H5N1, H5N2, H5N3, H5N6 and H5N8) showed the highest antigenic 
diversity (38.5%, 5/13), followed by the H7Nx subtype (H7N1, H7N3 
and H7N7) with 23.1% (3/13). Avian vaccines were found to have the 
greatest variety of subtypes in their formulation (10/13), followed by 
porcine (6/13), equine (4/13), and finally canine (2/13).

It was observed that H3N8 (37.5%, 51/136), H5N2 (22.0%, 
30/136) and H3N2 (15.4%, 21/136) subtypes were the most commonly 
used in commercial monovalent, multivalent and combination 
vaccines. Industrial use of the H3N8 subtype was concentrated in 

equine vaccines (88.2%, 45/51), while the H5N2 and H3N2 subtypes 
were mainly reported in poultry (96.6%, 29/30) and swine (76.1%, 
16/21) formulations, respectively. Thus, the exclusivity of the H1N1, 
and H1N2 subtypes for swine vaccines was observed, whereas the 
H9N2, H7N3, H5N8, H5N6, H5N3, and H7N1 subtypes were 
reserved only for avian use.

The organization of vaccine strains present in commercial 
vaccines by subtype and animal species also revealed a large genetic 
diversity (n = 53). Figure 7 shows that H3N8 strains isolated from 
equids were the most diverse (19/53, 35.8%), representing the 
American and Eurasian lineages as well as the South American, 
Kentucky and Florida sublineages. In addition, it was the only 
subtype used for the manufacture of live vaccines (A/Equine 2/
Kentucky/91).

3.2.4 Commercial formulations
It was found that 100% (n = 24) of the companies contained in 

their product catalogs vaccines formulated with one (monovalent) or 
more influenza subtypes (polyvalent), while 66.7% (16/24) produced 

TABLE 1 Global production of avian influenza veterinary vaccines grouped by farm animal and pets.

Species Observed values Estimated Statistic Degrees of freedom p-value Adjusted p-value*
Avian 64 33.75 36.1506 1 < 0.0001 < 0.0001

Swine 18 33.75 9.8000 1 0.0018 0.0035

Equine 47 33.75 6.9358 1 0.0084 0.0084

Canine 7 33.75 0.4228 1 < 0.0001 < 0.0001

General total 136

*values adjusted using the Holm–Bonferroni method.
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FIGURE 5

Globally reported production technologies for manufacturing veterinary avian influenza vaccines, grouped by animal species. Source: Scientific-
technological observatory of the Grupo Empresarial LABIOFAM.
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combined vaccines (mixtures of viral and bacterial antigens). It is 
important to note that combined vaccines despite being produced by 
fewer companies dominated the market with 52.2% (71/136), 
followed by monovalent (29.4%, 40/136) and finally polyvalent 
(18.4%, 25/136).

Significant differences according to the type of formulation and 
animal species were identified by the chi-square test (Table 3). Avian 
monovalent vaccines showed significantly higher frequencies of use 
compared to the other species. However, equine, swine and avian 
multivalent vaccines did not differ significantly from canine vaccines, 

which are the least common in the international market. As for 
combined vaccines, those for avian and equine species were 
significantly more widely used than those for canines. This suggests 
that the choice of influenza vaccine type is significantly influenced by 
animal species, which could reflect differences in biological needs, 
management practices or vaccination strategies.

From the point of view of antigenic composition, the 
formulations combining influenza + Newcastle were the most 
dominant (38.0%, 27/71), followed by influenza + herpesvirus 
type 1 (29.5%, 21/71) and influenza + herpesvirus type 4 (28.1%, 

TABLE 2 Low and high pathogenicity strains available for global manufacture of avian influenza vaccines distributed by farm animal and pets.

Species Observed values Degrees of 
freedom

p-value Adjusted p-value*

Low pathogenicity High pathogenicity

Avian 21 64 1 < 0.0001 < 0.0001

Swine 48 2 1 < 0.0001 < 0.0001

Equine 46 10 1 0.0004 0.0008

Canine 9 0 1 0.0582 0.0582

*values adjusted using the Holm–Bonferroni method.

