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Crimean-Congo haemorrhagic fever virus (CCHFV) poses a significant public 
health threat due to its potential for causing severe disease in humans and its 
wide geographic distribution. The virus, primarily transmitted by Hyalomma ticks, 
is prevalent across Africa, Asia, Europe, and the Middle East. Understanding the 
virus’s spread among tick populations is crucial for assessing its transmission 
dynamics. Vertebrates play a key role in CCHF epidemiology by supporting tick 
populations and acting as virus carriers during viremia. Livestock, such as cattle, 
sheep, and goats, amplify the virus and increase tick numbers, posing zoonotic 
risks. Wildlife, while asymptomatic, can serve as reservoirs. Birds generally do not 
show signs of the virus but can introduce infected ticks to new regions. This review 
compiles information on CCHFV’s tick vectors and vertebrate hosts, emphasizing 
their roles in the virus’s transmission dynamics. Understanding these dynamics is 
essential for developing effective control and prevention strategies.
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1 Introduction

Crimean-Congo haemorrhagic fever virus (CCHFV) is a lipid-enveloped, single-stranded 
RNA virus in the Orthonairovirus genus (Nairoviridae family). It causes Crimean-Congo 
haemorrhagic fever (CCHF) in humans, a severe disease with significant public health 
implications due to its widespread prevalence. CCHF is among the most widely distributed 
tick-borne viral diseases, endemic across Africa, Asia, Eastern and Southern Europe, and the 
Middle East, with case fatality rates ranging from 5 to 40% (1–3).

Hyalomma ticks, particularly Hyalomma marginatum, are the primary vectors for 
CCHFV. They feed on various domestic ruminants (e.g., sheep, goats, and cattle) and wild 
animals (e.g., hares, hedgehogs, certain rodents, and ostriches) (4). Ticks play a crucial role in 
spreading the virus to humans through bites or direct contact with infected animal tissues. 
Infected vertebrates, although asymptomatic, sustain tick populations and facilitate CCHFV 
transmission during viremia (5).

Small mammals, such as hares and hedgehogs, amplify immature ticks, while larger 
domestic animals, including cattle, goats, and sheep, host adult ticks (Figure 1). Although 
CCHFV has a short viremia in small mammals, their role in CCHFV ecology is significant, as 
population surges, especially among hares, are linked to disease outbreaks (6, 7). Large 
domestic mammals inadvertently expose humans to CCHFV, especially during slaughter 
(8–12). Birds, except for ostriches, generally do not show viremia but may carry infected ticks 
to new regions (7).

Serological evidence confirms CCHFV exposure in various domestic and wild animals, 
with experimental infections validating their susceptibility (5). Understanding the virus’s 
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persistence within tick populations, their role as vectors, and the 
factors influencing viral transmission is essential for effective control 
strategies. Examining CCHFV in livestock, which often serve as 
amplifying hosts, provides insights into the virus’s impact on animal 
health and potential spillover to humans. Additionally, studying 
CCHFV within wildlife populations is essential for understanding its 
broader epidemiology.

This review compiles information on CCHFV tick vectors and 
vertebrate hosts, focusing on their roles in virus transmission and 
providing a comprehensive resource for understanding CCHFV 
in animals.

2 CCHFV in animals

2.1 CCHFV in ticks

The first documented outbreak of CCHF was reported in the 
Crimean region of the former Soviet Union in 1944, where 200 
military personnel suffered from an acute febrile illness with 
haemorrhagic symptoms, resulting in a 10% fatality rate (1). 
Investigating the situation, a team led by Mikhail Chumakov found 
that tick exposure caused these cases. Collecting over 3,000 blood-
sucking arthropods, they observed an abundance of ticks, 
particularly the H. marginatum species, now recognized as the 
primary CCHFV vector (7). These infections were linked to 
abandoned cultivated lands during the German occupation, 
enabling tick host expansion. Subsequently, the virus was 
independently recognized as the cause of illness in the Congo in 
1969, leading to the name Crimean-Congo Haemorrhagic Fever 
Virus (7). Since then, comprehensive studies have consistently 

reaffirmed ticks as the primary transmission source and reservoir 
for CCHFV in nature.

CCHFV infection persists throughout the tick life cycle 
without detrimental effects, allowing the virus to survive 
transstadially and vertically. Although the frequency of transstadial 
transmission, the percentage of infected eggs, and the number of 
generations that can sustain the virus are not well understood. 
However, ticks can survive for extended periods without feeding, 
which supports the overwintering of CCHFV, allowing them to act 
as reservoirs even when vertebrate hosts are absent (13).

Ticks of the Ixodidae family, especially those of the genus 
Hyalomma, are considered both as reservoirs and vectors for 
CCHFV. Hyalomma marginatum has the most prominent role globally 
in the natural history of CCHF in the Old World. Dramatic increases 
in the circulation of CCHFV coincide with significant expansions in 
H. marginatum populations, driven by favorable weather conditions 
and human-induced ecological alterations (14, 15).

Altough the virus is transmitted mainly by tick species in the 
Hyalomma genus, CCHFV has been isolated from other ticks 
belonging to the genera Amblyomma, Dermacentor, Haemaphysalis, 
and Rhipicephalus. However, there is limited evidence indicating the 
active circulation of CCHFV among non-Hyalomma tick species in 
natural transmission cycles (16).

CCHFV has been reported in 39 tick species collected from a variety 
of hosts (13, 16). These include one species from Amblyomma, two 
species from Dermacentor, 15 species from Hyalomma, five species from 
Haemaphysalis, one species from Ixodes, 12 species from Rhipicephalus, 
and three species from the Argasidae family within the genera Argas and 
Ornithodoros (Table  1; Figure  2). This wide range of tick species 
highlights the potential role of numerous ticks in both spreading and 
maintaining the virus across various regions and host ecosystems.

