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Rickettsia felis, responsible for flea-borne spotted fever, is a rising zoonotic

pathogen posing an increasing global threat due to its expanding geographical

distribution. The rise in antibiotic-resistant strains of this pathogen underscores

the urgent need for new therapeutic interventions. This study employed

a comprehensive subtractive proteomics analysis of the R. felis proteome,

aiming to identify essential, non-host homologous, and pathogen-specific

proteins, which were subsequently evaluated as potential new drug targets.

These findings o�er valuable insights into the development of therapeutic

strategies against rickettsiosis. The analysis revealed 343 proteins that are

non-homologous to the host, including 108 essential proteins, 25 unique

metabolic pathways, and 11 distinct proteins. Out of these, 10 proteins were

druggable in which two associated with virulence, and one related to resistance

(succinate dehydrogenase). Through a rigorous screening process and extensive

literature review, succinate dehydrogenase emerged as a promising drug

target. Protein interaction partners for succinate dehydrogenase were identified

using the STRING database. To further assess the functionality of succinate

dehydrogenase, structure-based studies were conducted. Approximately 18,000

ZINC compounds were screened, leading to the finding of six potential

inhibitors: ZINC67847806, ZINC67982856, ZINC67974679, ZINC67895371,

ZINC05668040, and ZINC05670149. Absorption, distribution, metabolism,

excretion, and toxicity (ADMET) profiling confirmed that most compounds

met the preferred pharmacokinetic properties, except for ZINC67895371 and

ZINC67847806, which exhibited positive ames test results, and ZINC05670149,

ZINC67895371, and ZINC67847806, showed hepatotoxicity. All compounds

were found to be non-sensitizing to the skin. Based on these findings, further
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experimental validation of ZINC67974679, ZINC67982856, and ZINC05668040

is recommended.

KEYWORDS

Rickettsia felis, novel drug targets, succinate dehydrogenase, in silico screening,

pharmacokinetics

1 Introduction

Rickettsia felis is a gram-negative, obligate intracellular
bacterium that causes flea-borne spotted fever (1). R. felis is a rod-
shaped bacterium, usually around 0.3 to 0.5 micrometers wide
and 0.8–1.5 micrometers long (2). It possesses a rickettsial cell
wall structure, with a peptidoglycan layer and an outer membrane
that is essential for its ability to survive and cause disease in
the host (3). R. felis was first discovered in 1994 in cat fleas,
known as Ctenocephalides felis, and has since been acknowledged
as a new zoonotic agent found worldwide (4). It has been found
in different arthropod vectors, such as fleas (5, 6), ticks (7, 8),
and mites (9), as well as in a variety of mammals hosts (10),
indicating a wide ecological range. The global distribution of R. felis
highlights its significance as a public health threat, particularly in
underdeveloped regions where diagnostic facilities and awareness
are limited (11–13). Its emergence as a zoonotic agent necessitates
a deeper understanding of its epidemiology to mitigate its impact
on global health. Cases of human infections have been reported
globally (14), with occurrences documented in America (15–18),
Europe (19, 20), Africa (21–25), and Asia (26–28). The pathogen’s
history of recognition is relatively recent compared to other
rickettsial species (29). Its ability to infect diverse hosts and vectors,
coupled with the increasing movement of pets and livestock, has
facilitated its spread across different geographical regions (30–
32). R. felis has been shown to cause pathology in various hosts,
including humans, where it induces flea-borne spotted fever (33–
36), as well as in animals such as cats (Felis catus) (37, 38),
opossums (Didelphis spp.) (39–41), and rodents (42, 43), although
the pathogenesis may differ between species due to variations in
host susceptibility and immune responses. The epidemiology of
R. felis is intricate, with numerous transmission cycles between
arthropod vectors and vertebrate hosts, including humans (1, 44–
49). In addition to the complexity of the life cycle, there is also the
persistence and difficulty in controlling its spread. The increasing
geographical spread and involvement of multiple hosts and vectors
suggest that R. felis may pose a higher risk. Furthermore, its
potential for outbreaks in densely populated areas underscores the
urgency of identifying effective therapeutic targets and preventive
measures (50). R. felis penetrates the endothelial cells lining the
blood vessels, leading to a systemic infection characterized by
fever, rashes, headache, and myalgia (51). Serious instances can
result in complications like vasculitis and dysfunction in multiple
organs (52).

The intracellular lifestyle of R. felis enables it to evade the
host immune system, persist within host cells, and develop
antibiotic resistance, rendering traditional therapies less effective
and highlighting the need for novel therapeutic targets and specific
inhibitors (53). R. felis typically shows resistance or reduced

sensitivity to several classes of antibiotics, including beta-lactams
(such as penicillin and cephalosporin), aminoglycosides (such
as gentamicin and streptomycin), sulfonamides (such as
sulfamethoxazole), fluoroquinolones, and macrolides (such
as erythromycin) (54). Nonetheless, the process of evaluating
numerous macromolecules followed by subsequent in vivo

experimentation is both time-intensive and resource-draining
in drug discovery (55). Subtractive proteomics, a comparative
proteomics technique, allows for pinpointing essential, non-host
homologous proteins crucial for the pathogen’s survival (56).