FIGURE 6

Avian influenza strains isolated from different animal species available for global veterinary vaccine production. Note: *highly pathogenic vaccine 
strains. Source: Scientific-technological observatory of the Grupo Empresarial LABIOFAM.
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20/71). Furthermore, formulations containing bacterial antigens 
mostly contained tetanus toxoid (33.8%, 24/71), indicated 
exclusively for equines (Figure 8).

4 Discussion

The present academic-commercial analysis of veterinary vaccines 
against avian influenza confirms that the disease is a priority for the 
veterinary sector (24). It shows the key role of classical vaccines in 
reduce the virus shedding in the animal population (25), despite 
doubts about their efficacy (short-lived immunity), the inability to 
induce sterilizing immunity and the complications of their use in 
epidemiological surveillance (7, 8, 26). In this endeavor, science and 
the veterinary biopharmaceutical industry converge on the same path: 
inactivated virus vaccine. This common position may be associated to 
the less clinical signs, less degree of pathological lesions and lower titer 

of viral excretion observed in birds vaccinated with this type of 
vaccine (25, 27, 28) and to its rapid development-production.

The popularity achieved by this type of production technology is 
also supported by decades of application with excellent results and the 
possibility of each country possibility to manufacture its own 
formulations from national isolates (24). In this context, classical 
autogenous vaccines have the advantages of adapting to local health 
needs, accelerating the response to new influenza subtypes in the field, 
avoiding vaccinating with outdated strains, achieving national self-
sufficiency and low sales prices per dose, and avoiding excessive costs 
related to long transport times (29, 30). For these reasons, it is 
expected that science will continue to update local vaccine strains (31) 
to manufacture and test new inactivated vaccines for chickens/ducks 
(32), pigs (33) and companion animals (34), depending on the 
epidemiological conditions in different countries.

The evidence gathered in this research also shows that 
recombinant vaccines against influenza are the second-best solution 

Influenza 
vaccine
strains

FIGURE 7

Avian influenza A strains identified in the global manufacture of veterinary vaccines, grouped by subtype and host of origin. Source: Scientific-
technological observatory of the Grupo Empresarial LABIOFAM.
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TABLE 3 Manovalent, polyvalent and combined vaccines against avian influenza grouped by farm animal and pets.

Type of 
formulation

Species Observed 
values

Estimated Statistic Degrees of 
freedom

p-value Adjusted 
p-value*

Monovalent Avian 26 11.25 21.0970 1 < 0.0001 < 0.0001

Monovalent Swine 3 11.25 6.6000 1 0.0102 0.0714

Monovalent Equine 6 11.25 2.6727 1 0.1020 0.5100

Monovalent Canine 5 11.25 5.0979 1 0.0248 0.1447

Total 40

Polyvalent*** Avian 6 11.25 2.6727 1 0.1020 0.5100

Polyvalent*** Swine 8 11.25 1.0242 1 0.3120 0.6240

Polyvalent*** Equine 9 11.25 0.4909 1 0.4840 0.6240

Polyvalent*** Canine 2 11.25 8.2970 1 0.0040 0.0318

Total 25

Combined** Avian 32 11.25 41.7515 1 < 0.0001 < 0.0001

Combined** Swine 7 11.25 1.7515 1 0.1860 0.5580

Combined** Equine 32 11.25 41.7515 1 < 0.0001 < 0.0001

Combined** Canine 0 11.25 12.2727 1 0.0005 0.0041

Total 71

General total 136

*values adjusted using the Holm–Bonferroni method, ** vaccines formulated using different subtypes of avian influenza type A, ***vaccines that combine influenza type A virus antigens 
with others of viral or bacterial origin.
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FIGURE 8