FIGURE 1

Life cycle of Hyalomma marginatum and transmission route of Crimean-Congo haemorrhagic fever virus (CCHFV). Hyalomma marginatum is a two-
host tick. Upon hatching, larvae seek small animal hosts, such as birds, lagomorphs or rodents, for their first blood meal. After engorgement, the larvae 
molt into nymphs while remaining on the same host. The nymphs then continue feeding on the same animal until they engorge and drop off to molt 
into adults. Adult ticks seek larger vertebrate hosts, such as livestock, for feeding and mating. Engorged females then detach to oviposit in the 
environment. CCHFV transmission occurs between ticks and vertebrate hosts and through co-feeding between ticks. Humans can become infected 
through tick bites, contact with infected animal fluids, or nosocomial transmission. Secondary human-to-human transmission occurs through direct 
exposure to the blood, bodily fluids, organs, or secretions of infected individuals. The original figure was created with BioRender (https://Biorender.
com/).
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TABLE 1 List of tick species infected by Crimean-Congo haemorrhagic fever virus.

Order Family Scientific name Country References

Ixodida

Ixodidae

Amblyomma variegatum Côte d’Ivoire, Ghana, Guinea, Senegal (19, 90, 92–94)

Dermacentor marginatus Greece, Iran, Russia, Spain, Türkiye (95–102)

Dermacentor nuttalli China (103)

Haemaphysalis concinna Türkiye (104)

Haemaphysalis inermis Iran (105)

Haemaphysalis parva Greece, Türkiye (102, 106)

Haemaphysalis punctata Iran, Russia (95, 105)

Haemaphysalis sulcata Iran (107)

Hyalomma aegyptium Algeria, Iran, Syria, Türkiye (64, 108–110)

Hyalomma anatolicum
Armenia, India, Iran, Kazakhstan, Pakistan, Oman, Tajikistan, 

Türkiye, Turkmenistan, Uzbekistan

(17, 39, 99, 104, 105, 107, 

111–125)

Hyalomma asiaticum China, Iran, Kazakhstan, Mongolia, Turkmenistan, Uzbekistan (103, 105, 126–132)

Hyalomma detritum – (syn. 

Hyalomma scupense)
China, Iran, Pakistan, Russia, Türkiye (95, 99, 103–105, 111, 115)

Hyalomma dromedarii
China, Egypt, Iran, Mauritania, Pakistan, Saudi Arabia, 

Turkmenistan, United Arab Emirates

(105, 111–114, 128, 129, 

133–137)

Hyalomma excavatum Egypt, Ghana, Oman, Pakistan, Türkiye (90, 98, 111, 124, 135)

Hyalomma impeltatum Mauritania, Senegal, Sudan, Tunisia (94, 138–140)

Hyalomma impressum Côte d’Ivoire, Pakistan (93, 113)

Hyalomma lusitanicum Spain (96)

Hyalomma nitidum Central African Republic (141)

Hyalomma marginatum
Albania, Bosnia, Bulgaria, Iran, Kosovo, Mauritania, Romania, 

Pakistan, Russia, Spain, Türkiye United Arab Emirates, Zambia

(20, 95, 104, 105, 108, 111, 

113, 114, 127, 142–150)

Hyalomma rufipes
Egypt, Ghana, Iran, Italy, Kenya, Mauritania, Nigeria, Pakistan, 

Senegal, South Africa

(16, 19, 94, 113, 139, 151–

153, 224)

Hyalomma schulzei Iran, Saudi Arabia (105, 108, 134)

Hyalomma truncatum Cameroon, Kenya, Senegal, South Africa, Zambia (94, 144, 151, 154, 224)

Hyalomma turanicum Türkiye (104)

Ixodes ricinus Bulgaria, Kazakhstan, Kosovo, Poland, Russia, Spain, Türkiye
(18, 20, 95–97, 99, 130, 

155)

Rhipicephalus (Boophilus) annulatus Guinea, Russia, Spain, Türkiye (92, 95, 96, 143)

Rhipicephalus appendiculatus Iran, Uganda (127, 156)

Rhipicephalus bursa Albania, Greece, Iran, Kosovo, Russia, Spain, Türkiye (95, 104, 106, 108, 143)

Rhipicephalus (Boophilus) decoloratus Guinea, Kenya, Senegal, Uganda (92, 94, 157, 158)

Rhipicephalus e. evertsi Senegal (94, 159)

Rhipicephalus geigyi Côte d’Ivoire, Guinea (92, 93)

Rhipicephalus guilhoni Senegal (159)

Rhipicephalus microplus Côte d’Ivoire, Madagascar, Pakistan (93, 113)

Rhipicephalus pumilio Armenia (120)

Rhipicephalus rossicus Russia (95)

Rhipicephalus sanguineus
Albania, Bulgaria, Côte d’Ivoire, Egypt, France, Greece, Iran, Ghana, 

Guinea, Mauritania, Pakistan, Spain, Türkiye

(16, 92, 93, 97, 105, 107, 

114, 115, 117–119, 125, 

139, 147, 160–163)

Rhipicephalus turanicus Egypt, Iran, Kazakhstan, Russia, Türkiye
(18, 95, 98–100, 104, 115, 

126, 127, 162)

Argasidae

Argas persicus Uzbekistan (120)

Argas reflexus Iran (115)

Ornithodoros lahorensis Iran (108)
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Detection of CCHFV in ticks predominantly relies on reverse 
transcriptase-polymerase chain reaction (RT-PCR) due to its high 
specificity and sensitivity in amplifying viral RNA. Additionally, a 
few studies employed immunological methods, including enzyme-
linked immunosorbent assay (ELISA) [e.g., studies by (17, 18)], 
immunofluorescence assay (IFA) (19), and a combination of 
indirect hemagglutination fluorescence assay (IHFA) with 
RT-PCR (20).

Hyalomma marginatum is recognized as the primary vector in the 
Old World. Among the tick species found infected with CCHFV, 15 
are confirmed vectors, while 16 are considered potential vectors (16). 
In addition to H. marginatum, confirmed vectors of CCHFV include 
Amblyomma variegatum, H. aegyptium, H. anatolicum, H. asiaticum, 
H. asiaticum kozlovi, H. detritum, H. dromedarii, H. excavatum, 
H. impeltatum, H. rufipes, H. schulzei, H. truncatum, H. turanicum and 
R. bursa. This classification is based on documented infection rates, 
infection records, and observations across over 30 tick species. 
Potential vectors include D. marginatus, D. nuttalli, Ha. concinna, Ha. 
inermis, Ha. parva, Ha. punctata, Ha. sulcata, I. ricinus, R. annulatus, 
R. appendiculatus, R. decoloratus, R. evertsi evertsi, R. geigyi, 
R. guilhoni, R. sanguineus, and R. turanicus (16).

