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Introduction: The decline of the European/western honeybee (Apis mellifera) 
population is on account of a plethora of microorganisms, such as Nosema 
apis and Nosema ceranae, two microsporidian fungi responsible of nosemosis 
that affects welfare and production of the bee industry. Accordingly, this study 
aimed to investigate the presence of both pathogens in bees, pollen and honey 
from apiaries in Southwestern Italy.

Methods: From March to July 2022 and 2023, apiaries (n = 10) were selected and 
classified as High Impact Areas (HIAs, n = 5) and Low Impact Areas (LIAs, n = 5) 
according to a 5-point environmental risk index based on factors affecting bee 
health sand related productions. Bee, pollen and honey samples, were collected 
and tested for Nosema spp. DNA by specific PCR protocols targeting the 16S 
rRNA gene. Signs/symptoms of nosemosis were monitored and collected by the 
cooperation of beekeepers.

Results: Out of 10 apiaries, 6 (i.e., 60%, 95% CI: 31.3–83.2) tested positive for 
at least one sample to Nosema spp. DNA, being 2 positives for N. apis, 2 for 
N. ceranae and 2 co-infected (i.e., 20%, 5.7–51.0). Based on the biological 
samples, honey was positive for N. apis in one apiary, pollen for N. ceranae in 
two apiaries, and bees for N. apis in 3 apiaries, N. ceranae in 1 apiary, and both 
species in 1 apiary. In all the apiaries positive to N. apis and N. ceranae, high 
mortality and low honey production were observed. A higher risk of infection 
was observed in apiaries from HIAs (OR = 6.00). The sequences of N. apis and 
N. ceranae had 99.5–100% homology with those in the GenBank database. 
Whereas all sequences of N. apis were identical to each other, four sequences 
types of N. ceranae characterized by single nucleotide polymorphisms (SNPs) 
were identified. The computation of polymorphisms revealed high haplotype 
diversity (i.e., Hd = 1.000) and low nucleotide diversity (i.e., Pi = 0.00913) of N. 
ceranae sequence types.

Discussion: This study reveals a high circulation of N. apis and N. ceranae in 
Southwestern Italy, indicating the need for improved monitoring of these 
microsporidia to protect bee welfare and bee industry.
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1 Introduction

In last years, a plethora of infectious and parasitic agents has 
affected the population decline of pollinating insects worldwide (1). 
Among these, the European honey bee (or western honey bee) Apis 
mellifera is commonly exposed to fungi of the genus Nosema spp. 
(phylum Microsporidia, family Nosematidae), obligate intracellular 
microsporidia that infect ventricular epithelium cells of adut bees 
causing nosemosis (2–5), mainly in high density apiaries (6). 
Nosemosis is one of the main causes of bee colony collapse and 
prodution loss for beekeepers (7) due to the severe dysentery caused 
in bees (8, 9). In addition, the oro-fecal transmission pathway of 
Nosema spp. and the typical food-sharing behaviour of bees (i.e., 
trophallaxis) (10) favour the circulation of microsporidian spores 
among bees, but also pollen and honey, causing organoleptic and 
production alterations in honey (11–15). To date, two different 
pathogenic species of Nosema spp. have been reported, Nosema apis 
(synonym Vairimorpha apis) and Nosema ceranae (synonym 
Vairimorpha ceranae) (16, 17). While N. apis is known from the 
beginning of the XX century (18), N. ceranae is an emerging species 
reported for the first time in 2005 (19) and now spread throughout 
Europe (20–26), as well as in Canada, USA, and south America 
(27–30).

In perspective, the fact that long cold winters, intense rain, and 
high relative humidity can favour the spread of N. apis and N. ceranae 
is of concern considering the running climatic changes and global 
warming (31–34), especially for N. ceranae that is considered replacing 
N. apis in several areas (35). As for Italy, N. ceranae has been reported 
in apiaries from central and Northern Italy, whereas the last report of 
N. apis dates back to 2010 in the North of the peninsula according to 
a nationwide 2 year-monitoring plan (36). Moreover, the occurrence 
of N. apis has been recently reported in apiaries of Southeastern Italy 
(15), suggesting the potential spread of this microsporidian also in 
other Southern areas of the country.

