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Cherry eye, the common name for the prolapse of the third eyelid gland in

dogs, is a widespread ophthalmic disease a�ecting dogs of various breeds.

This condition severely a�ects the quality of life of a�ected dogs, and its

underlying cause remains unresolved. In this study, 170K SNP microarray data

were collected from 653 brachycephalic dogs and 788 brachycephalic and

mesocephalic dogs. These two datasets were analyzed separately in genome-

wide association studies (GWAS) involving 12 dog breeds a�ected by cherry eye.

The GWAS analysis of 653 short-headed dogs revealed that four SNPs in the

CFA3:15627075-15983629 bp region exceeded the genome-level significance

threshold. Association analysis of this region also indicated that these four SNPs

were strongly associated. Gene annotation showed that the region contained

genes such as KIAA0825, FAM172A, and NR2F1, of which NR2F1 was associated

with eye development. The results showed that GWAS analysis performed on 788

short- and medium-headed dogs identified five SNPs in the CFA22:15627075-

15983629 bp region that exceeded the genome-level significance threshold, and

association analysis was performed in this region, which showed that these five

SNPs were strongly associated. In addition, 104 annotated genes were identified

in both GWAS. To explore the genes involved in cherry eyes, we performed GO

functional enrichment analysis. The genes involved in the high pathway were

DIO3 and TTC8. In addition, an in-depth analysis revealed 33 genes associated

with eye development and diseases. Our study provides new perspectives for

further understanding cherry eye in dogs.
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1 Introduction

Prolapse of the third eyelid gland in dogs, characterized by a protuberance of the gland
at the free edge of the papillae, results in hypertrophy, hyperplasia, or adenoma, forming
a prominent red fleshy mass, often referred to as the cherry eye (Figure 1) (1). The cherry
eye may be large, covering a large portion of the cornea, or it may be small and appear only
periodically (2). Dogs have three eyelids, two of which are easily visible, and an additional
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eyelid, the third eyelid, which is usually hidden below the inner
corner of the eye (2, 3). The third meibomian gland is located at
the base of the T-shaped hyaline cartilage in the roughly triangular
conjunctival fold at the corner of the eye and it produces 30–60% of
tears (4, 5).

The cause of cherry eyes is currently unknown and is
hypothesized to be the laxity of the connective tissue that anchors
the third eyelid gland, usually on a genetic basis (6–8). Some
researchers have suggested that gland enlargement (lymphoid
hyperplasia) is caused by antigenic stimulation due to the exposure
of puppies to environmental allergens (5, 7, 9). It can be caused
by dysplasia or congenital defects in all current breeds but is
more common in brachycephalic dogs, such as American and
English Cocker Spaniels, Boston Terriers, Peking Pugs, Beagles,
and Bulldogs (8). This is mainly because the facial and orbital
appearances of brachycephalic dogs are characterized by a rounded
cranial shape and flat orbits, which potentially lead to physiological
protrusion of the eyeballs, failing to adequately cover the eyeballs,
provide lubrication, and make the cornea less sensitive, leading
to a variety of ocular disorders (10). Studies have shown that
males have a higher incidence than females and the age of
onset is between 3 and 12 months (6, 8, 11). Research has
indicated that this disease is most common in dogs that usually
eat meat, chicken liver, ham sausage, etc., and are well nourished,
which may be due to glandular secretions and sticky glandular
excretory ducts caused by poor excretion during the development
of complete obstruction (12). Symptomatically, the prolapsed
gland grows from small to large slowly in 3–5 days, quickly
in 1–2 days, and does not continue to develop after swelling
to its maximum size. In most dogs, ocular inflammation is
not obvious, and in a few cases, it is mainly caused by ocular
discomfort, scratching, or friction from an object. Tumors and
inflammation can be ruled out from the limited enlargement
of the prolapsed gland and the inflammatory manifestations in
the affected eye; however, obstruction of the glandular excretory
ducts can explain the above symptoms. The degree of obstruction
in the glandular excretory ducts determines the disease course’s
progression rate, and the gland’s histological structure determines
the limit to its enlargement (6, 11, 12). Pathophysiologically, the
glands are enlarged (6), the follicles are dilated (11), the epithelium
of the follicles is detached (11, 12), and the nictitating gland
dry (13, 14).