Detecting a virus within an arthropod does not necessarily mean 
it is an active vector (13). Studies on the vector competence of ticks for 
CCHFV reveal that ixodid (hard) ticks, particularly those in the 
Hyalomma genus, are highly susceptible to infection and can transmit 
the virus through biting. Conversely, argasid (soft) ticks are generally 
not efficient CCHFV vectors (13). The evolutionary dynamics of 
CCHFV are closely constrained by the necessity to maintain high 
adaptability within both arthropod and vertebrate host environments. 
To validate a tick species as a vector, several steps are necessary: the 
ticks must feed on naturally infected hosts without artificial virus 
exposure, the virus must be detected in the ticks after molting, and the 
infected ticks must then feed on naïve hosts. The virus should then 
be found in these hosts and subsequently in the new generation of 
ticks from the initially infected adults. Strict adherence to these 
procedures is essential for accurately determining the vectorial abilities 
of specific tick species. However, these experiments are particularly 
challenging to perform because CCHFV is a biosafety level 4 (BSL-4) 
pathogen, requiring high-level containment facilities for safety.

Further studies are needed to evaluate the vector competence of 
various tick species for CCHFV transmission and to explore factors 
influencing the spread of the virus. Understanding both vector 

FIGURE 2

Geographic distribution of Crimean-Congo haemorrhagic fever virus detection in ticks.
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competence and vectorial capacity—the extent of transmission—is 
essential for predicting CCHFV’s spread into new areas. Surveillance 
of the virus in ticks is an effective tool for monitoring the virus’s 
introduction or circulation within vulnerable populations. This 
surveillance helps assess human exposure risk, identify high-risk 
areas, and establish early warning systems for potential outbreaks. This 
surveillance is essential not only for accumulating information about 
pathogen epidemiology but also for clarifying the role of CCHFV tick 
vectors in public and veterinary health (16).

2.2 Serological detection of CCHFV in 
animals

Serological detection of CCHFV in animals provides crucial 
information about its ecological role. Because CCHFV often causes a 
short-lived viremia and can be asymptomatic, directly detecting the 
virus can be  difficult. Thus, serological surveys are essential for 
monitoring the spread of CCHFV in animal populations and assessing 
spillover risk to humans.

Common serological methods include ELISA, IFA, and 
neutralization tests. These techniques help identify animals exposed 
to the virus, even when symptoms are absent or the infection is not 
active (21).

ELISA is the most frequently used method for detecting anti-
CCHFV antibodies across various animal species. This technique 
typically targets the nucleocapsid protein (NP) of the virus (22). 
However, because the Hazara virus (HAZV) and CCHFV belong to 
the same serogroup, their NPs are genetically similar, leading to cross-
reactivity in tests. Studies have shown that sera from animals 
vaccinated with HAZV can weakly cross-react with CCHFV in 
immunofluorescence and immunoblot assays, although commercial 
CCHFV ELISAs used in field studies generally do not show this cross-
reactivity (23). Similarly, Dugbe orthonairovirus (DUGV), while 
genetically and antigenically close to CCHFV, can produce false 
positives in certain CCHFV tests, particularly immunofluorescence 
assays (24). Therefore, CCHFV prevalence might be overestimated in 
areas where HAZV and DUGV are present. ELISAs are considered to 
have the highest specificity, followed by micro-virus neutralization 
tests (mVNT), indirect immunofluorescence assays (iIFA), and plaque 
reduction neutralization tests (PRNT) (25).

Virus neutralization assays, known for their high specificity, are 
rarely used for diagnosing CCHFV due to the requirement of high-
containment laboratories (BSL-3/BSL-4) for handling live viruses. The 
level of containment depends on whether the area is endemic or 
non-endemic. Alternative methods, such as the pseudovirus 
neutralization test (pVNT), which uses pseudotyped Vesicular 
Stomatitis Virus, and the surrogate virus neutralization test (sVNT), 
can be performed in lower-containment BSL-2 laboratories, making 
them more accessible for diagnostic purposes (26, 27).

2.3 CCHFV in domestic animals

CCHFV circulates silently in an enzootic tick-vertebrate-tick 
cycle, without manifesting disease in animals. In humans, however, it 
triggers severe illness. Seroepidemiological surveys have identified 
CCHFV antibodies in various domestic animals (5) (Table 2; Figure 3). 

These surveys are crucial for identifying potential sources of CCHFV 
that might otherwise remain undetected. Since infected animals show 
no clinical symptoms, serological investigations are essential for 
assessing CCHFV exposure in animals and the associated risks for 
human exposure to infected ticksticks (4).

These surveys, especially in CCHFV-endemic regions, reveal high 
levels of antibodies in cattle, sheep, goats, horses, camels, and other 
domestic animals, indicating their significant role in the epidemiology 
of CCHF. These animals support tick reproduction and facilitate the 
movement of ticks across large areas, aiding the spread of the virus. 
Large mammals serve as hosts for the virus during viremia, acting as 
intermediaries and amplifiers between ticks. Various vertebrate hosts, 
particularly large ungulates, can transiently increase infection 
opportunities, enabling the virus to spread to other ticks feeding on 
these hosts. They can also contribute to CCHFV spread through 
co-feeding transmission, where ticks acquire the virus from infected 
ticks nearby, even if the host animal is not viremic (13). The movement 
of livestock, which may harbor infected ticks, significantly influences 
the spread of the virus (13). When livestock travel long distances, they 
can unknowingly transport infected ticks, as these ticks feed for an 
extended period. Unregulated trade movements of domestic animals 
could greatly elevate the risk of introducing infected ticks to new 
areas (28).