Existing drugs used for treating infections can vary in their side
effects in humans, and their misuse has accelerated the evolution
of drug resistance in pathogens (57, 58). Subtractive proteomics is
commonly used to evaluate the precision and relevance of potential
therapeutic targets. It has been extensively applied in research to
uncover and identify unique therapeutic targets specific to various
pathogenic strains (59–62). This method ensures that identified
targets are pathogen-specific, reducing the likelihood of off-target
effects on the host (63). In this study, we aimed to identify potential
drug targets and their inhibitors in R. felis using an integrated
approach combining subtractive proteomics, molecular docking,
virtual screening, and absorption, distribution, metabolism, and
excretion (ADMET) profiling. This comprehensive strategy is
designed to enhance our understanding of potential drug targets,
offering promising avenues for developing effective treatments
against this persistent and evolving pathogen.

2 Methodology

A subtractive proteomics approach was utilized in this study to
analyze the entire proteome of Rickettsia felis, aiming to identify
new potential drug targets, then followed by molecular docking,
virtual screening and ADMET profiling which shown in Figure 1.

2.1 Retrieval of pathogen proteome

The entire proteome of R. felis was obtained from the NCBI
(https://www.ncbi.nlm.nih.gov/) database in the FASTA format
(Genbank ID: GCA_000804505.1, Assembly no: ASM80450v1),
and was processed for the CD-HIT analysis.

2.2 Removal of paralogous sequences

Paralogous proteins were identified using the CD-HIT tool
(64). All sequences were processed with CD-HIT, maintaining
a sequence similarity cutoff of 60% to eliminate redundant

Frontiers in Veterinary Science 02 frontiersin.org

https://doi.org/10.3389/fvets.2024.1507496
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Rahman et al. 10.3389/fvets.2024.1507496

FIGURE 1

This chart illustrates the complete methodology followed for the identification of novel drug target and their inhibitors against R. felis. (Created with

https://smart.servier.com/ and Draw.io https://app.diagrams.net/).

proteins. Paralogue proteins were eliminated from subsequent
analysis, and non-paralogue proteins comprising over 100
amino acids were chosen. Proteins with <100 amino acids
were deemed non-essential and therefore excluded from
the analysis.

2.3 Detection of host-specific protein
homologs

A BLASTp search with a bit score >100 and an E-value
<10−4 was used to identify human non-homologous proteins (65).
Human homologous proteins were excluded to avoid potential
drug cross-reactivity with host proteins. The non-homologous
proteins with no significant similarity to human proteins were then
selected for further investigation.

2.4 Identification of essential proteins

Essential proteins are crucial for an organism’s survival,
growth, and adaptability (66). Essential proteins were identified
through a BLASTp search against the Database of Essential
Genes (DEG) (http://tubic.tju.edu.cn/deg/), applying an E-value
threshold of 10−10 and a bit score >100 (67). Non-essential
proteins were excluded, focusing solely on proteins critical for
pathogen survival.

2.5 Identification of unique metabolic
pathways

To precisely annotate the functions of non-paralogous vital
proteins, the KEGG Automatic Annotation Server (KAAS)
(https://www.genome.jp/kegg/kaas/) was employed. A comparative
evaluation of metabolic pathways between pathogen and host
was performed using the KEGG (https://www.genome.jp/kegg/)
database. KEGG used organism codes “rfe” for R. felis and “hsa”
for H. sapiens to retrieve the IDs of the metabolic pathways (68).
Proteins involved in pathogen-specific pathways were chosen for
further identification of potential drug targets, ensuring that these
targets were exclusive to the pathogen and absent in the host.

2.6 Druggability analysis

All essential non-homologous proteins were subsequently
assessed using BLASTp to compare them with FDA-approved drug
targets. The default E-value parameter of 10−5 was utilized in
BLASTp to search the Drug Bank for potential novel drug targets.

2.7 Prediction of virulence protein

To assess the virulence of proteins, the VFDB (Virulence Factor
Database) (http://www.mgc.ac.cn/VFs/) was utilized (69). Selected
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R. felis proteins underwent a BLASTp search against the VFDB,
applying an E-value threshold of 0.0001 and a bit score above 100.

2.8 Identification of resistance proteins

The Antibiotic Resistance Gene Annotation Tool (ARG-
ANNOT V6) tool (https://ifr48.timone.univ-mrs.fr/blast/arg-
annot_v6.html) was employed to explore novel resistance proteins
by analyzing the entire pathogen proteome. The FASTA sequences
of the selected proteins were analyzed using a BLASTp search
against the ARG-ANNOT V6 database, with a threshold of
10−5 (70).