This disease is most common in monocular prolapses, a small
number of both eyes prolapse at the same time; there are also
eye prolapses after the cure of the prolapse of the other eye,
followed by prolapse (11, 13). Dogs with third eyelid glandular
hyperplasia are initially enlarged due to infection, and gradually,
a red fleshy lump appears at the inner corner of the dog’s lower
eyelid, which increases in size in a short period (13). Sick dogs
have conjunctival redness, tearing, and obvious signs of ocular
inflammation and discomfort, as well as a marked increase in
ocular discharge. Simultaneously, some sick dogs often scratch
their eyes with their front paws; therefore, there is a possibility
of mechanical damage to the cornea or aggravation of ocular
inflammation, which seriously affects the health and lifespan of
domestic dogs. Third eyelid gland prolapse is common in domestic
dogs and seriously affects the quality of life of the affected
dogs (14).

Cherry eye is usually not painful and does not affect a dog’s
vision; however, if left untreated, it can cause irritation and
inflammation (9). Total glandular excision is commonly used to
remove the third meibomian gland or to reposition the gland in
domestic dogs affected by cherry eye disease (15). Studies have
shown that after the removal of the desmoid gland, there is a
decrease in tear production, leading to dry keratoconjunctivitis
(KCS) (16). KCS is a chronic inflammatory disease that may result
from ductal obstruction and is more likely to occur in females
compared to males, mainly due to more intense lymphocytic
infiltration of the third oculocutaneous gland, with less secretion
(3, 17). KCS recurrence is usually associated with repositioning
surgery (6, 18). The current popular treatment is the modified
Morgan Pocket technique, which is simpler and less prone to
recurrence and complications than total adenomectomy (19, 20).

Although more attention has been paid to the treatment of
such diseases in domestic dogs, the genetic background of third
eyelid gland prolapse in domestic dogs remains of interest. In this
study, we performed a genome-wide association studies (GWAS)
to understand the genetic mechanism underlying third eyelid gland
prolapse in domestic dogs with ophthalmoplegia.

2 Materials and methods

2.1 Data

The 12 dogs of different breeds suffering from third eyelid
prolapse in the experimental animals came from the Police Dog
Hospital at the Nanchang Police Dog Base of the Ministry of Public
Security, and these diseased dogs were brought to the hospital
by nearby pet breeders, the dog suffering from prolapse of the
third eyelid is shown in Figure 1. The breeds of these domestic
dogs were Pekingese, Rottweiler, and Butterfly, totaling 12. In
this study, we also collected 170K SNP microarray data from
653 dogs with brachycephalic characteristics (Table 1) and 788
brachycephalic and mesocephalic special dogs (Table 2), such as
Newfoundlands, which were previously published as 170K high-
density SNP microarray data (21).

2.2 Genomic DNA sample preparation

Blood samples were collected from the place of origin of
each local dog, using EDTA-K2 anticoagulation negative pressure
tubes, and peripheral venous anticoagulated blood was collected by
professional veterinary staff, and couriered to the Nanchang Police
Dog Base of the Ministry of Public Security in low-temperature
refrigeration using a foam insulated box and preserved at −80◦C.
All samples were collected following the regulations of the Ministry
of Agriculture on the protection of test animals and guidelines for
their use.

Genomic DNA was extracted using the SE Blood DNA Kit
(OMEGA, USA) kit from OMEGA concerning the instruction
manual, and the DNA was dissolved into TE buffer, and the
concentration of DNA was determined and quality checked
using the Nanodrop-1000 (Thermo Scientific, USA) Nucleic Acid
Protein Analyzer, and the qualified The DNA samples were
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FIGURE 1

Dogs third eyelid hyperplasia case.

TABLE 1 Data of 653 brachycephalic dogs used in this study.

Breed Origin FamID NO. Data

Pug China CN_BG 18 Article

Tibetan Mastiff China CN_TM 22 Article

Lion Dog China CN_Shi 13 Article

Chow Chow China CN_CC 6 Article

Shih Tzu China CN_XiS 27 Article

Lhasa Apso Xizang, China CN_LhA 15 Article

Tibetan Terrier Xizang, China CN_Tt 7 Article

Chinese Chongqing Dog Sichuan, China CN_CDh 12 Self Test

Rottweiler Germany LWNGer 7 Self test

Rottweiler Germany G_RW 96 Article

Miniature Schnauzer Germany G_MiSNR 60 Article

Yorkshire Terrier Britain E_YKt 211 Article

Teddy France F_TPD 16 Article

Maltese Republic of Malta MS_MAL 85 Article

Chihuahua Mexico M_CHH 14 Article

Havanese Cuba Cu_HaN 44 Article

Total - - 653 -

required to have A260/230 ratio of 1.7∼1.9 and A260/A280
ratio of 1.8–2.0. After uniformly diluted to 100 ng/µL, agarose
gel electrophoresis was performed, which required bright bands

and no protein and RNA contamination or DNA degradation
and was placed in a −20◦C refrigerator for backup for a
short period.
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TABLE 2 Data of 788 brachycephalic and mesocephalic dogs used in this study.