The prevalence of CCHFV antibodies among livestock varies 
based on factors like age and breed, highlighting different levels of 
susceptibility and exposure. Older animals typically have higher 
antibody levels due to repeated exposure, while younger animals, such 
as calves, are more likely to contract the infection while grazing, 
increasing their chances of encountering infected ticks (29–32). 
Cross-bred cattle often show higher seropositivity compared to native 
breeds, possibly due to genetic or environmental factors L (32). 
Longitudinal studies suggest that animals with existing antibodies and 
tick infestations may be at risk of reinfection (19). Antibodies against 
CCHFV can persist in naturally infected livestock for up to 2 months, 
emphasizing the need for effective surveillance and control 
strategies (19).

The detection of CCHFV antibodies in domestic animals has been 
crucial in identifying the presence of the virus and localizing areas 
with higher risks of human infection. Livestock such as cattle, sheep, 
camels, and goats commonly become infected with CCHFV through 
tick bites, often experiencing asymptomatic transient viremia for 
7–15 days (33, 34). Other domestic species, including buffaloes, 
horses, donkeys, dogs, chickens, and ostriches, occasionally show 
CCHFV seropositivity, though less commonly than livestock.

Buffaloes play an important role in CCHFV epidemiology as 
definitive hosts for Hyalomma and Rhipicephalus ticks. In a study 
examining the sera of 880 buffaloes, using ELISA, 145 were found to 
have been exposed to the virus (35). Their resistance to tick bites due 
to thicker hides and mud wallowing habits reduces the likelihood of 
tick-borne pathogen transmission (36–38). However, in densely 
populated regions like India, buffaloes may increase the risk of 
CCHFV transmission to humans (39, 40). In Africa, the coexistence 
of buffaloes and cattle within integrated wildlife-livestock ranching 
systems suggests a potential reservoir role for buffaloes in CCHFV 
transmission. A recent study in Kenya observed higher CCHFV 
prevalence in buffaloes compared to cattle, indicating that buffaloes 
could act as a reservoir, potentially transmitting the infection to cattle 
due to shared habitats and overlapping ranges (41).
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Horses are susceptible to CCHFV infection and can serve as 
hosts for infected adult ticks, thereby contributing to virus 
transmission. They can produce antibody levels similar to other 
animals, but their viremia is too low to infect new naive ticks and 
sustain transmission through blood feeding (34). Seroprevalence 
studies have documented CCHFV prevalence in horses across 
various endemic regions, including Bulgaria (4, 42), India (43), Iraq 
(44), Russia (45, 46), Tajikistan (47), and Türkiye (48). The role of 
horses in CCHFV transmission varies depending on environmental 
conditions, tick prevalence, and the density of horse populations in 
endemic regions. In regions invaded by H. marginatum ticks such 
as the Czechia (49) and France (50), horses exhibit higher 
infestation rates compared to other ungulates, likely due to regular 
ectoparasite checks.

Donkeys play a crucial role in the spread of CCHFV as they 
frequently encounter ticks during rural activities. Along with mules, 
they have historically been vital in agriculture and transportation. The 
high seroprevalence of CCHFV in donkeys is influenced by factors 
such as climate, animal movement, living conditions, and cohabitation 
with other livestock, highlighting their role in sustaining the virus 
within communities. Although donkeys might not directly transmit 

the virus like viremic livestock, they significantly contribute to its 
persistence. Spengler et al. (5) reported seroprevalence rates of 18.8% 
in Azerbaijan, 17.4 and 50% in Bulgaria, and 39.5% in Tajikistan. In 
Kenya, Omoga et al. (51) found the highest seropositivity in donkeys 
at 31.4% compared to other livestock species. In Senegal, Mangombi 
et al. (52) reported a seropositivity rate of 17.2% in donkeys. The 
highest recorded seroprevalence was in Türkiye, where Saltik (48) 
reported a rate of 53.48% in donkeys.

Dogs can harbor CCHFV asymptomatically or with mild 
symptoms when exposed to infected ticks. Studies in Africa have 
shown varying seroprevalence rates among domestic dogs. Antibodies 
to CCHFV were found in 6% of dogs (n = 1978) in South Africa and 
Zimbabwe (53). In Senegal, Mangombi et al. (52) found a seropositivity 
rate of 18.2% in dogs. In Uganda, Atim et al. (54) reported a high 
seropositivity rate of 56.2% in dogs. While the role of dogs in CCHFV 
epidemiology is not as well understood as that of livestock, their close 
association with humans raises concerns about the potential 
introduction of infected ticks into human environments. Further 
research into companion animals and their interactions with vector 
species is essential to better understand their role in the ecology 
of CCHFV.

TABLE 2 List of seropositive domestic animals infected by Crimean-Congo haemorrhagic fever virus.

Artiodactyla Bovidae Buffalo Bubalus spp. Egypt, India, Kenya, Pakistan (39, 41, 60, 164)

Cattle Bos spp. Afghanistan, Albania, Armenia, Azerbaijan, 

Bosnia, Bulgaria, Cameroon, Egypt, Hungary, 

India, Iran, Iraq, Ireland, Kazakhstan, Kenya, 

Kosovo, Malawi, Mauritania, Niger, Nigeria, 

North Macedonia, Oman, Russia, 

Saudi Arabia, Senegal, Somalia, South Africa, 

Sudan, Tajikistan, Turkmenistan, Tanzania, 

Tunisia, Türkiye, United Arab Emirates, 

Uganda, Zambia, Zimbabwe

(12, 29–32, 39, 41–45, 47, 60, 61, 88, 108, 

124, 145, 154, 164–200)

Goats Capra spp. Afghanistan, Albania, Bulgaria, Cameroon, 

Egypt, India, Iran, Iraq, Kenya, Kosovo, 

Mauritania, Niger, Oman, Saudi Arabia, 

Senegal, Somalia, Sudan, Tunisia, Türkiye, 

United Arab Emirates, Uganda

(29, 39, 42–44, 61, 67, 108, 124, 139, 153, 

154, 164, 172, 174–176, 178, 180, 186, 189, 

190, 192–194, 197–203)

Sheep Ovis spp. Afghanistan, Azerbaijan, Bulgaria, Cameroon, 

China, Egypt, Greece, Hungary, India, Iran, 

Iraq, Kazakhstan, Kenya, Kosovo, Mauritania, 

Oman, Pakistan, Romania, Russia, 

Saudi Arabia, Senegal, Tajikistan, Tunisia, 

Türkiye, Turkmenistan, United Arab Emirates

(4, 5, 12, 29, 42, 44, 47, 51, 124, 132, 153, 154, 

162, 164, 167, 176, 178, 180, 186, 190–194, 

196–200, 204–210)