2.9 Protein localization and interaction
profiling

Proper subcellular localization is vital for protein function
and interactions, influencing their role as drug or vaccine targets
(71). All selected proteins were analyzed using the CELLO
v.2.5 (http://cello.life.nctu.edu.tw/) online tool to determine their
intracellular positioning. The position-specific iterated BLAST
(PSI-BLAST) feature within this tool categorized the proteins
into different subcellular compartments, including the cytoplasm,
membrane, periplasmic membrane, and extracellular space (72).
Additionally, the STRING (https://string-db.org/) database was
utilized to identify protein-protein interactions of the identified
target protein. STRING is a pre-computed database used to identify
PPIs based on various data sources. To ensure the reliability of the
interactions, only those with a high confidence score (≥0.7) were
considered (73).

2.10 Protein structure modeling and
validation

The 3D structure of the succinate dehydrogenase was obtained
from the AlphaFold (https://alphafold.ebi.ac.uk/) database. The
predicted structure included confidence scores (pLDDT) provided
by AlphaFold2, with scores above 70 indicating high reliability.
The quality and reliability of the predicted structure were then
verified by using the Ramachandran plot and ERRAT (https://saves.
mbi.ucla.edu/), ensuring the accuracy and quality of the predicted
3D model.

2.11 Active site analysis and ligand
identification

Active site localization was accomplished using Molecular
Operating Environment (MOE v. 2015) software. Forecasting
active site residues was determined by pinpointing conserved
sites across protein families, utilizing robust sequence-based
scoring functions, and analyzing the features of the well-defined
3D structure, including the structural geometry of amino acid
residues and their electrostatic and chemical properties. For ligand

prediction, the computational tool ProBiS (Protein Binding Site)
(http://probis.cmm.ki.si/) was employed (74).

2.12 Docking simulation and
computational screening

The 3D structure of the protein was essential for docking
studies; therefore, succinate dehydrogenase was modeled in three
dimensions, and the ligand was predicted to act as an inhibitor.
Docking preparation was performed for the protein-ligand
complex by removing ligands and heteroatoms, including water
molecules. Protein preparation was carried out using AutoDock
v4.2 (75), which included adding hydrogens, merging non-polar
hydrogen atoms, and assigning Kollman charges. The receptor
was then saved in a local shell. Molecular docking was conducted
using AutoDock with the Lamarckian Genetic Algorithm (LGA),
performing 250 runs with a maximum of 27,000 generations and
2,500,000 evaluations. Redocking was performed to evaluate the
program’s ability to reproduce the crystal conformation of the
bound ligand. The grid points on the X, Y, and Z axis were set to
64, 70, and 62, respectively. A ZINC library of 18,000 molecules
was retrieved in SDF format and converted to a 3D PDB file using
Open Babel. The ligand library’s energy was minimized using the
MMFF94 force field and the steepest descent method for 1,500
steps. Gastieger charges were added, rotatable bonds were adjusted
in AutoDock, and the ligand library was saved in PDBQT format.
The PDBQT library was divided into files using Vina split, with
the redocking settings and grid box configuration applied for
virtual screening.

2.13 ADMET profiling

Pharmacokinetic parameters, including absorption,
distribution, metabolism, and excretion (ADME) (http://
www.swissadme.ch/) were evaluated for the shortlisted
drug-like compounds using the SwissADME tool (76). The
pkCSM tool (https://biosig.lab.uq.edu.au/pkcsm/) was then
employed to analyze the compounds’ toxicity profiles, including
immunotoxicity, mutagenicity, teratogenicity, neurotoxicity,
increased penetration, and carcinogenicity (77). Additionally,
the potential toxicity of the novel compounds was passed by
evaluating the maximum tolerated dose (human), minnow
toxicity, Tetrahymena pyriformis toxicity, acute oral toxicity
(LD50) in rats, hepatotoxicity, and skin sensitization.

3 Result and discussion

3.1 Subtractive proteomics analysis

3.1.1 Proteome retrieval, filtration and non-host
homology analysis

The R. felis proteome, comprising 1,393 sequences, was
subjected to CD-HIT analysis, resulting in the exclusion of
333 paralogous sequences. To prevent cross-reactivity with
human proteins, the remaining 1,060 non-paralogous sequences
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TABLE 1 Shortlisted druggable proteins in R. felis.

