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D-lactic acidosis is associated with fermentative disturbances and is often marked 
by elevated levels of D-lactic acid in the blood, ruminal fluid, and synovial fluid in 
cattle. D-lactic acidosis is linked to various inflammatory manifestations, and although 
the causative factors have been extensively explored, the exact pathogenesis of the 
associated inflammation remains elusive. Notably, less attention has been given 
to D-lactate, a stereoisomer found in the plasma of affected animals, which may 
lead to D-lactic acidosis. This review aims to highlight the evidence suggesting that 
D-lactate participates in the modulation of inflammatory processes and explore its 
potential effects on synoviocytes, polymorphonuclear neutrophils, macrophages, 
and T-cells. This comprehensive examination of D-lactate’s involvement in the 
inflammatory response process provides timely insights into the pathophysiological 
aspects of ruminal acidosis in cattle.
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1 Introduction

Lactate exists as two stereoisomers, L-lactate and D-lactate, both of which play distinct 
roles in metabolism. L-lactate is the predominant form in human metabolism, is produced 
primarily during anaerobic glycolysis, and serves as a key intermediate in cellular energy 
homeostasis (1). In contrast, D-lactate, though less abundant, is produced by specific bacteria 
and has been associated with certain pathological conditions, such as D-lactic acidosis, 
particularly in patients with short bowel syndrome or gut dysbiosis (1–3).

Despite their structural similarities, these two isomers are metabolized through distinct 
enzymatic pathways. L-lactate is processed predominantly in the liver and heart through 
L-lactate dehydrogenase (LDH), whereas D-lactate metabolism occurs via D-2-hydroxyacid 
dehydrogenase, an enzyme present in fewer tissues with a different regulatory mechanism (2, 
4, 5). This distinction is crucial since the accumulation of D-lactate can have neurotoxic effects, 
leading to symptoms such as confusion and ataxia (6).

Once exclusively considered a metabolic waste by-product, lactic acid is now acknowledged 
as a pleiotropic signal involved in diverse physiological and pathological conditions (1). Lactic 
acid is present as a lactate-conjugated base at a physiological pH of 7.4, and exists in two 
enantiomeric forms in mammals: L-lactate is produced during glycolysis when oxygen levels 
are low (3), while D-lactate is formed through the detoxification of methylglyoxal (2).
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L-lactate is a naturally occurring enantiomer in mammals (4). In 
cattle blood, the normal range of L-lactate is 0.5–1 mM (7). In 
contrast, the D-lactate levels are in the micromolar ranges (8). 
Elevated L-lactate levels beyond this physiological range lead to 
hyperlactatemia, which is often triggered by various pathological 
processes are associated with deficient mitochondrial adenosine 
triphosphate (ATP) production (e.g., hypoxia), increased aerobic 
glycolysis (e.g., the Warburg effect, diabetic acidosis), or decreased 
lactate removal (9). Unlike hyperlactatemia, D-lactate accumulation, 
known as D-lactic acidosis, is observed in cases of ethylene glycol or 
propylene glycol poisoning (10). Dissimilar to L-lactate, D-lactate 
produced by alcohol dehydrogenase in the liver is not effectively 
metabolized by aldehyde dehydrogenases, leading to D-lactate 
accumulation (9, 11, 12). In humans with diabetic ketoacidosis, 
plasma D-lactate levels are significantly higher, reaching 
3.44 ± 1.99 mM, compared to the 0.48 ± 0.56 mM in patients with 
diabetes without ketoacidosis (13, 14). D-Lactic acidosis can develop 
as a complication after surgical procedures such as small bowel 
resection, which is associated with short bowel syndrome and 
intestinal bypass surgery performed for the treatment of obesity (15, 
16). The clinical manifestation of short bowel syndrome includes 
episodes of metabolic encephalopathy, similar to those observed in 
cases of ethanol intoxication (15).

The etiology of D-lactic acidosis in bovines is often due to 
disruptions in digestive fermentation caused by excessive grain 
and carbohydrate intake, or infectious diarrhea, commonly 
observed in neonatal calves (2, 7, 17). In addition, D-lactic 

acidosis in calves can be caused by a malfunction of the esophageal 
groove reflex, resulting in the diversion of milk into the 
reticulorumen (ruminal drinking) instead of direct delivery to the 
abomasum (18). The consequences of D-lactic acidosis in cattle 
have been described previously (7, 19). However, the role of 
D-lactate in the pathophysiology of associated diseases has not 
been the focus of attention. This review focuses on new advances 
in understanding D-lactate as a potential metabolic indicator 
associated with cellular damage.