Viral and bacterial antigens included in commercial avian influenza vaccines grouped by animal species. Source: Scientific-technological observatory 
of the Grupo Empresarial LABIOFAM.
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studied and marketed globally during the period 2019–2023 to 
immunoprotect productive species. Such a stance coincides with 
scientific advances on molecular mechanisms of genomic replication 
(35), characterization of conserved and variable sites of the viral RNA 
(36), and, in particular, the expression of hemagglutinin and/or 
neuraminidase genes in avian smallpox, turkey herpesvirus, Newcastle 
virus, Escherichia coli, and plants (Nicotiana benthamiana) (37–40). 
This latter alternative approach offers significant advantages associated 
with the ability to grow the plants on a large scale, rapid and efficient 
production in required quantities, low costs (40) and thermostability 
of the antigen (39). However, like other vaccines, it does not overcome 
the challenge of cross-protection and the high risk of occupational 
exposure from handling the avian influenza antigen remains. The 
introduction of these plant species for vaccine production requires 
improved technologies both to minimize the alkaloid (toxic substance) 
content and to increase the antigen yield. It also requires confined 
cultivation systems to avoid the possibility of agrochemical 
contamination, adverse weather conditions, irregular soil composition 
and pathogen attack (40).

The low presence of modern vaccines (n = 16) in the product 
catalogs issued by the companies studied (n = 136), allows inferring 
that much of the new scientific knowledge remains in the exploratory 
field, and few are converted into marketable products. Consequently, 
the role of these formulations in global veterinary health management 
during the 2019–2023 period remains limited. Changing this reality 
in the future involves obtaining vaccines capable of effectively stopping 
virus replication and excretion and generating specific antibodies that 
do not interfere with the diagnosis of naturally infected animals. 
Although some progress has been made in this regard (41–43), much 
work remains to be done; it is necessary to surpass the indicators of 
safety, efficacy and duration of immunity achieved by traditional 
vaccines in the field, demonstrate the stability of the synthetic antigen 
and explore the use of the mucosa (buccal, nasal and ocular) as routes 
of administration for different animal species.

The need to optimize the efficacy of inactivated vaccines and, the 
development of new purified, synthetic or recombinant antigens that 
are specific and well characterized but not very immunogenic, 
explains, at least in part, the great scientific interest in developing new 
and potent adjuvants that help to increase the immune response, in 
addition to generating a rapid decrease in clinical signs (44). The 
academic projection shown in Figure  1 involves aluminum 
nanoparticles composed of quaternized chitosan (45), different 
fractions of purified saponins (46), and natural oils of plant origin 
(47), among other novel compounds. However, it is expected that the 
introduction of academic advances into industrial practice will 
require time and significant financial resources. Its delayed 
implementation is associated not only with the diversity of animal 
species with different immune systems but also with delays in the 
development of economical, and robust formulations (low toxicity, 
generate a potent immune response, optimum antigen adsorption-
dsorption capacity, biodegradable, and stable under normal storage 
conditions) that comply with good production practices (48, 49). 
Despite this, the industry remains very attentive to the evaluation of 
these substances because their incorporation has many advantages: 
optimization of the immunogenic efficacy of current vaccines, 
increase the immune response at mucosal level without the need for 
injection, production of larger quantities of doses with fewer antigens, 

and reduction of production costs without sacrificing the quality of 
the vaccine (47).

Another coincidental feature identified in this study is the 
dominance of avian, and swine vaccines both in scientific articles and 
in the market. This occurrence, although observed in a previous study 
on veterinary infectious diseases (23), and confirms once again that 
science and industry continue to focus on the immunoprotection of 
fundamental species in the production of animal protein for the 
human consumption, promoting the livelihood of rural poor, 
especially in underdeveloped countries, and supporting national food 
security (30).

Together with the identification of common interests between 
science and industry, divergent thematic areas were also found. In 
the first case, there was no correspondence between the high 
number of co-occurrences identified in the bibliometric study 
(n = 720) and the scarce presence of live vaccines in the market 
(0.7%, 1/136, Flu Avert®, H3N8). This fact suggests that science 
insists on achieving modified live strains (less virulent or avirulent) 
despite serious safety issues in clinical use and cumbersome 
manufacturing processes. This research may be encouraged by the 
fact that these are the only vaccines that best mimic natural 
infection, thus inducing strong humoral and cellular immunity. 
Several attenuation options have been explored, such as degradation 
of viral proteins (50), deletion of the NS1 gene encoding 
non-structural protein 1, or point mutations in the haemagglutinin 
gene (51–55). Although the results are successful in generating 
robust humoral, mucosal and cellular immunity against homologous 
and heterologous viruses, the resulting genetic constructs have not 
progressed beyond the scientific frontier. These options have yet to 
overcome numerous regulatory barriers and to implement new 
vaccination strategies involving the simultaneous use of live and 
inactivated vaccines.