In order to verify this hypothesis, this study aimed to investigate 
the presence and distribution of Nosema spp. DNA in A. mellifera 
specimens and their products (i.e., pollen and honey) in selected 
apiaries of southwestern Italy.

2 Materials and methods

2.1 Study area and sampling

This study was approved by the Italian Ministry of Health within 
the project authorization no. IZS ME 08/22 RC aimed to assess the bee 
welfare and related productions of Southern Italy.

The study was carried out in the Campania region, Southern 
Italy, characterized by a typical Mediterranean temperate climate 
and progressively continental features of mainland and 
mountainous landscapes (37). In order to investigate aspects 
potentially correlated to presence of Nosema spp. and health status 
of bees, sampling areas were selected by using a risk index based 
on 5 environmental variables (i.e., pollution, land use, 

hydrographic network, air quality, bee density) and classified as 
high impact areas (HIAs) or low impact areas (LIAs) (38). Then, 
from March to July 2022–2023, bees, pollen and honey samples 
were collected in 10 different apiaries (5 LIAs and 5 HIAs) 
(Figure  1) by the staff of the Experimental Zooprophylactic 
Institute of Southern Italy (Portici, Italy) in collaboration with 
apiary owners that monitored any signs/symptoms of the hive 
potentially related to the infections. For each apiary, bee specimens, 
pollen and honey were collected using under-basket cages (39), 
combs inside the hives, and traps installed in front of the hives. For 
each apiary, a total of 50 bees, 10 g pollen and 1 g honey were 
collected from different hives, stored at −20°C into specific 500 mL 
glass jars labelled, and delivered to the Animal Health Department 
of the Experimental Zooprophylactic Institute of Southern Italy 
(Portici, Italy).

2.2 DNA extraction, PCR protocol, and 
sequencing

DNA was extracted from bee, pollen and honey samples using 
the QIAamp DNA mini-KIT tissue protocol (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. The 
obtained DNA was diluted 1:10 with Tris-glycine TGBE buffer and 
centrifuged at 5,000 g for 5 min. For each sample, DNA 
concentration was determined by BioPhotometer plus 
biophotometer (Eppendorf AG, Hamburg, Germany). All DNAs 
were screened for N. apis and N. ceranae by using two species-
specific endpoint PCR protocols targeting the 16S rRNA gene, 
according to the National Reference Laboratory for honeybee health 
(40); primer details are listed in Table 1. PCRs were performed in a 
total volume of 25 μL containing 12.5 μL HotStarTaq Master Mix, 
0.625 μL of each primer at concentration of 0.25 μM, 9.25 μL of 
Dnase/Rnase free water and 2 μL of DNA template. Amplification 
conditions included an initial denaturation/activation step at 95°C 
for 15 min, followed by 35 cycles of denaturation at 94°C for 15 s, 
primers annealing at 62°C for 30s and extension at 72°C per 30s, and 
a final extension step at 72°C for 7 min. Amplicons were displayed 
by automated capillary electrophoresis with the QIAxcel instrument 
(Qiagen, Hilden, Germany). Amplicons were then purified with the 
QIAquick PCR Purification kit (Qiagen, Hilden, Germany) and 
sequenced in both directions using the same primers as for PCR, 
with the Big Dye Terminator Cycle Sequencing Kit v1.1  in the 
automated sequencer 3,500 Genetic Analyzer (Thermo Fischer 
Scientific, United States). Consensus sequences were aligned and 
edited via ClustalW Multiple Alignment method in the BioEdit 
software (version 7.7) (41), and compared with those available in the 
GenBank database with the Basic Local Alignment Search Tool 
(BLAST).1 Edited sequences were then exported to DnaSP software 

1 http://blast.ncbi.nlm.nih.gov/Blast.cgi
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(version 6) (42) for the computation of polymorphisms using 
Tajima’s (43) and Fu’s Fs tests (44).

