The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Vet. Sci.
Sec. Animal Nutrition and Metabolism
Volume 11 - 2024 |
doi: 10.3389/fvets.2024.1542557
Relative Bioavailability of Selenium Yeast, Selenomethionine, Hydroxyl-selenomethionine and Nano-selenium for Broilers
Provisionally accepted- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- 2 Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- 3 College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
Selenium (Se) is an essential trace element for humans and animals. Development and application of new forms of Se sources with lower toxicity and higher bioavailability has been attracting more attention. However, the bioavailabilities of Se from several new Se sources for broilers remain unclear. Therefore, the aim of this study was to assess the relative bioavailabilities of Se from Se yeast (SY), selenomethionine (SM), hydroxyl-selenomethionine (SO) and nano-Se (NS) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 576 one-day-old Arbor Acres commercial male broilers were randomly assigned to 16 treatments with 6 replicate cages per treatment in a completely randomized design involving a 5 (Se sources: SY, SM, SO, NS and SS) × 3 (added Se levels: 0.15, 0.30 and 0.45 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control) for 21 d. The relative bioavailabilities of Se sources were estimated based on plasma or tissue Se concentrations as well as selenoprotein mRNA expressions and activities in broilers. The results showed that the Se concentrations and glutathione peroxidase (GPX) activities in plasma, liver, breast muscle, pancreas and kidney as well as Se concentration in erythrocytes of broilers, and Gpx1 and Selenop mRNA expressions in pancreas increased linearly (P < 0.03) as added Se level increased. Furthermore, the differences (P < 0.05) among different Se sources were detected for the Se concentrations in liver, breast muscle, pancreas and erythrocytes, GPX activities in pancreas and kidney. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of Sy, sm, so, ns relative to ss (100%) were 78% to 367%, 67.8% to 471%, 57% to 372%, and 45% to 92%, respectively. The results from this study indicated that the Se from SM, SY and SO are more available to broilers than the Se from SS in enhancing the Se concentrations in liver, breast muscle, pancreas and erythrocytes and GPX activity in pancreas, and the Se from SM had the highest while the Se from NS had the lowest relative bioavailability.
Keywords: bioavailability, broiler, Selenium concentration, Selenium source, selenoprotein expression
Received: 10 Dec 2024; Accepted: 30 Dec 2024.
Copyright: © 2024 Liu, Cao, Liang, Lin, Sun, Lin, Zhang, Lu, Luo and Liao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Xiudong Liao, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.