Camelidae Camels Camelus spp. China, Egypt, Iran, Iraq, Kenya, Mauritania, 

Niger, Oman, Pakistan, Russia, Sudan, 

Tunisia, United Arab Emirates

(44, 124, 132, 138, 162, 173, 180, 186, 192, 

193, 196, 211–216)

Perissodactyla Equidae

Donkey Equus africanus
Azerbaijan, Bulgaria, Kenya, Senegal, 

Tajikistan, Türkiye
(29, 42, 47, 48, 52, 167)

Horses Equus caballus
Bulgaria, India, Iraq, Russia, Senegal, 

Tajikistan, Türkiye
(42–45, 47, 48, 52, 182)

Carnivora Canidae Dogs Canis familiaris Senegal, South Africa, Uganda, Zimbabwe (52–54)

Galliformes Phasianidae Chickens
Gallus 

domesticus
Kazakhstan (177)

Struthioniformes Struthionidae Ostriches Struthio spp. Iran, South Africa (56, 57)
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While various domestic mammals are susceptible to CCHFV 
infection, birds generally seem refractory. For example, Spengler et al. 
(34) stated a seroprevalence of 0.2% in chickens and ducks in 
Kazakhstan. Interestingly, ostriches demonstrate the presence of both 
CCHFV antibodies and viremia, unlike most other bird species. 
Ostriches appear to be the only birds in which there is detectable 
circulation of the virus in blood comparable to mammals (7). Viremia 
in ostriches is short, lasting 1–4 days, while the virus persists in 
visceral organs such as the spleen, liver, and kidneys for up to 5 days 
(55). Their role in transmitting the virus to humans is uncertain, but 
instances of notable viremia associated with CCHFV infection in 
humans have been noted (55–58).

2.4 CCHFV in wild animals

Numerous serological studies across a wide range of wild animals 
have highlighted the diverse responses observed in populations regarding 
CCHFV infections. These studies suggest their roles as amplifying hosts, 
facilitating virus transmission between infected and uninfected ticks 
during co-feeding or when feeding on a viremic animal.

A comprehensive review of nearly 7,000 samples from over 175 
mammalian, avian, and reptilian species revealed varying levels of 
seroprevalence (Table 3; Figure 4) (5). Certain mammals, such as 

hares (3–22%), buffalo (10–75%), and rhinoceroses (40–68%), 
exhibited considerable seropositivity.

Rodents and lagomorphs are crucial in CCHFV epidemiology (4, 
7, 59). Several rodent and lagomorph species, including the European 
hare (Lepus europaeus), scrub hare (Lepus saxatilis), Cape hare (Lepus 
capensis), bushveld gerbil (Gerbilliscus leucogaster), four-striped grass 
mouse (Rhabdomys pumilio), and multimammate mouse (Mastomys 
spp.), act as amplifying hosts, facilitating virus replication and 
transmission to ticks during their feeding (7). Infected rodents 
contribute significantly to the spread of CCHFV by transmitting the 
virus to ticks, thereby influencing its presence in the environment. 
Understanding the role of rodents in CCHFV transmission is 
important for developing effective surveillance and control strategies. 
Various rodent species such as the Cape porcupine (Hystrix 
africaeaustralis) (53), black rat (Rattus rattus) (60), brown rat 
(R. norvegicus) (60), bushveld gerbil (G. leucogaster) (53), four-striped 
grass mouse (R. pumilio) (53), Highveld gerbil (Tatera brantsii) (53), 
Indian desert jird (Meriones hurrianae) (60), Indian gerbil (T. indica) 
(60), multimammate mouse (Mastomys spp.) (53), Namaqua rock rat 
(Aethomys namaquensis) (53), Sundevall’s jird (M. crassus) (61), 
South African springhare (Pedetes capensis) (53), and Cape ground 
squirrel (Xerus inauris) (53) have displayed seropositivity to CCHFV 
in different regions, indicating their potential involvement in the 
virus’s transmission cycle.

FIGURE 3

Geographic distribution of Crimean-Congo haemorrhagic fever virus exposure detected in domestic animals.
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TABLE 3 List of seropositive wild animals infected by Crimean-Congo haemorrhagic fever virus.

Class Order Family Common name Scientific name Country References

Mammals

Artiodactyla

Bovidae

African buffalo Syncerus caffer Kenya (41)

Blesbok Damaliscus dorcas South Africa, Zimbabwe (53)

Common eland Taurotragus oryx South Africa, Zimbabwe (53)

Duiker Sylvicapra grimmia South Africa, Zimbabwe (53)

Gemsbok Oryx gazella South Africa, Zimbabwe (53)

Greater kudu Tragelaphus strepsiceros South Africa, Zimbabwe (53, 62)

Impala Aepyceros melampus South Africa, Zimbabwe (53, 62)

Mountain reedbuck Redunca fulvorufula South Africa, Zimbabwe (53)

Nyala Tragelaphus angasii South Africa, Zimbabwe (53)

Red hartebeest Alcelaphus buselaphus South Africa, Zimbabwe (53)

Sable antelope Hippotragus niger South Africa (53, 62)

Southern reedbuck Redunca arundinum South Africa, Zimbabwe (53)

Springbok Antidorcas marsupialis South Africa, Zimbabwe (53)

Waterbuck Kobus ellipsiprymnus South Africa, Zimbabwe (53)

Giraffidae Giraffe Giraffa camelopardalis South Africa, Zimbabwe (53, 62)

Suidae Warthog
Phacochoerus 

aethiopicus South Africa, Zimbabwe
(53)

Perissodactyla
Rhinocerotidae

White rhinoceros Ceratotherium simum South Africa, Zimbabwe (53, 62)

Black rhinoceros Diceros bicornis South Africa (53, 62)

Equidae Burchell’s zebra Equus burchelli South Africa, Zimbabwe (53)