Although the role of L-lactate in exercise, hypoxia, and 
metabolic diseases has been extensively studied, the physiological 
and pathophysiological roles of D-lactate remain poorly 
understood. Additionally, the clinical significance of D-lactate and 
its potential contributions to metabolic disorders beyond the 
known cases of D-lactic acidosis are still emerging research areas. 
This review aims to clarify these gaps by synthesizing current 
knowledge on the distinct roles and metabolic pathways of L-and 
D-lactate, focusing on the underexplored implications of D-lactate 
in health and disease.

2 Biochemistry and the metabolism of 
D-lactate

In mammals, D-lactate is produced through the breakdown of 
carbohydrates and lipids during the generation of methylglyoxal (MG) 
(Figure  1). MG is a byproduct of glycolysis and is formed by the 

FIGURE 1

D-lactate metabolism in mammalian cells. D-lactate enters from the extracellular into the cytosol via MCT. Mammalian cells can also generate 
D-lactate during methylglyoxal metabolism. Methylglyoxal is mainly produced as a byproduct of glycolysis, although it can also be produced during 
lipid peroxidation and amino acid breakdown. Detoxification of methylglyoxal takes place in the cytosol by the glyoxalase system, consisting of the 
enzymes GLO1 and GLO2, which employ reduced GSH to form D-lactate. D-lactate metabolism occurs within the mitochondria, entering through 
MPC located in the inner mitochondrial membrane. Within the mitochondria, D-lactate is oxidized to pyruvate by LDHD, using FAD as a cofactor. 
Pyruvate continues its oxidation to enter the mitochondrial tricarboxylic acid cycle. MCT, monocarboxylate transporter; TPI, triose phosphate 
isomerase; MGS, methylglyoxal synthase; AMO, acetol monooxygenase; SSAO, semicarbazide-sensitive amine oxidase; GSH, glutathione; GLOI, 
glyoxalase 1; GLOII, glyoxalase II; MPC, mitochondrial pyruvate carrier; LDHD, D-lactate dehydrogenase; FAD/FADH2, flavin adenine dinucleotide; TCA, 
tricarboxylic acid. Figure created with BioRender.
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fragmentation of dihydroxyacetone phosphate (DHAP) and 
glyceraldehyde 3-phosphate (G3P) (20). Triose phosphate isomerase 
metabolizes G3P into DHAP, and the conversion of DHAP to MG is 
catalyzed by methylglyoxal synthase (MS) (21). Moreover, MG can 
be  formed by protein catabolism, which includes the synthesis of 
aminoacetone by aminoacetone synthetases, and from lipid 
metabolism via reactions facilitated by glycerol kinase and glycerol-3-
phosphate dehydrogenase in both the kidneys and the liver. These 
processes connect glycolysis and lipid metabolism during MG 
production (22). The primary detoxification pathway for methylglyoxal 
is the ubiquitous glyoxalase system (23). This system consists of two 
enzymes, glyoxalase I (GLO1) and glyoxalase II (GLO2) and utilizes 
a catalytic amount of reduced glutathione (GSH) to form 
D-lactate (24).

In cattle, the shift from forage-based diets to concentrate-rich 
diets, which contain higher amounts of rapidly fermentable 
carbohydrates (such as during lactation or feedlot rearing), 
significantly alters the rumen fermentation process. The sudden 
intake of these carbohydrates, for example, due to sorting 
behavior, further drives the fermentation process to focus more 
on non-fibrous carbohydrates (25). In the rumen, these 
carbohydrates are rapidly fermented into short-chain fatty acids 
(SCFA) and lactate, leading to the accumulation of these acids and 
a decrease in ruminal pH below normal fermentation levels (i.e., 
pH < 5.6) (26). Here, D-Lactate is produced by the gut microbiota 
through lactate racemases, which are nickel-dependent enzymes 
present in halophilic archaea, such as Haloarcula marismortui and 
also in several commensal bacteria, including Lactobacillus and 
Clostridium (27). Many bacteria in the rumen, such as 
Streptococcus bovis and Lactobacillus, produce D-lactate (19, 28, 
29). However, other microorganisms within this digestive 
environment, including Megasphaera elsdenii (M. elsdenii), 
Selenomonas ruminantium subsp. Lactilytica, and certain 
entodiniomorph protozoa, also utilize lactate (1, 30). 
Approximately 60–80% of DL-lactate fermentation in the rumen 
is attributed to M. elsdenii (28). Lactate-utilizing microorganisms 
are sensitive to a decrease in pH, which promotes the proliferation 
of lactate-producing bacteria and consequently induces ruminal 
D-lactic acidosis (19, 26).