All the sequences were submitted on GenBank database under the 
accession numbers PP758584 for N. apis and PP758589-PP758592 for 
N. ceranae, respectively.

2.3 Statistical analysis

Exact binomial 95% confidence intervals (95% CIs) by Wilson’s 
method were calculated for the proportions of infection herein found. The 
Fisher’s exact test was used for assessing any statistical differences in the 

FIGURE 1

High impact areas (HIAs, n = 5) and low impact areas (LIAs, n = 5) investigated for Nosema and Nosema DNAs in the study area.

TABLE 1 Primers for the detection of Nosema apis and Nosema ceranae used in this study.

Pathogen Primer Sequence 5′–3’ Amplicon (bp)

Nosema apis 321APIS-FOR GGGGGCATGTCTTTGACGTACTATGTA 321

321APIS-REV GGGGGGCGTTTAAAATGTGAAACAACTATG

Nosema ceranae 218MITOC-FOR CGGCGACGATGTGATATGAAAATATTAA 219

218MITOC-REV CCCGGTCATTCTCAAACAAAAAACCG
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frequency of infection according to the geographical origin of samples; a 
value of p < 0.05 was considered statistically significant. The Odds Ratio 
(OR) was used to verify the difference of infection risk according to the 
geographical origin of samples. Statistical analyses were performed by 
using the online software Epitools-Epidemiological Calculators (45). The 
distribution of Nosema spp.—positive samples in the study area was 
obtained with QGIS software (version 3.34.10-Prizren LTR).

3 Results

Out of 10 apiaries investigated, 6 (i.e., 60%, 95% CI: 31.3–83.2) 
tested positive for at least one sample to Nosema spp. DNA, being 2 
positives only for N. apis, 2 only for N. ceranae and 2 co-infected (i.e., 
20%, 5.7–51.0). Details of positivity to N. apis and N. ceranae, 
according to the different samples examined (i.e., bee specimen, 
pollen and honey) and apiary typology (i.e., HIAs or LIAs), are 
reported in Table 2. In all the apiaries tested positive for N. apis and 
N. ceranae, high mortality and low honey production were observed.

Although the difference of infection according to the origin of 
apiaries from HIAs and LIAs was not statistically significant 
(χ2 = 1.667, p = 0.200), a high risk of infection was observed for 
apiaries located in HIAs (OR = 6.00).

All the 16S rRNA partial sequences of N. apis and N. ceranae herein 
found had 100% query coverage and 99.5–100% nucleotide identity with 
those available in the GenBank database. Whereas all sequences of 
N. apis were identical to each other, four different sequences types of 
N. ceranae (i.e., ST1 in pollen, ST2 in pollen, ST3 in bee, ST4 in pollen) 
were identified showing single nucleotide polymorphisms (SNPs) in the 
positions 34, 122, 192 (Figure 2). The computation of polymorphisms 
revealed high haplotype diversity (i.e., Hd = 1.000) and low nucleotide 
diversity (i.e., Pi = 0.00913) of N. ceranae 16S rRNA sequences from this 
study, with not statistically significant negative values of both Tajima’s D 
and Fu’s Fs tests (Table 3).

4 Discussion

This study reports for the first time N. apis and N. ceranae 
infections in A. mellifera populations, pollen and honey, from apiaries 
of Southwestern Italy.