Proboscidea Elephantidae African bush elephant Loxodonta africana South Africa, Zimbabwe (53)

Carnivora

Canidae
African wild dog Lycaon pictus South Africa (62)

Red fox Vulpes vulpes Russia, Turkmenistan (217, 218)

Felidae Pallas’s cat Otocolobus manul Turkmenistan (218)

Herpestidae Meerkat Suricata suricatta South Africa, Zimbabwe (53)

Chiroptera Vespertilionidae
Common noctule Nyctalus noctula Iran (61)

Large mouse-eared bat Myotis blythii omari Iran (61)

(Continued)
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Class Order Family Common name Scientific name Country References

Lagomorpha Leporidae

Cape hare Lepus capensis
South Africa, Turkmenistan, 

Zimbabwe
(4, 53)

Hare Lepus spp.
Bulgaria, Iran, South Africa, 

Zimbabwe
(4, 42, 53, 219)

European hare Lepus europaeus Russia, Hungary (4, 217, 220)

Scrub hare Lepus saxatilis South Africa, Zimbabwe (53)

Eulipotyphla Erinaceidae Long-eared hedgehog Hemiechinus auritus Turkmenistan (4, 221)

Cricetidae Bank vole Myodes glareolus Hungary (222)

Rodentia

Hystricidae Cape porcupine Hystrix africaeaustralis South Africa, Zimbabwe (53)

Muridae Black rat Rattus rattus Pakistan (60)

Muridae Brown rat Rattus norvegicus Pakistan (60)

Muridae Bushveld gerbil Gerbilliscus leucogaster South Africa, Zimbabwe (53)

Muridae Four-striped grass mouse Rhabdomys pumilio South Africa, Zimbabwe (53)

Muridae Highveld gerbil Tatera brantsii South Africa, Zimbabwe (53)

Muridae Indian desert jird Meriones hurrianae Pakistan (60)

Muridae Indian gerbil Tatera indica Pakistan (60)

Muridae Multimammate mouse
Mastomys spp. (coucha, 

natalensis) South Africa, Zimbabwe
(53)

Muridae Namaqua rock rat Aethomys namaquensis South Africa, Zimbabwe (53)

Muridae Striped field mouse Apodemus agrarius Hungary (222)

Muridae Sundevall’s jird Meriones crassus Iran (61)

Muridae Yellow-necked mouse Apodemus flavicollis Hungary (222)

Pedetidae South African springhare Pedetes capensis South Africa, Zimbabwe (53)

Sciuridae Cape ground squirrel Xerus inauris South Africa, Zimbabwe (53)

Aves Passeriformes Corvidae Eurasian magpie Pica pica Russia (217)

Reptilia Testudines Testudinidae Russian tortoise Testudo horsfieldii Tajikistan (223)

TABLE 3 (Continued)
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Additionally, other animals, including many large herbivorous 
mammals within the Artiodactyla and Perissodactyla orders, such as 
the African buffalo (Syncerus caffer), blesbok (Damaliscus dorcas) 
(53), common eland (Taurotragus oryx) (53), duiker (Sylvicapra 
grimmia) (53), gemsbok (Oryx gazella) (53), greater kudu (Tragelaphus 
strepsiceros) (53, 62), impala (Aepyceros melampus) (53, 62), mountain 
reedbuck (Redunca fulvorufula) (53), nyala (Tragelaphus angasii) (53, 
62), red hartebeest (Alcelaphus buselaphus) (53), sable antelope 
(Hippotragus niger), southern reedbuck (Redunca arundinum) (53), 
springbok (Antidorcas marsupialis) (53), waterbuck (Kobus 
ellipsiprymnus) (53), giraffe (Giraffa camelopardalis) (53), warthog 
(Phacochoerus aethiopicus) (53), white rhinoceros (Ceratotherium 
simum) (53, 62), black rhinoceros (Diceros bicornis) (53, 62), and 
Burchell’s zebra (Equus burchelli) (53), as well as the African bush 
elephant (Loxodonta africana) (53, 62) in South Africa and Zimbabwe, 
have demonstrated seropositivity to CCHFV.

Certain members of the Carnivora order also exhibited 
seropositivity in specific regions, including the African wild dog 
(Lycaon pictus) (62) in South Africa, red fox (Vulpes vulpes) in Russia 
and Turkmenistan (4), and Pallas’s cat (Otocolobus manul) in 
Turkmenistan (4).

Bats, such as the common noctule (Nyctalus noctula) and large 
mouse-eared bat (Myotis blythii omari) in Iran (61), also displayed 
seropositivity to CCHFV.

The potential involvement of birds in transmitting and 
maintaining CCHFV poses a significant concern in disease ecology. 
Migratory birds, traveling long distances through various habitats, 
carry a range of ectoparasites like ticks, mites, fleas, and lice. Their 
movements, especially between Africa and Europe, coincide with 
environmental changes that may affect the spread of tick-borne 
diseases. Studies show migratory birds can transport H. marginatum 
ticks from Africa to Europe, with certain Passerine bird species (e.g., 
Acrocephalus arundinaceus, A. scirpaceus, A. palustris, 
A. schoenobaenus, Locustella luscinioides, and Luscinia megarhynchos) 
facilitating the dispersion of infected ticks along their migratory 
routes (59). Although avian species may be refractory to CCHFV 
infection (5, 34, 56, 63), they can serve as blood sources for immature 
H. marginatum ticks, potentially contributing to disease spread. While 
most wild birds do not show evidence of CCHFV infection, exceptions 
like magpies (Pica pica), which have displayed CCHFV antibodies, 
suggest a more complex situation (7). Ostriches, however, show 
unique susceptibility to CCHFV, displaying both antibodies and 

FIGURE 4

Geographic distribution of Crimean-Congo haemorrhagic fever virus exposure detected in wild animals.
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viremia, unlike other birds (7). Further research is crucial to 
understand how different bird species contribute to 
CCHFV transmission.

Among reptiles, only one species—the Horsfield’s tortoise 
(Testudo horsfieldii) in Tajikistan—has been reported as seropositive 
for CCHFV (4). Notably, the tick species H. aegyptium, which is 
closely associated with tortoises and often linked to CCHFV 
transmission (64, 70), primarily infests hosts within the Testudo genus. 
This suggests a possible role of tortoises in virus transmission. 
However, the overall susceptibility of reptiles to CCHFV remains 
unclear, despite evidence pointing to potential transmission through 
tortoise-associated ticks.