In pre-weaning calves with neonatal diarrhea due to viral 
infections or Cryptosporidium, the prevalence of D-lactic acidosis 
seems to be linked to villous atrophy in the small intestine (31). 
This condition can lead to impaired digestion and absorption, 
subsequently fostering microbial fermentation of substrates in the 
large intestine (6, 31). In humans, D-lactic acidosis is frequently 
recognized as an outcome of short bowel syndrome, often arising 
after surgical intervention involving partial removal of the small 
intestine due to malignant tumors, diseases, or procedures such 
as jejunoileal bypass surgery (32, 33). A reduction in the length of 
the small intestine compromises the carbohydrate absorption 
capacity, leading to an elevated carbohydrate flow to bacteria in 
the colon. This increased influx may promote bacterial 
proliferation, creating an acidic environment that supports 
D-lactate production (32, 33).

Varying rates of D-lactate oxidation have been observed in 
bovine tissue analyses (34), with the highest oxidation rates 
observed in the kidney cortex, followed by the heart and liver, and 

muscle tissue displaying the lowest oxidation rates. Similarly, 
L-lactate oxidation was notably higher in the kidney cortex and 
heart, with the liver and muscle exhibiting similar rates. Notably, 
gluconeogenesis oxidation rates for D-and L-lactate are 
comparable at 0.1 mM lactate concentrations in kidney and liver. 
However, the proportional utilization of D-lactate relative to 
L-lactate declined as substrate concentrations increased. These 
findings emphasize the constrained capacity for D-lactate 
utilization by bovine tissues (35).

D-lactate metabolism is attributed to oxidation to pyruvate by 
D-Lactate dehydrogenase (LDHD) (36, 37). Two distinct 
categories of LDHDs exist: nicotinamide adenine dinucleotide 
(NAD)-dependent LDHDs and flavin adenine dinucleotide 
(FAD)-dependent LDHDs (38, 39). The NAD-dependent LDHDs, 
identified within certain bacterial strains, are classified within the 
D-isomer specific 2-hydroxyacid dehydrogenase superfamily. 
Nonetheless, the exact biological roles of these enzymes within 
bacterial systems remain elusive (40, 41). The FAD-dependent 
LDHDs were first identified in bacteria, archaea, yeasts, and 
plants (42–45). These enzymes do not share a common ancestry 
with either L-lactate dehydrogenases or NAD-dependent LDHDs. 
They are categorized within the 2-hydroxyacid dehydrogenase 
subfamily of the vanillyl alcohol oxidase/para-cresol 
methylhydroxylase (VAO/PCMH) flavoprotein family. All 
members of this subfamily share a conserved FAD-binding 
domain and a variable substrate-binding domain. Unlike its 
NAD-dependent counterparts, FAD is used as a cofactor instead 
of NAD (38, 39, 46). The FAD-dependent LDHDs have been 
identified in mammals, including humans, mice, and bovine (36, 
38), exhibiting significant sequence resemblance to yeast LDHDs 
(36, 47, 48). This LDHD demonstrates elevated levels of expression 
in tissues characterized by high metabolic rates and abundant 
mitochondria (49), mostly located in the liver and kidney (50) and 
situated in the inner membrane of mitochondria (36, 47, 48).

3 D-lactate absorption

The solute carrier family 16 (SLC16) consists of 14 members 
categorized within the monocarboxylate transporter (MCT) 
family (51). These transmembrane proteins play a crucial role in 
facilitating the transport of lactate enantiomers and various other 
metabolically essential monocarboxylates, such as pyruvate, 
branched-chain oxoacids, SCFA, and ketone bodies, across 
cellular membranes (51, 52). The MCT1-4 group are proton-
dependent transporters closely associated with the movement of 
by-products of the glycolysis cycle across the plasma membrane. 
These include lactate, pyruvate, and ketone bodies such as 
acetoacetate and β-hydroxybutyrate (51). The Km has been 
reported at 27.5 mM for D-lactate and 4.54 mM for L-lactate in 
Ehrlich-Lettre Tumor Cells (53). Furthermore, the uptake of 
D-lactate by MCT-1 is significantly lower than that of L-lactate, 
with both isomers displaying reciprocal inhibitory effects (54).