In the second case, the numerous co-ocurrent publications on 
canine vaccination against avian influenza (n = 510) and the poor 
presence of commercial vaccines may be  related to the gradual 
changes taking place in our societies regarding pet ownership and 
care. The loss of traditional pet functions such as protection, hunting 
and defense to contemporary functions such as companionship and 
provision of affection (56, 57) encourages pet adoption, cohabitation 
in smaller spaces and sharing of pathogens. The increased likelihood 
of zoonotic events, coupled with frequent reports of influenza 
infections of various subtypes in dogs (58), raise new concerns that 
necessitate further research into immunoprotection. However, this 
scientific interest has not yet translated into vaccine production, and 
dogs are the least represented species in the global market, with only 
4.5% of commercial vaccines available in 2023.

The final area of divergence identified in this study concerns 
equine vaccines. In this respect, little scientific interest in research 
into new equine flu vaccines was observed (n = 19), despite the fact 
that equine flu is a species of great military, cultural, genetic, sporting, 
recreational and economic value. This reality is contradicted by the 
large number of commercial vaccines available on the world market 
(34.5%, 47/136), being the second most immunoprotected animal 
species. This imbalance between science and industry is difficult to 
explain considering the great usefulness of the horse for humans 
since ancient times (transportation, agricultural and livestock work, 
meat, milk, hair, and leather) and the great impact of the disease on 
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the equine industry (compulsory health declaration, low sporting 
performance and restrictions on international trade) (59, 60).

With respect to the significant genetic diversity of influenza 
strains (high and low pathogenicity subtypes) involved in research 
and commercial vaccine production was an expected occurrence, 
given the extensive antigenic variants observed in wild strains (61). 
Consequently, it is not coincidental to find close links between the 
field strains with the highest global circulation and vaccine strains 
(62), in particular those with a high capacity to rapidly spread 
between migratory birds, domestic birds, mammals and humans such 
as H3Nx, and H5Nx. The industrial use of numerous lineages 
responsible for outbreaks in Africa, Asia, America and Europe is 
extremely important to increase the effectiveness of disease prevention 
and control programs in countries that practice vaccination and 
reduce the frequency of animals with severe forms of the disease 
(63–65).

The unstable health situation associated with the constant genetic 
evolution of the pathogen, the increasing number of affected species 
and the ‘One Health’ approach will encourage the veterinary and 
human scientific and industrial communities to continue their 
collaboration. Unity of public and private interests will be imperative 
not only for effective, coordinated and sustained epidemiological 
surveillance and reporting actions worldwide, but also for rapid 
dissemination of knowledge on new influenza A virus sequences and 
outbreaks, in order to prevent possible future pandemics (66, 67).

The positive impact observed in those countries that decided to 
implement massive vaccination (66), may change in the future. The 
rapid antigenic evolution of the virus, chemical instability of 
hemagglutinin/neuraminidase, and wide range of susceptible and 
transmitting hosts make it almost impossible to predict the subtype 
of the next pandemic virus and, therefore, the existence of an 
adequate vaccine (12, 67). Faced with these questions, science is 
attempting to design so-called “universal vaccines” that include 
several subtypes of influenza in the same formulation. In this regard, 
in vivo tests using H1N9/H3N8/H5N1/H7N3 mixtures yield 
satisfactory results; however, there is still a long way to go (68). The 
efficacy and safety of these vaccines depend on many factors: 
antigenic match of vaccine strains to circulating strains, 
manufacturing procedures, adjuvants, antigen concentration, dosage 
and method of administration (69). Therefore, these formulations 
cannot be expected to be applied in daily clinical practice in the short 
term, which justifies their peripheral position observed in Figure 1. 
The success of this new immunoprotective option is closely linked to 
the union of public and private interests. The resulting alliance will 
allow not only effective, coordinated and sustained epidemiological 
surveillance, but also rapid dissemination of emerging epidemic 
strain sequences for inclusion in new formulations (70, 71).