2.5 Molecular detection of CCHFV in 
animals

Despite evidence of seropositivity among domestic and wild 
animals, isolating CCHFV directly from these hosts has proven 
challenging and direct CCHFV isolation from animals is scarce 
(5). Documented instances of direct CCHFV isolation from 
animals remain scarce, with notable cases including a febrile cow 
in Kenya (43), cattle and a goat from a Nigerian abattoir (90), a 
sentinel goat in Senegal (4, 43), European hares in Crimea (67), 
and a hedgehog in Nigeria (90). These sporadic cases highlight the 
difficulties in identifying and isolating the virus due to the typically 
short viremic period in infected animals and the absence or 
mildness of clinical symptoms (7). As a result, most successful 
isolations come from ticks or human cases, where the virus is 
more prominent.

Molecular detection of CCHFV infection relies on both real-time 
and end-point PCR techniques (68). These methods amplify specific 
segments of the viral RNA, such as the S segment encoding the 
nucleoprotein, enabling precise detection and quantification of the 
virus. In resource-limited settings, loop-mediated isothermal 
amplification (RT-LAMP) offers a cost-effective alternative, amplifying 
viral RNA under isothermal conditions without the need for advanced 
equipment (69).

Enhanced molecular detection methods, longitudinal studies, and 
comprehensive monitoring programs are essential for fully 
understanding the role of various animal species in the ecology of 
CCHFV. This knowledge is important for mitigating potential 
transmission risks to humans and preventing outbreaks of this serious 
zoonotic disease.

2.6 Experimental CCHFV infections in 
animals

Experimental studies investigating CCHFV infections across 
various animal species have provided valuable insights into 
susceptibility patterns, infection dynamics, and immune responses.

Small mammals, despite displaying short viremic periods of 2 to 
15 days followed by antibody development, are not considered long-
term reservoirs for CCHFV (34). Nonetheless, population surges in 
species like hares have been linked to disease outbreaks, implying their 
ecological significance in CCHFV transmission (7, 34). Studies on 
small African wild mammals and laboratory animals showed diverse 

responses to CCHFV, with some species showing viremia and 
antibody responses, while others did not. South African hedgehogs, 
for instance, display resistance but develop neutralizing antibodies 
(71). Furthermore, the virus was recovered from the blood of 
experimentally infected long-eared hedgehogs (Hemiechinus auritus) 
(4), while European hedgehogs (Erinaceus europaeus) did not exhibit 
similar susceptibility (72). The varying outcomes among hedgehog 
species indicate that susceptibility to CCHFV and infection dynamics 
may vary even within closely related species.

Experimental studies have shown that various rodent and 
lagomorph species respond differently to CCHFV infection. European 
hares (Lepus europaeus), for example, showed varying viremic 
intervals (2, 4, 5, 9 dpi) and generated an antibody response by day 7, 
which was maintained throughout the study (34). Similarly, scrub 
hares (Lepus saxatilis) and bushveld gerbils (G. leucogaster) exhibited 
viremia within the first week after infection, along with the production 
of antibodies (71). However, some species like the Cape ground 
squirrel (Xerus inauris) and the four-striped grass mouse (Rhabdomys 
pumilio) showed limited or no viremia and inconsistent antibody 
responses (71). On the other hand, the Southern multimammate 
mouse (Mastomys coucha), white-tailed rat (Uromys caudimaculatus), 
and red veld rat (Aethomys chrysophilus) demonstrated viremia 
(ranging from 1 to 6 dpi) and produced antibodies, indicating different 
responses to CCHFV among rodent species (71). Guinea pigs 
displayed low-level viremia accompanied by elevated temperatures. 
The onset of viremia correlated with the route of infection (71). The 
varied responses among small mammals highlight the complexity of 
CCHFV interactions, emphasizing the need for species-specific 
understanding in ecological dynamics. For a more comprehensive list, 
we encourage referring to the detailed experimental infection data of 
various small mammals infected with CCHFV, as thoroughly 
discussed in these studies (7, 34).

Experimental studies have investigated how CCHFV infects 
livestock, focusing on ruminants like sheep, cattle, horses and 
donkeys. Similar to small mammals, these ruminants experienced a 
brief period of viremia and developed antibodies about a week after 
inoculation (34). In sheep, maternal transfer of these antibodies was 
demonstrated, indicating a form of passive immunity (73). 
Additionally, experiments on West African sheep highlighted diverse 
clinical manifestations following infection (73). Some infected sheep 
developed moderate fever, hepatic dysfunction, and abnormal blood 
cell counts, including marked neutrophilia, that persisted for weeks. 
These observations highlight the potential impacts of CCHFV 
infection in livestock, particularly in sheep, affecting their health and 
possibly contributing to the virus’s circulation in nature. Calves have 
also been subjects of experimental infections, showing varying 
responses based on their age at the time of infection (74). When 
infected, 2-month-old calves displayed mild illness, with the virus 
detected in their blood. In contrast, 6-month-old calves did not show 
signs of viremia. However, only the younger calves, with detectable 
viremia, would be significant for the virus’s circulation, despite both 
age groups exhibiting high levels of antibodies against CCHFV. Horses 
and donkeys showed different responses: donkeys exhibited low-level 
viremia (75), while horses displayed minimal or no viremia but 
developed strong virus-neutralizing antibodies for up to 3 months 
(76). This highlights horses as valuable sources of serum for diagnostic 
and therapeutic purposes due to the stability of their virus-
neutralizing antibodies.
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It is important to note that these experimental studies were 
conducted in the 1970s. These studies revealed low viremia levels and 
asymptomatic cases in many animals, yet some could still transmit the 
virus to ticks during feeding. These results emphasize the need for 
updated research to better understand current CCHFV dynamics in 
livestock and improve prevention strategies. On the other hand, 
performing such research would be  very complicated or even 
impossible nowadays as CCHFV is classified as BSL-4 pathogen.