Serial no Protein ID DrugBank target DrugBank ID Cellular localization

1 WP_011270515.1 Drugbank_target | P24752 Acetyl-CoA acetyltransferase DB00795 Cytoplasmic

2 WP_011271493.1 Drugbank_target | P0A827 Serine hydroxymethyltransferase DB11596 Cytoplasmic

3 WP_011270920.1 Drugbank_target | P00338 L-lactate dehydrogenase A chain DB02701; DB09118 Cytoplasmic

4 WP_011270490.1 Drugbank_target | P21912 Succinate dehydrogenase DB00139 Cytoplasmic

5 WP_011270625.1 Drugbank_target | P04424 Argininosuccinate lyase DB00125 Cytoplasmic

6 WP_011270995.1 Drugbank_target | P22102 Trifunctional purine biosynthetic
protein adenosine-3

DB00642 Cytoplasmic

7 WP_039594975.1 Drugbank_target | P53597 Succinyl-CoA ligase DB00139 Cytoplasmic

8 WP_039595039.1 Drugbank_target | P13995 Bifunctional
methylenetetrahydrofolate dehydrogenase/cyclohydrolase

DB00116 Cytoplasmic

9 WP_039595177.1 Drugbank_target | P10902 L-aspartate oxidase DB03147 Cytoplasmic

10 WP_011271325.1 Drugbank_target | Q02768 Cytochrome b DB01117 Inner membrane

underwent a BLASTp analysis against the Homo sapiens proteome
(78). This analysis identified 717 sequences with human homology,
which were excluded, leaving 343 non-homologous proteins for
further analysis.

3.1.2 Evaluation of essential proteins, unique
metabolic pathways, and druggability analysis

Using DEG database, we identified 108 essential proteins
in R. felis which are pivotal to the pathogen’s life cycle and
represent potential targets for antibacterial drug development.
Additionally, using the KEGG database, we mapped 25 distinct
metabolic pathways linked to these essential proteins. Identifying
these pathways is critical as it provides insights into the
metabolic dependencies, which could be exploited for therapeutic
interventions. Supplementary Table S1 lists these specific pathways
with their identifiers, while Supplementary Table S2 presents
11 unique proteins along with their corresponding metabolic
pathways. To further assess their therapeutic potential, we
performed a BLASTp search of these distinct vital proteins against
the Drugbank database which revealed 10 proteins with substantial
similarity to FDA-approved drug targets (Table 1). These proteins,
which closely aligned with known FDA-approved drug targets, were
selected for further investigation.

3.1.3 Prediction of virulent and resistant proteins
Using VFDB resource, we identified two proteins from a

set of 10 being associated with the virulence of R. felis. These
proteins are of particular interest as potential drug targets,
especially in the context of combating drug-resistant pathogens,
which present significant challenges in the treatment and may
necessitate higher doses with increased risk of adverse effects
(79). Targeting virulence factors is thus a promising strategy in
drug development (80). Additionally, an analysis with the ARG-
ANNOTV6 tool revealed that one of the virulent proteins succinate
dehydrogenase, is involved in resistance mechanisms, such as drug
degradation and efflux. Despite its association with resistance,

succinate dehydrogenase remains a viable drug target due to its
critical role in the pathogen’s biology (81).

3.1.4 Subcellular localization and protein-protein
interaction

Our analysis found that 90% of proteins were cytoplasmic,
with 5% in both the inner and outer membranes (Figure 2A).
The identified target protein, succinate dehydrogenase, was
cytoplasmic, indicating its potential as a hub protein due to its
extensive interactions. Targeting succinate dehydrogenase could
disrupt the function of other interacting proteins, underscoring
its critical role in cellular processes (82). The protein-protein
interaction (PPI) analysis showed the succinate dehydrogenase
interaction with ubiquinol-cytochrome reductase (petA), NADH
dehydrogenase I, chain I (nuoI), NADH dehydrogenase I, chain E
(nuoE), succinyl-CoA synthase beta chain (SucC), succinyl CoA
synthase alpha chain (SucD), fumarate hydratase (fumC), succinate
dehydrogenase hydrophobic membrane protein (sdhD), pyruvate
dehydrogenase E1 component (pdhB), succinate dehydrogenase
cytochrome subunit (sdhC), and succinate dehydrogenase
flavoprotein (sdhA). The PPI analysis of succinate dehydrogenase
revealed a network with 11 nodes, an average node degree of 8,
an average local clustering coefficient of 0.863, and a total of 44
edges (Figure 2B). The PPI enrichment p-value was calculated
to be 6.51e−11, indicating a significant interaction network, with
an expected number of 14 edges. These proteins participate in
various essential functions, suggesting that inhibiting succinate
dehydrogenase could potentially disrupt the activity of other
interacting proteins (Figure 2C) (83). This makes succinate
dehydrogenase a promising candidate for a drug target.

3.1.5 Succinate dehydrogenase as a new drug
target

The succinate dehydrogenase protein in R. felis presents a
compelling target for drug development due to its vital role
in the tricarboxylic acid (TCA) cycle and electron transport
chain (ETC), both essential for ATP production (84). Succinate
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FIGURE 2

(A) Subcellular localization of vital, druggable, and pathogen-specific proteins. (B) Protein-protein interaction network for succinate dehydrogenase,

showing various protein interactions represented as nodes and edges. Colored nodes indicate the query protein. (C) Illustrate the proteins which

interact with succinate dehydrogenase.