Breed Breed origin FamID NO. Data origin

Pug China CN_BG 18 Article

Tibetan Mastiff China CN_TM 22 Article

Shar Pei China CN_GDSP 29 Article

Lion Dog China CN_Shi 13 Article

Chow Chow China CN_CC 6 Article

Shih Tzu China CN_XiS 27 Article

Lhasa Apso Xizang, China CN_LhA 15 Article

Tibetan Terrier Xizang, China CN_Tt 7 Article

Chinese Chongqing Dog Sichuan, China CN_CDh 12 Self test

Rottweiler Germany LWNGer 7 Self test

Rottweiler Germany G_RW 96 Article

Miniature Schnauzer Germany G_MiSNR 60 Article

Yorkshire Terrier Britain E_YKt 211 Article

Teddy France F_TPD 16 Article

Maltese Republic of Malta MS_MAL 85 Article

Chihuahua Mexico M_CHH 14 Article

Havanese Cuba Cu_HaN 44 Article

Newfoundland Canada Ca_NFL 106 Article

Total - - 788 -

2.3 Genome-wide association studies

These two datasets were used to perform a GWAS based
on a case-control study with 12 cherry-eyed dogs. We set the
phenotype of dogs with cherry-eyed dogs with phenotype set to
1 and other dogs to 0. The genomic significance level was set
to -log(1/Nsite), where Nsite denotes the number of SNPs, and
the highly significant level was -log(1/Nsite)+2. Visualization was
performed using R language, and LD block analysis was performed
using LDBlockMovie software (21).

3 Results and analysis

In this study, GWAS results from 12 dogs with cherry eye
compared to 653 brachycephalic dogs showed a total of 52 SNPs
exceeding the threshold of significance at the chromosomal level,
with 16 SNPs exceeding the threshold of significance at the
genomic level (Figure 2A). We genetically annotated SNPs and
their upstream and downstream 5Kb regions that exceeded the
significance threshold at the chromosome level, and identified a
total of 240 genes (Supplementary Table S1), which were analyzed
for functional enrichment, and the results showed that these genes
were involved inmultiple biological functions (Figure 2B). Notably,
we identified four SNPs in the CFA3:15627075-15983629 bp region
that exceeded the genome-level significance threshold. Chaining
analysis of this region revealed that these four SNPs were strongly
interlinked (Figure 2C), and gene annotation revealed that this

region contained three genes, including KIAA0825, FAM172A, and
NR2F1, of which NR2F1 is associated with eye development (22).
We found an SNP on CFA22 well above the significance threshold,
and chaining analysis of this SNP and its upstream and downstream
regions showed that this SNP did not appear to be chained to
nearby regions (Figure 2D).

GWAS analysis of 12 cherry-eyed affected dogs vs. 788
brachycephalic and mesocephalic dogs showed 40 SNPs exceeding
the threshold of significance at the chromosomal level and
11 SNPs exceeding the significance threshold at the genomic
level (Figure 3A). SNPs exceeding the significance threshold at
the chromosomal level and their upstream and downstream
5Kb regions were genetically annotated, and a total of 180
genes (Supplementary Table S2) were identified and subjected to
functional enrichment analysis, which showed that these genes
were involved in multiple biological functions (Figure 3B). Similar
to the above results, we found five SNPs in the CFA22:15627075-
15983629 bp region that exceeded the significance threshold at the
genome level, and chaining analysis was performed on this region,
and these five SNPs were found to be strongly chained (Figure 3C).