The absorption of L-lactate in the digestive tract of monogastric 
is through the MCT-1, that is localized in the apical membrane and 
basolateral membrane of the intestinal epithelium (55, 56). In 
ruminants, MCT1-4 are mostly expressed in the forestomach and 
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large intestine epithelia (57–60). MCT-1 and MCT-2 are primarily 
localized in the basolateral membrane, with MCT-4 showing a 
slightly greater orientation towards the luminal side of the rumen 
epithelia (57, 59, 60). Therefore, lactate anions can enter the 
ruminal epithelial cells during cotransport with their protons (61). 
During ruminal acidosis, the concentrations of D-lactate in 
ruminal fluid reach 50–80 mM (7, 62, 63), suggesting that this 
condition may be key for MCTs D-lactate absorption. However, in 
contrast to SCFA, it has been suggested that lactate is more slowly 
absorbed (64). This could be involved to the higher Km of D-lactate 
(519 mM) than L-lactate (28 mM) observed with MCT-4 (65). 
Despite this, a decrease in ruminal pH due to excessive SCFA 
production promotes increased D-lactate accumulation through 
microbiome modifications (19, 26). In addition, has been reported 
that an acidic environment reported in ruminal acidosis can 
decrease the Km of MCT-4 for lactate (66). Moreover, the drop in 
ruminal pH facilitates the passive transport of lactate in its 
unprotonated form (lactate ion) through the ruminal wall, since the 
pKa of lactate is 3.84. At this pH, a significant portion of lactate 
remains unprotonated, allowing it to easily cross the ruminal wall. 
This process contributes to the development of metabolic acidosis 
in cattle.

Lactic acidosis becomes evident when plasma L-lactate 
concentrations exceed 4 mM, potentially resulting in a drop in blood 
pH to <7.35. Hyperlactatemia, whether mild or severe (i.e., progressing 
to lactic acidosis), can arise due to multiple factors such as sepsis, 
hemorrhagic shock, cardiac arrest, trauma, toxic exposure, ischemia, 
burns, diabetic ketoacidosis, certain types of cancer, and strenuous 
muscle activity (67). In bovines with ruminal acidosis, the blood 
lactate is >4 mmol/L after 24 h of ingestion of carbohydrates (7, 62), 
this becomes even more severe in calves, with concentrations 
exceeding 10 mM (31).

4 D-lactate as a potential 
proinflammatory agent

During ruminal acidosis, several inflammatory conditions 
associated with lameness are observed (68, 69). Laminitis is considered 
the main lesion in cattle with D-lactic acidosis, however, its etiology 
is still debated (19, 70). Intraruminal injection of lactic acid can 
induce laminitis in lambs (71, 72). Interestingly, arthritis and 
concurrent systemic conditions are observed in cattle with laminitis, 
suggesting a more diffuse inflammatory reaction (73). In fact, the 
experimental induction of laminitis associated with ruminal acidosis 
after oligofructose overload leads to an increase in the diameter of the 
tarsocrural joints (68, 69). Moreover, the concentration of 
polymorphonuclear leucocytes (PMNs) in the synovial fluid of several 
joints increases 24 h after induction of carbohydrate overload (68, 74). 
Additionally, 6 mM of D-lactate and an increase in pro-inflammatory 
molecules such as Interleukin (IL)-6, IL-1, prostaglandin E (PGE2), 
and matrix metalloproteinases (MMP)-9 were detected in the synovial 
fluid of affected bovines (74, 75). Elevated levels of lactate have also 
been identified in the synovial fluid of humans with various joint 
diseases such as septic arthritis (76, 77), osteoarthritis (78), 
osteonecrosis (79), rheumatoid arthritis (RA), and gout (80, 81). 
Particularly, fibroblast-like synoviocytes (FLS) in RA-affected joints 
exhibit an increased lactic acid production (82). This increased lactic 

acid concentration has been proposed to play a pivotal role in the 
intracellular signaling pathways regulating the production of 
pro-inflammatory cytokines and is considered a new potential 
therapeutic target (83–85). D-lactate can modulate the inflammatory 
response through different cells and mechanisms, contributing to the 
complex pathophysiology of inflammation observed in cattle. This 
section explores the distinct effects of D-lactate on fibroblast-like 
synoviocytes (FLS), polymorphonuclear cells (PMNs), macrophages, 
and T-cells, highlighting the specific pathways and responses involved 
in the inflammatory process.