FIGURE 3

Diagrammatic representation of the succinate dehydrogenase/complex II structure and function. This complex contributes to both the tricarboxylic

acid (TCA) cycle and electron transport chain (ETC) by facilitating the electron transfer process from succinate to ubiquinone (Q) via its four integral

subunits: SDHA, SDHB, SDHC, and SDHD. Key elements include Fe-S clusters (iron–sulfur clusters), ubiquinone (Q), ubiquinol (QH2), the inner

mitochondrial membrane, and the intermembrane space. (Created with https://smart.servier.com/ and Draw.io https://app.diagrams.net/).

dehydrogenase (SDH) is a mitochondrial enzyme that plays a
pivotal role in cellular metabolism by linking the tricarboxylic acid
(TCA) cycle and the electron transport chain (ETC) (85). Within
the TCA cycle, succinate dehydrogenase facilitates the oxidation of
succinate into fumarate, while in the ETC, it reduces ubiquinone
to ubiquinol, functioning as complex II. This enzyme facilitates
electron transfer through its four subunits (SDHA, SDHB, SDHC,

and SDHD), enabling the movement of electrons from FADH2

to ubiquinone and subsequently to complex III, contributing to
the production of adenosine triphosphate (ATP), the primary
energy currency of the cell. The catalytic subunit SDHA, the
largest component of the succinate dehydrogenase (SDH) complex,
is responsible for oxidizing succinate into fumarate, producing
FADH2 in the process as part of the tricarboxylic acid (TCA)
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FIGURE 4

(A) The 3D structure of succinate dehydrogenase was modeled using AlphaFold2. AlphaFold2 assigns a confidence score (pLDDT) from 0 to 100 for

each residue. Scores below 50 suggest unstructured regions, while higher scores indicate more reliable predictions. (B) The anticipated aligned error

of the model is depicted, where dark green areas represent low error, and light green areas signify higher error rates. (C) Represents 86.3% validity by

Ramachandran plot and (D) represents 92.7% ERRAT score of the predicted 3D structure.

cycle (86). The SDHB subunit houses three iron–sulfur clusters
that facilitate electron transfer from FADH2 to the membrane-
embedded subunits SDHC and SDHD. These latter subunits,
situated in the inner mitochondrial membrane, form the electron
transport chain’s (ETC) complex II and serve as the binding
and reduction site for ubiquinone (Q) to ubiquinol (QH2) (87)
(Figure 3). Therefore, its disruption can lead to impaired ATP
synthesis, metabolic imbalances, and increased oxidative stress,
ultimately weakening the bacterium’s ability to thrive and cause
infection. Given its critical function in both metabolism and
virulence, succinate dehydrogenase emerges as a promising target
for therapeutic interventions aimed at inhibiting the survival and
proliferation of R. felis (88).

3.1.6 3D structure prediction and its validation
The protein 3D structure provided by AlphaFold2, includes

some regions of disorder, which are indicated by low pLDDT
values (89). In the resulting model, most residues exhibit very high
confidence scores (pLDDT > 90), indicating the model’s accuracy
(Figure 4A). The dark green areas in the predicted aligned error
plot signify high accuracy, while the light green areas suggest higher
error rates (Figure 4B) (90). The structure was validated using the
PROCHECK and ERRAT servers which revealed good quality of
three-dimensional models (91). Ramachandran plot categorized

residues into three regions: favored (86.3%), allowed (12.3%), and
disallowed (0.4%) (Figure 4C). Additionally, the ERRAT server
evaluated the model’s quality based on statistical interactions
among non-bonded atoms of different types. ERRAT scores around
92.7% indicate high-resolution structures as shown in Figure 4D.

3.2 Molecular docking, virtual screening,
and ADMET profiling

3.2.1 Active site identification and ligand
prediction for the modeled protein

The functional activity of a protein depends on the binding
of a ligand to its active site (92). Identifying this binding
site is crucial for understanding the protein’s role and for
drug discovery (93). MOE utilized the 3D template structure,
which shares similarities with known ligand-binding sites, to
identify potential binding pockets through geometric analysis (94).
Multiple active sites were found, with the site having the highest
energy profile and key functional residues selected (Figure 5A).
Predicting protein ligands is challenging, as similar protein folds
do not always imply similar functions (95). Conversely, proteins
with different folds can exhibit similar biochemical properties,
emphasizing that the binding site is crucial for protein function
(96). The ProBiS revealed high sequence and structural homology
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FIGURE 5

Identification of ligand and active site. (A) The active site of the succinate dehydrogenase is determined using MOE. (B) The ProBis tool predicts

Flavin-adenine dinucleotide (FAD) as a ligand for succinate dehydrogenase.