Efforts to establish animal models for CCHF have faced 
challenges, with limited success achieved so far. Newborn mice are the 
only animals besides humans that display symptoms of the disease, 
providing a basis for research. (7). Additionally, genetically modified 
adult mice and hamsters, deficient in specific immune components, 
mimic human disease and exhibit uncontrolled viral replication, 
inflammatory immune reactions, liver pathology, and mortality (77–
81). Non-human primate models, such as cynomolgus macaques, 
reflect varied disease outcomes similar to humans, aiding in preclinical 
assessments of therapeutics and vaccines (82). In experimental 
infections with African green monkeys (Chlorocebus sabaeus), the 
majority of subjects exhibited either limited symptoms or remained 
asymptomatic, although one monkey developed fever post-infection, 
with some monkeys showing detectable antibodies against the virus 
(83). In a separate study, Patas monkeys (Erythrocebus patas) and a 
Guinea baboon (Papio papio) displayed low-level viremia following 
inoculation, ultimately leading to the development of neutralizing 
antibodies in the baboon (84).

Studies investigating CCHFV infection in birds suggest that avian 
species, both wild and domestic, are generally refractory to the virus. 
Early experiments found that birds remained healthy after CCHFV 
inoculation, displaying no signs of viremia or detectable antibody 
responses (87). However, several studies showed that ground-feeding 
birds may therefore contribute to the virus’s ecological dynamics by 
facilitating viremic, non-viremic transmission or cofeeding (7, 56, 85, 
87). Ostriches, however, appear to be significant hosts for CCHFV, 
showing detectable viremia and epidemiologically linked to human 
infections (85). In controlled experiments, infected ostriches 
developed viremia and subsequently produced antibodies against 
CCHFV (88). Other bird species, for example the red-billed hornbill 
(Tockus erythrorhynchus), demonstrated replication of CCHFV 
without viremia but were able to infect immature naive ticks (85). 
Other birds, for example helmeted guineafowl (Numida meleagris), 
exhibited low-level viremia followed by a transient antibody response 
starting 5–6 dpi (56). Additionally, birds like the glossy starling 
(Lamprotornis spp.), did not display viremia but generated an antibody 
response (85). Further research is needed to clarify the role of birds in 
CCHFV transmission and its ecological implications.

3 Prevention and control of CCHFV in 
animals

Preventing and controlling the transmission of CCHFV in 
animals is crucial not only for animal health but also for preventing 
the virus from spreading to humans, where it poses a significant health 
risk. These measures aim to minimize the risk of virus transmission 
to humans and prevent CCHFV from reaching non-endemic regions.

The primary strategy to control CCHFV in animals involves 
managing tick populations, the main vectors for the virus. Using 
acaricides and other tick control methods is the most practical 

approach, although complete prevention of tick bites is unlikely (86). 
Efforts often focus on periods surrounding slaughter, when exposure 
of slaughterhouse workers to CCHFV in animal blood or tissues is 
most likely. Additional practices to reduce tick exposure include 
environmental adjustments, treating animals with tick repellents, 
maintaining clean pastures, establishing quarantine measures for new 
animals, and improving animal housing (86). Preventing or 
controlling CCHF infection in animals and ticks is complex due to the 
typically unnoticed tick-animal-tick-CCHFV life cycle and the often 
asymptomatic nature of the infection in most animals. The widespread 
presence of tick vectors further complicates control efforts, making 
acaricide-based tick control feasible only in well-managed 
livestock facilities.

Surveillance systems play a crucial role in early detection and 
response to CCHFV outbreaks in animals. Regular monitoring of 
animal populations in endemic areas for the presence of CCHFV 
antibodies or viral RNA could help identify potential reservoirs and 
understand disease dynamics. Timely detection enables prompt 
interventions to prevent further spread.

Finally, implementing biosecurity measures in farms, 
slaughterhouses, and veterinary facilities is essential to prevent CCHFV 
transmission between animals and humans as these facilities have been 
identified as major risk areas for human infection (8, 90, 224, 225).

Control strategies for CCHF infection in animals also extend to 
human protection. These strategies include avoiding tick bites 
through the use of repellents and employing adequate protection 
when handling or slaughtering animals (226). Preventing the 
movement of naive animals into endemic areas is crucial, as it 
minimizes the risk of vertebrate amplification of the virus, reducing 
occupational risks for workers involved in animal processing. 
Educating livestock owners, veterinarians, and the general public 
about CCHFV transmission, symptoms in animals, and preventive 
measures is vital. Raising awareness about the disease’s impact, 
emphasizing the importance of early reporting of suspected cases, 
and promoting proper biosecurity measures are key components of 
effective disease control efforts.

4 Conclusion

CCHFV, a highly virulent virus transmitted by Hyalomma ticks, 
poses a significant global health threat by causing severe haemorrhagic 
fever in humans. Its widespread presence across Africa, Asia, and 
Europe highlights the urgent need to understand its behavior within 
tick vectors and animal hosts.

Both wild and domestic animals, acting as asymptomatic carriers, 
play critical roles in maintaining tick populations and transmitting the 
virus, thereby potentially spreading the disease. Further, small 
mammals like hares and hedgehogs support immature tick 
populations, while larger domestic animals such as cattle, goats, and 
sheep can inadvertently expose humans to CCHFV during handling 
and slaughter. The complex interplay between the virus, ticks, and 
vertebrate hosts presents significant challenges in controlling CCHFV 
transmission. Despite often lacking visible symptoms, animals play a 
crucial role in the maintenance and spread of the virus, highlighting 
the necessity for rigorous surveillance, serological screening, and a 
deeper understanding of their roles in CCHFV ecology. Experimental 
infections confirm that various animal species are susceptible to 
CCHFV, emphasizing the need for ongoing research and monitoring.
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Control strategies mainly focus on managing tick populations 
through the use of acaricides and improving hygiene in animal 
habitats. However, the virus’s elusive nature within animals and the 
difficulties in identifying infected hosts continue to pose significant 
challenges to disease control. Continued research and a deeper 
understanding of CCHFV in animal populations are essential for 
developing more effective control strategies, mitigating zoonotic risks, 
and protecting the health of both animals and humans.
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