The extensive network of academic journals publishing veterinary 
scientific results on avian influenza, the significant participation of 
countries in joint research (Figure  2) and the large number of 
commercial vaccines worldwide (Table 2) reveal a reality: scientists, 
vaccine manufacturers and farmers are jointly searching for answers 
to defeat the same adversary. All, from different approaches, identify 
this virus as a major threat to the security of nations and urgently 
need to reduce the serious health and economic impacts that the 
disease can cause (increased mortality, reduced production and trade 
restrictions) (72). The high international priority given to this virus 

(7, 8) may have been an element promoting the balance observed 
between academic and industrial production of veterinary vaccines 
in some of the countries involved in this study, such as the 
United  States, Vietnam, Iran, Spain, Germany, Russia, the 
Netherlands, and Egypt.

This heterogeneity is due to the wide geographical distribution of 
the disease, its great epidemiological complexity, the increasing 
number of affected species (1, 2), the experience in research, 
development and application of vaccines that some countries possess 
(73), as well as the existence of an economic cooperation framework 
that prioritizes cross-border research between developing nations 
and high-income international scientific institutions (74). In this 
context, the prominent presence of the United  States and China 
coincides with the largest epidemic events reported globally and 
therefore, they are the most interested in collaborating with other 
nations to mitigate zoonotic risks and the resulting economic and 
trade impacts (62, 64). For these reasons, they dedicate significant 
research funds resulting in a high volume of publications and 
international collaborations, as illustrated in Figure 3 (75).

The commercial interest of pharmaceutical companies in 
introducing influenza vaccines combined with antigens from 
different subtypes (18.4%, 25/136), viruses, and bacterias (52.2%, 
71/136) to the market arises from multiple reasons. These include 
extending protection against several subtypes in a single 
administration (76), preventing a greater number of diseases per 
dose, rapid compliance with the vaccination schedule, and increased 
immunization coverage. Other elements favoring the presence of 
these formulations on the world market are the constant emergence 
of antibiotic-resistant bacterial strains (77), co-circulation of different 
pathogens in the same population, reduced costs in application, 
transportation, and storage of biological material as well as decreased 
stress in animals due to less manipulation (78). Therefore, these 
formulations are highly appreciated by animal health professionals 
and prove highly useful in the case of avian influenza. Recent 
evidence confirms that this pathogen has the capacity to co-infect 
animals, increasing the frequency and severity of respiratory tract 
lesions (79). Based on this evidence, combination vaccines emerge as 
an appropriate solution, eliciting a rapid and improved immune 
response in both avian and equine species compared to monovalent 
vaccines against Newcastle and herpesvirus types 1 and 4 (24, 80, 81).

5 Limitations and strengths of the 
study

This study has several limitations in its implementation. First, 
Scopus was the sole database consulted, and only articles written in 
English were considered. This could potentially lead to an 
underestimation of the available information, as other important 
databases and languages used to communicate scientific findings 
were not included. However, these decisions were made considering 
that Scopus constitutes the largest database of peer-reviewed scientific 
literature globally (22) and that the main international journals (Q1 
and Q2) exclusively accept articles in English (70, 71, 82). 
Additionally, articles written in other languages (Spanish, Portuguese, 
French, German, Russian, and Chinese, among others) tend to 
receive fewer citations, despite being indexed in international 
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databases (83). Second, the bibliometric search may have 
overestimated the productivity of certain countries because the 
primary authors’ affiliation does not always reflect their true 
institution of origin or the place where the research was conducted. 
Third, by analyzing 24 companies from 17 countries, it was possible 
to exclude others of regional importance, thus potentially causing 
biases or data omissions.

However, the results shown include formulations from the largest 
commercial players in the global veterinary biopharmaceutical sector, 
such as Boehringer Ingelheim, Elanco, MSD Animal Health, and 
Zoetis. Despite all these limitations, the study can be used to identify 
global trends in veterinary biopharmaceutical science and industry 
for preventing avian influenza. Furthermore, it can serve as a starting 
point for future research on this topic, involving similar or different 
productive and affective species, thereby addressing the 
identified limitations.

6 Conclusion

The study demonstrated the fundamental role of classical 
production methods (based on the use of the whole pathogen) in 
avian influenza A research and the production of veterinary vaccines.
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