FIGURE 6

Docking analysis of the succinate dehydrogenase revealed a binding a�nity of −8.47 kcal/mol for FAD at the active site.

with rhodoquinol-fumarate reductase complexed with Flavin-
adenine dinucleotide (FAD) (PDB ID 3VR8) (Figure 5B). A lower
binding energy, such as that observed here, suggests a stronger
binding affinity, which often correlates with effective inhibition of
enzyme activity.

3.2.2 Molecular docking and ligand-protein
interactions analysis

Various bioinformatics tools are used for molecular docking
in drug discovery (97). MOE module provides detailed graphical

representations and ranks receptor-ligand binding affinities using
the S-score, a measure of binding free energy (in kcal/mol), where
a lower score indicates a more favorable binding (98). Docking
of Flavin-adenine dinucleotide (FAD) to succinate dehydrogenase
revealed five distinct conformations. Conformation 1, with a
high binding energy of −8.47 kcal/mol, was selected for further
analysis due to its superior binding affinity compared to the
lowest score of −7.50 kcal/mol. This indicates that conformation 1
represents the most stable and potentially effective binding mode
for FAD, supporting its role in the protein’s function (Figure 6,
Table 2) (99).
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TABLE 2 Protein-ligand interaction and docking score.

Compound ID Docking score Amino acid Interactions Distance E (kcal/mole)

DB03147 −8.47 OD1 ASN 91 H-donor 3.07 −0.8

N LYS 120 H-acceptor 3.39 −1.4

ND2 ASN 91 H-acceptor 2.84 −0.8

5-ring HIS 131 pi-H 3.81 −2.4

FIGURE 7

(A) Virtual screening was conducted for succinate dehydrogenase using a ZINC database containing 18,000 compounds, revealing binding a�nities

ranging from −2 to −6 kcal/mol. The analysis identified approximately 3,865 compounds that docked at the same binding site with energies between

−4.4 and −4.2 kcal/mol (depicted in dark red). (B) An overview of the virtual screening process is presented, narrowing down from an initial pool of

18,000 compounds to 11,000 top-ranked candidates. This ultimately led to the discovery of six potential inhibitors: ZINC67847806, ZINC67982856,

ZINC67974679, ZINC67895371, ZINC05668040, and ZINC05670149.

A comprehensive in silico screening of the 18,000-compound
ZINC library was conducted against the active site of succinate
dehydrogenase using an intensive docking approach. This process
generated numerous docked conformations, ranked according
to their docking scores. Compounds exhibiting lower binding
affinities than the reference inhibitor, FAD with a binding energy
threshold of −8.47 kcal/mol, were eliminated from further
consideration as potential hit candidates. The screening identified
over 11,000 compounds with binding energies surpassing that
of FAD, ranging between −6.32 kcal/mol and −4.42 kcal/mol
(Figure 7A, indicated in dark red). These results suggest that the
inhibition of succinate dehydrogenase by these molecules could
represent promising leads, as the favorable binding energies imply
that these compounds form stable interactions with succinate
dehydrogenase, which could effectively inhibit its function (100).
Compounds demonstrating higher binding affinities than the
FAD inhibitor were prioritized for further investigation due to
their potent inhibitory potential against succinate dehydrogenase
(Figure 7B). From this group, six compounds emerged as viable
therapeutic candidates against succinate dehydrogenase in R. felis:
ZINC67847806, ZINC67982856, ZINC67974679, ZINC67895371,

ZINC05668040, and ZINC05670149 which were used for
further analysis.

3.2.3 Post-docking interaction analysis of
selected compounds with succinate
dehydrogenase

The selected compounds were subjected to post-
docking interaction analysis to gain further insights into the
pharmacological characteristics and binding dynamics of succinate
dehydrogenase. Multiple interactions between each ligand
and the receptor were observed during the molecular docking
analysis. The docking rank order, based on binding scores, is
as follows: ZINC67974679 > ZINC67895371 > ZINC67982856
> ZINC67847806 > ZINC05670149 > ZINC05668040. In the
docking study, ZINC67974679 demonstrated a binding energy
of −6.54 kcal/mol. The compound’s five-aromatic ring facilitated
the formation of one pi interaction with HIS118 achieved binding
energy of −0.8 kcal/mol, and two H-donor interactions with
TYR184 and ASP128, with bond lengths of 3.71 and 3.07 Å, and
interaction energy (E) of −0.9 and −6.3 kcal/mol, respectively
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FIGURE 8

Molecular docking analysis for the shortlisted compound (A) ZINC67974679, (B) ZINC67895371, (C) ZINC67982856, (D) ZINC67847806, (E)

ZINC05670149, (F) ZINC05668040.