The high prevalence of Nosema spp. in the apiaries herein 
investigated (i.e., 60%) indicates a wide spread of infection in the study 
area, in agreement with the national average (30–69%) (36), and with 
the last data available from Central (63.2%) (46), Northern (42.9–
54.5%) (47, 48) and Southeastern Italy (100%) (15). The finding of 
N. apis is of concern due to its high pathogenic potential (49, 50) and 
the fact that this species has been previously reported only in 2010 in 
Northern Italy (36, 51), and recently in the Southeast (15). This study 
also confirms the occurrence of N. ceranae in the south (15, 36), as 
already outlined in areas of Northern (47, 48) and Central Italy 
(46, 52).

As well as in bees, the finding of N. apis and N. ceranae in honey 
and pollen samples, respectively, is not surprising given that the small 
size of their spores (2–6 μm) (53, 54), allow them to be transferred as 
wind-dispersed bioaerosols from the air to different surfaces, 
including pollen and honey (14, 55). Another potential route of 
transmission may occur via bee feces contaminated with spores, 
which are usually left by bees near the apiary, carried by the wind to 
the flowers, and then collected again by bees during pollination (56). 
In addition, feeding bee colonies with infected honey and pollen may 
represent a further risk for the transmission of Nosema spp. infections 
(57, 58).

The signs of infection herein observed, such as high mortality and 
low honey production, are in accordance with the clinical picture of 
nosemosis (13, 15, 52, 59).

Although no statistically significant difference between apiaries in 
HIAs and LIAs is observed (p = 0.200), a higher risk of infection is 
emerged in HIAs than LIAs (OR = 6.00), suggesting that 
environmental aspects of HIAs (i.e., pollution, intense land use, low 
air quality, high bee density) (38) are implicated in the epidemiology 
of Nosema spp., as well as in the overall welfare of the bee industry. 
This hypothesis finds support in studies indicating that environmental 
stressors may increase the virulence of N. ceranae (60) and influence 
the bee microbiota, thus altering the immune system (61) and 
susceptibility to pathogens (62–65). Accordingly, further studies for 
assessing the correlation between apiary typology and susceptibility 
to Nosema spp. infections are required.

The presence of SNPs in all the 16S rRNA sequences of N. ceranae 
from pollen (i.e., ST1, ST2, ST4) and bees (i.e., ST3) of this study, 
could be  due to a wide genetic variability of this pathogen, in 
accordance with previous studies showing the presence of several 

TABLE 2 Bee farms tested negative (Neg) and positive to Nosema spp. DNA, according to different samples (i.e., bee specimens, honey, pollen).

Apiary Typology Bees Pollen Honey

1 HIAs Neg N. ceranae Neg

2 HIAs N. apis N. ceranae Neg

3 HIAs N. apis Neg Neg

4 HIAs Neg Neg Neg

5 HIAs N. ceranae Neg Neg

6 LIAs N. apis, N. ceranae Neg N. apis

7 LIAs Neg Neg Neg

8 LIAs Neg Neg Neg

9 LIAs N. apis Neg Neg

10 LIAs Neg Neg Neg
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sequence types of this species (51, 66–70). The high haplotype 
diversity and low nucleotide diversity of N. ceranae sequences herein 
found are indicative for a rapid demographic expansion of this 
microsporidian. In accordance, although not statistically significant, 
the negative values of Tajima’s D and Fu’S Fs suggest an excess of rare 
polymorphic sites which are typical features of both recent population 
expansion and presence of rare haplotypes compared to what is 
expected under neutrality, pointing to past bottleneck and/or 
purifying selection events (43, 44).

Finally, the fact that nosemosis is no longer a notifiable disease 
(71) underlines the importance of epidemiological investigations as 
the only way to highlight the presence of Nosema spp. in apiaries (15). 
Accordingly, future large-scale surveys are needed to investigate the 
circulation of Nosema spp. in other areas of Italy and the potential 
implications to the honey bee industry. At the same time, 
epidemiological and pathogenetic insights are required on little-
investigated trypanosomatids (e.g., Lotmaria passim) circulating in 
bee colonies (72) and honey with a high percentage (80%) of 
co-occurrence with N. ceranae microsporidia (55).
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