The results showed that a total of 104 annotated genes were
identified in both GWAS analyses, and we further performed
functional enrichment analysis on these 104 genes, which showed
that there were multiple genes involved in neurodevelopment
and other processes. It is worth mentioning that the GO
term “GO:0003407” pathway is involved in the neural retinal
development pathway (Figure 4), and the genes involved in the high
pathway include DIO3 and TTC8 (23–25). Therefore, these 104

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2024.1520155
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zeng et al. 10.3389/fvets.2024.1520155

FIGURE 2

Genomic association analysis (GWAS) between 12 infected dogs and 653 dogs with brachycephalic characteristics. (A) Manhattan map of GWAS. (B)

The function of the 240 genes enrichment analysis. (C, D) LD block analysis of the two regions on CFA3 and CFA22.

genes were analyzed in depth, and 33 were found to be associated
with eye development or eye diseases (Supplementary Table S3).

4 Discussion

As human companion animals, dogs have the advantages
of a large number of naturally occurring genetic diseases with
similar body sizes and diets, the same living environment, and a
unique population structure that provides high-quality genome-
wide reference sequences. Moreover, dog and human genomes
have a high degree of similarity (75%), making them ideal animal
models for studying spontaneous genetic diseases in humans
(26–29). According to the online Human Mendelian Inheritance
Database (https://omim.org/home/), as of 2020, ∼700 dogs with
monogenic diseases or complex traits have been identified, of
which at least 230 have known disease-causing mutations and 340
dogs are potential models for human disease (30). The number of
spontaneous genetic diseases in other domesticated animals was
significantly lower than that in dogs. A large number of dogs with
spontaneous genetic diseases can be used as animal models for
research, providing more possibilities for studying and treating
human genetic diseases (31–33). Third eyelid gland prolapse is a
relatively common disease in domesticated animals and has diverse
causes (34). A total of 1,802 cases of third eyelid prolapse were
identified in 905,543 dogs, with an annual prevalence of 0.20%
(35). However, most studies on third eyelid gland prolapse in
domestic dogs have focused on the treatment of this disease and
the underlying genetic mechanisms have not yet been analyzed. The

present study aimed to contribute to the understanding of ocular
tumors in humans by analyzing the mechanism of third eyelid
gland prolapse.

In this study, we performed GWAS analysis based on
12 dogs with cherry eyes and brachycephalic dogs and
identified SNPs. Their upstream and downstream regional
gene annotations revealed that some genes are indeed involved
in ocular development or are associated with ocular diseases
in brachycephalic dogs, NR2F1 may be associated with optic
nerve atrophy syndrome. GWAS was also performed on both
brachycephalic and mesocephalic dogs, and 33 genes were found
to be associated with ocular development or disease in breeds
with different cranial structures, including genes associated with
diabetic retinopathy, such as SYT3,MYBPC2, and POLD1 (36, 37).
These findings are important for exploring the causative genes of
third eyelid protrusions in dogs.

In addition to common dog diseases, dogs can also suffer from
diseases similar to humans, such as tumors like eye tumors and
psychiatric disorders like autism, and studies have shown a strong
association between SHANK3 and autism in humans (38, 39). By
analyzing the whole genome sequence of domestic dogs, it was
found that the structure of the SHANK3 gene in dogs was similar to
that of humans. Therefore, the researchers carried out gene editing
in dogs, and the results showed that the mutant dogs all showed
different degrees of abnormal motor ability, repetitive stereotypy,
as well as the presence of severe social abnormalities and cognitive
deficits between dogs and dogs, and between dogs and humans, and
other clinical symptoms of autism. There are no ideal treatments for
fatal human genetic diseases, mainly because of the limited research
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FIGURE 3

Genomic association analysis between 12 infected dogs and 788 dogs with brachycephalic and mesocephalic characteristics. (A) Manhattan map of

GWAS. (B) The function of the 180 genes enrichment analysis. (C) LD block analysis of the two regions on CFA3.

FIGURE 4

GO term “GO: 0003407” pathway involved in neuroretinal development.

on the natural history of the disease, insufficient understanding
of the correlation between genotype and disease, lack of effective
alternative markers, and lag in translational research on effective
animal models (40). Therefore, it is necessary to study the natural
occurrence and molecular mechanisms of human genetic diseases
and evaluate the safety and effectiveness of gene therapy in large
animal models (41).

In this study, although we did not fully elucidate the
pathogenesis of third eyelid gland prolapse in dogs, this limitation
may be attributed to the small sample size or the genetic diversity of
the breeds collected. However, we genetically annotated SNPs and
their upstream and downstream 5Kb regions associated with canine
third eyelid gland ptosis that exceeded the significance threshold at
the chromosome level and identified some genes associated with
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ocular development or disease. This represents a significant step
forward in understanding the pathogenesis of third eyelid gland
prolapse in dogs.
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