(Figure 8A). ZINC67895371 achieved a docking score of −6.40
kcal/mol. The six and five aromatic rings of this compound
established a pi-hydrogen bond with MET119 and ASP189,
characterized by a bond length of 3.78 Å, 3.95 and an energy
of −0.6 and −0.7 kcal/mol (Figure 8B). ZINC67982856 was
highly compatible with the succinate dehydrogenase binding site,
displaying a binding score of −6.02 kcal/mol. The six aromatic
rings engaged in one H-donor and a pi-H interaction with
TYR184 and MET119, with bond lengths ranging from 3.64 to
4.43 Å and interaction energies between −0.7 and −0.9 kcal/mol
(Figure 8C). ZINC67847806 formed one hydrogen bond as a donor
with TYR184, resulting in a binding energy of −6.00 kcal/mol
with bond lengths ranging from 3.97 to 3.75 Å and interaction
energies between−0.7 and−0.8 kcal/mol (Figure 8D). Conversely,

ZINC05670149 initiated two hydrogen bonds as donors from
TYR184 and HIS118. This compound demonstrated a binding
score of −5.27 kcal/mol (Figure 8E). Finally, ZINC05668040
docked with succinate dehydrogenase, producing a binding energy
of −4.73 kcal/mol. The compound’s aromatic ring mediated a
single pi-hydrogen bond with the MET119, and three hydrogen
bonds as acceptors (HIS131, PHE132), and one hydrogen bond as
a donor with ASP128 residue (Figure 8F). Compounds with lower
docking scores, such as ZINC67974679 and ZINC67895371, are
expected to show increased stability within the binding site and
thus greater inhibitory potential, supporting their prioritization for
further investigation. The lower binding energies observed in these
interactions suggest that these compounds form stable complexes
with succinate dehydrogenase, potentially disrupting the enzyme’s
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TABLE 3 Docking scores and identified bond types for the selected compounds were determined through the MOE tool.

Compound ID Docking score Receptors Interactions Distance E (kcal/mole)

ZINC67974679
5-ring

−6.54 O TYR 184 H–donor 3.71 −0.9

OD2 ASP 128 H–donor 3.07 −6.3
NE2 HIS 118 pi–H 3.74 −0.8

ZINC67895371
6-ring
5-ring

−6.40 CGMET 119 pi–H 3.78 −0.6

CB ASP 189 pi–H 3.95 −0.7

ZINC67982856
6-ring

−6.02 O TYR 184 H–donor 3.64 −0.7

CA MET 119 pi–H 4.43 −0.9

ZINC67847806
S1 16
5-ring
5-ring

−6.00 O TYR 184 H–donor 4.33 −0.5
CGMET 119 pi–H 3.97 −0.7
CD LYS 120 pi–H 3.75 −0.8

ZINC05670149
N2 4
C6 15

−5.27 O TYR 184 H–donor 3.45 −0.8

O HIS 118 H–donor 3.24 −1.2

ZINC05668040
N3 10
S1 10
S1 10
5-ring

−4.73 OD2 ASP 128 H–donor 3.33 −1.6

N HIS 131 H–acceptor 3.41 −2.0
N PHE 132 H–acceptor 3.28 −2.8
CGMET 119 pi–H 3.71 −1.6

activity effectively (101). This correlation between docking score
and inhibitory potential underscores these candidates’ potential
efficacy. The detailed binding interactions within succinate
dehydrogenase active site for the selected compounds is presented
in Table 3.

3.2.4 Pharmacokinetic assessment
A pivotal aspect of drug discovery is the examination of

ADMET properties, as it significantly reduces time and expenses
during clinical trials (102). The pharmacokinetic evaluation
revealed key insights into the drug-likeness, ADME characteristics,
and blood-brain barrier (BBB) penetration of the selected
compounds (103). The Lipinski Rule of Five (RO5) served as
the foundation for determining drug-likeness, stipulating that
drug-like molecules should possess a molecular weight under 500
Daltons, with a maximum of 10 hydrogen bond acceptors and
<5 hydrogen bond donors and a logP (lipophilicity) value below
5 (104). Following these criteria, compounds ZINC20115475,
ZINC02688148, and ZINC04259566 satisfied the RO5, whereas
ZINC95543764, ZINC04232055, and ZINC04231816 exhibited
a single violation each. Nonetheless, all six compounds were
determined to lack BBB permeability, which evaluates the
compound’s ability to cross the protective blood-brain barrier to
reach the central nervous system. The compounds adhering to
drug-likeness criteria progressed to the subsequent phase of the
study. For preliminary ADME property estimation, the pkCSM tool
was utilized (105). This analysis encompassed solubility in pure
water (mg/L), gastrointestinal absorption (HIA), which indicates
the compound’s potential for oral absorption in the intestine,
permeability, inhibition of liver enzymes such as CYP 2C19, CYP
2C9, CYP 2D6, and CYP 3A4, as well as Caco-2 cell permeability, a
model used to predict intestinal drug absorption and permeability
through cell monolayers (106). The water solubility of these
compounds ranged from−2 to−5, with ZINC02688148 exhibiting