4.1 Bovine fibroblast-like synoviocytes

Fibroblast-like synoviocytes (FLS) are critical to structure the 
intimal lining cellular layer of the synovium in diarthrodial joints and 
are responsible for regulating the composition of the synovial fluid 
and the extracellular matrix (86). The FLS also define and maintain 
the inflammatory environment during most arthropathies (87–89). 
Several antecedents suggest that D-lactate induces specific 
inflammatory responses in FLS. It has been shown that 5 mM 
D-lactate or sodium D-lactate induces the expression and production 
of IL-6 and IL-8 in bovine FLS, suggesting a potential role of D-lactate 
in joint inflammation during acute ruminal acidosis (90). Additionally, 
bFLS expresses mostly MCT-1 and its pharmacological inhibition 
with AR-C155858 was shown to significantly reduce IL-6 and IL-8 
secretion induced by D-lactate (90). Furthermore, D-lactate induces 
the phosphorylation of p38 mitogen-activated protein kinase 
(MAPK), the extracellular signal-regulated kinase (ERK) 1/2 MAPK, 
Akt, and triggers the nuclear factor (NF)-κB pathway, which induces 
cytokine production in bFLS (90). D-lactate can also induce the 
accumulation of Hypoxia-inducible factor (HIF)-1α and in turn, the 
expression of IL-6. Moreover, the HIF-1 is closely linked with the 
PI3K/Akt and NF-κB pathway activation in bFLS (91) (Figure 2).

L-lactate concentrations ranging from 10 to 40 mM have been 
detected in inflamed tissues of animals with diseases such as arthritis 
including synovial tissue (92). The RA-FLS express MCT-1 and 
MCT-4, which regulate lactate uptake and release from cells, 
respectively (93). An increase in glycolysis (thus lactate levels) has 
been detected in RA-FLS and is associated with inflammation (94, 95). 
Moreover, L-lactate can induce an elevation in glycolysis and enhance 
the glycolytic capacity within synovial fibroblasts (96). Additionally, 
L-lactate potentiates the tumor necrosis factor-alpha (TNF-α)-
induced secretion of IL-6 in RA-FLS, indicating a potential activation 
of the HIF-1 pathway (96). Similarly, D-lactate can also increase the 
glycolysis augmenting glucose uptake and GLUT-1 expression in bFLS 
via HIF-1, suggesting a metabolic reprogramming associated with the 
inflammatory response (91). Moreover, this effect is additionally 
supported not only by an upregulation of glycolytic enzymes such as 
LDHA, but also by an upregulation of pyruvate dehydrogenase kinase 
(PDK)-1, which inhibits Pyruvate dehydrogenase (PDH), hindering 
the conversion of pyruvate to Acetyl-CoA, ultimately favoring the 
production of lactate (91) (Figure  1). A PDK-1 inhibitor, such as 
dichloroacetic acid (DCA), has been utilized to correct the pyruvate 
influx into the mitochondria, consequently enhancing oxidative 
phosphorylation and reducing lactate accumulation (97). Studies thus 
suggest the effectiveness of a PDK-1 inhibitor in reducing 
inflammation in collagen II-induced arthritis in female DBA/1 mice 
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(98). In bFLS, in which TNF-α increases glycolysis and reduces 
pyruvate influx into the tricarboxylic acid (TCA) cycle and increasing 
IL-6 production, DCA effectively reduces the secretion of IL-6 (99). 
Additionally, metabolic disturbances characterized by increased levels 
of pyruvate, D-lactate, L-lactate and IL-6 have been detected in the 
synovial fluid of heifers with acute ruminal acidosis induced by 
oligofructose overload (75). Thus, the utilization of modifiers targeting 
glycolytic metabolism emerges as a novel strategy to treat joint 
inflammation (83–85, 100). This approach warrants attention and 
exploration within the context of livestock health, especially towards 
the prevention and management of metabolic-inflammatory diseases 
in cattle herds.

4.2 Polymorphonuclear leucocytes

Polymorphonuclear leucocytes (PMNs) constitute the primary 
and most abundant leukocyte population in cattle joints 24 h after 
induced ruminal acidosis (68, 74). PMNs perform various functions, 
including phagocytosis, generating reactive oxygen species (ROS), and 
forming neutrophil extracellular traps (NETs) (101, 102). The presence 
of NETs in synovial fluid is a characteristic of aseptic polysynovitis in 
cattle (74). While NETs are acknowledged as a beneficial microbicidal 
mechanism, they are also pathological biomarkers of early rheumatoid 

arthritis (103, 104). NETs serve as a source of citrullinated 
autoantigens, significantly amplifying the inflammatory response and 
triggering the production of inflammatory molecules such as IL-6, 
IL-8, and adhesion proteins (104). Bovine PMNs (bPMNs) exhibit an 
induction of NET release upon exposure to D-lactate in  vitro, a 
process reliant on its cellular uptake facilitated by MCT-1 transporters, 
subsequently activating peptidyl arginine deiminase 4 (PAD-4) that 
induce the histone H4 citrullination (105). Moreover, the release of 
NET induced PMNs adhesion to bovine endothelial cells by increasing 
CD11b expression and L-selectin shedding (105) (Figure 3). Similarly, 
L-lactate has shown the capability to induce NET formation in human 
neutrophils. Inhibition of lactate dehydrogenase (LDH) activity 
markedly reduced NETosis induced by PMA and A23187, two well-
described NADPH oxidase-dependent and-independent NETosis-
inducing stimuli, respectively (106). PMA and A23187 can stimulate 
PKM2 dimerization and increase LDH activity, consequently 
triggering a Warburg effect in human neutrophils (106). In contrast, 
another study proposed that L-lactate generated during exercise may 
attenuate PMA-induced NET formation and ROS production (107).

D-lactate demonstrates the capacity to stabilize HIF-1α in a PI3K/
Akt pathway-dependent manner and increase the levels of LDHA and 
PDK-1 in bPMNs (108). Untargeted metabolomic analysis showed that 
D-lactate amplifies glycolysis and gluconeogenesis in bPMNs. 
Furthermore, inhibiting glycolysis using 2-DG and 3PO, which are 

FIGURE 2

Key signaling events underlying D-lactate-induced metabolic reprogramming in bFLS. D-lactate enters bovine fibroblast-like synoviocytes (bFLS) 
through MCT-1 and induces the activation of the PI3K/Akt, p38 MAPK and ERK1/2 MAPK pathways, and the subsequent activation of the transcription 
factors NF-κB and HIF-1. Through these signaling pathways and transcription factors, D-lactate induces the synthesis and secretion of IL-6, an 
inflammatory marker characteristic of bovine polysynovitis associated with D-lactic acidosis. Additionally, the local inflammatory response is sustained 
thanks to the activation of HIF-1, which favors glycolytic metabolism by increasing the expression of GLUT1 (which increases the incorporation of 
glucose from the extracellular medium), PDK1 (blocking the mitochondrial use of pyruvate through the TCA cycle) and LDHA (ensuring glycolytic flux 
by favoring the oxidation of pyruvate to lactate). IL-6, interleukin 6; MCT1, monocarboxylate transporter 1; GLUT1, solute carrier family 2 (facilitated 
glucose transporter) member 1; PI3K, phosphatidyl inositol 3-kinase; Akt, protein kinase B; p38, p38 mitogen-activated protein kinase (MAPK); ERK1/2, 
extracellular signal-regulated kinase 1/2 MAPK; HIF-1α and HIF-1β, hypoxia inducible factor 1 alpha and beta subunits, respectively; NF-κB, nuclear 
factor kappa B; LDHA, lactate dehydrogenase A subunit; PDK1, pyruvate dehydrogenase kinase 1; PDH, pyruvate dehydrogenase; TCA, tricarboxylic 
acid. Figure created with BioRender.
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inhibitors of hexokinase and 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 3, respectively, resulted in a reduction of NET formation 
(109) (Figure 3). Additionally, D-lactate stimulates glycogenolysis in 
bPMNs, which is vital for NET release. This critical attribute was 
corroborated by the noticeable inhibition observed with CP-91,149, a 
glycogen phosphorylase inhibitor, emphasizing the significance of 
glycogen reserves as an energy source pivotal for this mechanism (109).

Mitochondria are the powerhouse of the cell and are responsible 
of ATP production. The electron transport chain (ETC), located in the 
inner mitochondrial membrane, consists of four main complexes 
(I-IV) that sequentially transfer electrons from NADH and FADH2 to 
oxygen to form water (110, 111). As electrons move through these 
complexes, protons are pumped from the mitochondrial matrix to the 
intermembrane space by complexes I, III and IV, generating a proton 
gradient (ΔpH) and an electrical potential (Δψm) (110, 112). 
Together, these components form the electrochemical potential 
known as the proton motive force (Δp). The ATP synthase (Complex 
V) uses the energy from this to cause proton flow back into the matrix 
to synthesize ATP from ADP and inorganic phosphate (Pi) in a 
process known as oxidative phosphorylation (111, 113). This 
mechanism efficiently converts energy from nutrients into ATP, which 
is the primary energy currency of the cell (111).

Earlier electron microscopy studies usually failed to identify 
classic mitochondria in neutrophils (114, 115). This suggested that 
neutrophil mitochondrial function may be  primarily confined to 

apoptotic processes, due to their apparent low mitochondrial count 
and modest oxidative phosphorylation (OXPHOS) activity (115). 
However, our previous studies showed that bPMNs possess a 
functional and complex network of mitochondria (116) with similar 
characteristics to those described in human PMNs (114). Evidence 
suggests that mitochondria contribute to the inflammatory process via 
mitochondrial reactive oxygen species (mtROS) production. This 
hypothesis is supported by the increase of mtROS in bPMNs by PAF 
(116). PAF-induced NET release is inhibited by rotenone, a complex 
I inhibitor (117). Interestingly, mtROS can be generated by complexes 
I  and III of the respiratory chain (118, 119), which serve as the 
primary source of ROS in neutrophils, particularly in response to 
NOX-independent stimuli such as calcium ionophores (118).

Interestingly, D-lactate also increases mtROS in bPMNs and its 
scavenging with mitoTEMPO effectively reduces NET formation (108). 
In this context, mtROS have been described as key mechanisms for NET 
release in several diseases and as potential therapeutic targets (120–123). 
Overactivation of the type I interferon signaling pathway induces ROS 
and mtROS production, leading to NETosis in the neutrophils of 
patients with primary Sjögren’s syndrome (124) and a lupus mouse 
model (123). The mechanism of mtROS induction by D-lactate in blood 
bPMNs remains unknown; however, it is plausible that it involves 
metabolic reprogramming with elevation in the expression of 
hexokinases 2 and 3, as well as phosphofructokinase. This may coincide 
with the elevated levels of glucose and glucose-6-phosphate detected in 

FIGURE 3

D-lactate-induced NET formation is sustained through metabolic reprogramming of bPMN. Bovine polymorphonuclear neutrophils (bPMN) incorporate 
D-lactate through MCT-1, which induces the activation of the PI3K/Akt signaling pathway and the subsequent stabilization of HIF-1α. Additionally, 
D-lactate triggers the activation of PAD4, which catalyzes the transformation of arginine residues to citrulline in histones, leading to chromatin 
decondensation. HIF-1 activation is primarily responsible for the metabolic reprogramming necessary to energetically sustain NET release, through the 
overexpression of enzymes associated with glycolysis, gluconeogenesis and glycogen metabolism. D-lactate also increases the production of mtROS, 
mainly through mitochondrial complex I, a molecular mechanism necessary to induce the stabilization of HIF-1α and, consequently, the greater 
transcriptional activity of HIF-1. Furthermore, D-lactate promotes bPMN adhesion to endothelial cells through a mechanism involving the increased 
expression of CD11b and shedding of L-selectin. MCT1, monocarboxylate transporter 1; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; HIF-
1α and HIF-1β, hypoxia inducible factor 1 alpha and beta subunits, respectively; mtROS, mitochondrial reactive oxygen species; PAD4, peptidyl arginine 
deiminase 4; Cit, citrulline; ICAM, intercellular adhesion molecule; NET, neutrophil extracellular traps. Figure created with BioRender.
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the cytosol (109). Lactate can increase glucose metabolism and induce 
ROS production in chondrocytes via NADPH oxidase 4 (125). 
Furthermore, preconditioning fibroblasts in a culture medium that relies 
exclusively on lactate as a fuel source leads to a transition from OXPHOS 
to glycolysis. This metabolic shift is partly facilitated by the 
ROS-mediated stabilization of HIF-1α (126). Similarly, mtROS is 
required for HIF-1α stabilization by hypoxia in human neutrophils (127) 
and in bPMNs induced by D-lactate under normoxia (108). Moreover, 
the upregulation of glycolysis in neutrophils promotes enhancements in 
mtROS production through the glycerol 3-phosphate shuttle (127).

4.3 Macrophages

L-lactate can induce lactylation and post-translational 
modifications (PTMs), which serve as potential mechanisms to regulate 
inflammation (128). This process involves the inhibition of signaling 
pathways and the alteration of histones, resulting in the reduction of 
inflammatory macrophages that drive M2-like polarization towards a 
reparative phenotype (128, 129). Additionally, evidence also suggests 
that D-lactate may not directly induce histone lactylation (130). 
Instead, it can indirectly facilitate the lactylation of cytosolic proteins 
through S-D-(R)-Lactylglutathione, an intermediate in the glyoxalase 
pathway. This compound can react non-enzymatically, resulting in 
lysine D-lactylation (K(D-la)) and PTMs of glycolytic enzymes (131). 
These differences may explain some of the discrepancies in the response 
of lactate enantiomers to inflammation observed in bFLS in vitro (90). 
In contrast, D-lactate has been observed to promote histone deacetylase 
(HDAC) protein gene expression, potentially serving as a crucial 
transcriptional regulator (132, 133). This association potentially 
connects the impact of metabolic disturbances to alterations in gene 
transcription of proinflammatory proteins in cattle. However, further 
research is required to confirm this hypothesis. Recent findings suggest 
that D-lactate can induce the transformation of M2 macrophages into 
M1 macrophages. This modulation would occur by inhibiting the 
PI3K/Akt pathway while concurrently activating the NF-κB pathway 
(134). These observations suggest that D-lactate could potentially act 
as an agonist on TLR2 and TLR9 receptors, increasing the inducible 
nitric oxide synthase (iNOS), TNF-α, and IL-12, thereby exerting 
influence over the polarization of macrophages towards a 
pro-inflammatory phenotype (134). TLR2 can activate the PI3K/Akt 
pathway and NK-κB via MyD88/TAK1 and the expression of 
pro-inflammatory cytokines (135). Activation of TLR9 induces ERK1/2 
and Akt pathways and the IL-6 and TNF-α production in macrophages 
(136). This finding supports the potential role of D-lactate as a danger-
associated metabolite. In contrast, the role of D-lactate in macrophage 
function could be a more complex scenario. D-lactate exhibits anti-
inflammatory effects in experimental models of colitis and 
endotoxemia, through a specific receptor known as GPR81 (formerly 
hydroxycarboxylic acid receptor 1, HCAR1) (137). Moreover, D-lactate 
interfered with M1 polarization provide survival advantage in acute 
inflammation (137).

4.4 T-cells

D-lactate influences T-cell responses by modulating metabolic 
and signaling pathways that are crucial for their activation, 

proliferation, and cytokine production (138). Moreover, the 
interaction of D-lactate with MCTs, particularly MCT-1, highlights 
its ability to influence T-cell metabolism and function through 
direct uptake and utilization (138). Unlike L-lactate, which 
primarily supports glycolysis, D-lactate bypasses cytosolic LDH 
metabolism, enhances mitochondrial OXPHOS and promote a 
shift towards energy production through the TCA cycle (139). 
Additionally, human D-lactate dehydrogenase specifically transfers 
electrons from D-lactate to cytochrome c, supporting 
mitochondrial membrane polarization (140). This metabolic shift 
allows T-cells to sustain prolonged activation and function under 
conditions of metabolic stress. The TCA cycle and OXPHOS play 
central roles in regulating T cell-mediated inflammation by 
providing energy, generating key metabolites, and influencing the 
differentiation and function of T cell subsets (141). In fact, TCA 
cycle flux in Th1 and Th17 cells, which controls the elevated 
succinate/α-ketoglutarate (α-KG) ratio, promotes proinflammatory 
responses by stabilizing HIF-1α and increasing the expression of 
inflammatory cytokines such as IL-17 (141, 142). Moreover, 
mitochondrial activity, including the electron transport chain 
(ETC), generates ROS that act as signaling molecules to modulate 
T-cell fate and function (142). These metabolic processes are 
pivotal in maintaining immune homeostasis, and their disruption 
contributes to the pathogenesis of autoimmune diseases, 
highlighting potential therapeutic targets for inflammation 
modulation (141, 142).

D-lactate has been shown to increase mitochondrial ATP 
production and support pyruvate entry into the TCA cycle, 
enhancing the energetic capacity of T-cells (143, 144). This 
metabolic reprogramming favors Th2 polarization, characterized by 
cytokine production such as IL-4 and IL-13 (138). These cytokines 
not only modulate inflammatory pathways, but also play a critical 
role in modulating macrophage polarization from a 
pro-inflammatory M1 phenotype to an anti-inflammatory M2 
phenotype, as discussed previously (145). In addition to its 
metabolic effects, D-lactate may act as a signaling molecule that 
synergizes with inflammatory stimuli, such as PMA/ionomycin, to 
amplify cytokine production in HUT-78 T-cells (138). Notably, this 
includes its capacity to enhance the expression of Th2 cytokines, 
which are implicated in the regulation of synovitis and systemic 
inflammation (145). However, the potential effects of D-lactate on 
the T-subset of cells could be  more complex and require more 
studies to extend our knowledge of its role in the inflammatory 
process in cattle.

5 Conclusion

Several evidence suggest that D-lactate may enhance glycolytic 
activity in PMNs, FLS, and macrophages, disrupt cellular function, 
and that can induce an inflammatory response. Given that an 
increase in D-lactate is a characteristic of metabolic disorders 
associated with pathological processes in livestock, including 
lameness, it may be a relevant factor during the initial steps leading 
to the inflammatory response. D-lactate may exert pleiotropic 
effects depending on the affected tissue, as its metabolism relies on 
LDHD. This implies a more intricate scenario in cells expressing 
low levels of LDHD, which potentially interferes with mitochondrial 
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function. In addition, the effect of D-lactate on the increase of Th2 
cytokine expression may contribute to inflammatory modulation. 
This aspect warrants further investigation to elucidate the 
complexities associated with the impact of D-lactate on cellular 
processes and its potential implications for various pathological 
conditions in livestock.
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