high solubility. Caco-2 permeability values spanned from −0.025
to 0.94, with ZINC04259566 demonstrating high cell permeability
and ZINC95543764 the lowest. The high permeability observed
for ZINC04259566 aligns with studies suggesting that compounds
with permeability values exceeding 0.5 tend to exhibit favorable
intestinal absorption profiles, making them promising candidates
for oral drug delivery (77). Additionally, all compounds displayed
good potent HIA permeability, leading to the recommendation
of ZINC67982856 for further experimental validation (Table 4).
Moreover, an Ames mutagenicity test conducted using the
pkCSM tool assessed the potential toxicity of these compounds,
including maximum tolerated dose (human), minnow toxicity, T.
pyriformis toxicity, oral rat acute toxicity (LD50), hepatotoxicity,
and skin sensitization (107). The use of T. pyriformis as a
model organism in toxicity studies is due to its sensitivity to
chemical compounds, providing valuable insights into aquatic
toxicity (106). All compounds except ZINC20115475 yielded a
negative Ames test, indicating a lack of mutagenic potential. The
LD50 values ranged from 2.8 to 4.3 mol/kg, with ZINC02688148
exhibiting the highest value, indicating lower acute oral toxicity
in rats. These results are consistent with other studies where
compounds with higher LD50 values demonstrated greater
safety margins, particularly for therapeutic agents intended for
prolonged use (108). The data for oral rat acute toxicity
(LD50), hepatotoxicity, and skin sensitization were predicted
computationally using the pkCSM tool, which evaluates toxicity
based on chemical structure and quantitative structure-activity
relationships (QSAR). Given that a chemical’s toxicity is often
predicted based on its molecular structure, ZINC20115475 was
excluded from further studies due to its positive result in the
Ames test, suggesting possiblemutagenicity.While ZINC02688148,
ZINC04259566, ZINC04232055, and ZINC04231816 were found to
be hepatotoxic, none of the compounds induced skin sensitization.
The hepatotoxic compounds were not considered for future
investigation, as previous study indicate the dose-dependent liver
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TABLE 4 ADME analysis of the shortlisted compounds against succinate dehydrogenase.

ZINC ID Water
solubility (log

mol/L)

CaCo2

permeability (log
Papp in 10-6 cm/s)

Intestinal
absorption
(human)

Skin
permeability
(log Kp)

BBB
permeability
(log BB)

Structure

ZINC67974679 −3.373 0.69 77.32 −3.695 −0.973

ZINC67895371 −3.162 1.247 98.70 −2.661 −0.123

ZINC67982856 −3.45 1.327 99.92 −2.515 0.245

ZINC67847806 −2.835 1.341 90.18 −2.735 0.623

ZINC05670149 −1.957 0.571 90.13 −3.124 −1.417

ZINC05668040 −2.184 1.155 91.39 −3.182 −0.414

TABLE 5 Toxicity analysis of the shortlisted compounds against succinate dehydrogenase.

ZINC ID Max.
tolerated

dose (human)

Minnow
toxicity
(logmM)

T. pyriformis
toxicity (log

µg/L)

Oral rat acute
toxicity (LD50)

(mol/kg)

Ames
test

Hepatotoxicity Skin
sensitization

ZINC67974679 0.513 2.815 0.061 2.632 No No No

ZINC67895371 0.561 −0.691 0.431 2.212 Yes Yes No

ZINC67982856 −0.522 0.944 0.514 2.316 No No No

ZINC67847806 0.099 1.968 0.285 2.306 Yes Yes No

ZINC05670149 −0.334 2.993 0.069 2.492 No Yes No

ZINC05668040 0.892 2.768 −0.399 2.794 No No No

toxicity profiles and mitigate potential risks (109). T. pyriformis

exhibited maximum tolerance to ZINC20115475 (0.367 log µg/L),
whereas the remaining compounds were less tolerated. Detailed
information can be found in Table 5.

4 Conclusions

This study employed the subtractive proteomics method to
prioritize viable drug targets against the R. felis. The approach
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involves several essential analyses at different stages, including
identifying non-host homologous, essential, druggable, and
pathogen-specific proteins. Several proteins, including succinate
dehydrogenase, were identified as novel drug targets against R.
felis. The selected essential proteins could serve as therapeutic
targets for the development of new drugs or vaccines against R.
felis. Additionally, a pharmacoinformatic approach was utilized
to screen a natural product’s ZINC library (n = 18,000) against
succinate dehydrogenase for potential inhibitors. Six compounds—
ZINC67847806, ZINC67982856, ZINC67974679, ZINC67895371,
ZINC05668040, and ZINC05670149—were identified as promising
inhibitors based on their ligand-protein binding patterns
(lowest estimated binding energy). However, ADMET profiling
indicated that while all compounds generally met the required
ADMET properties, ZINC67895371 and ZINC67847806 showed
positive Ames activity, and ZINC05670149, ZINC67895371, and
ZINC67847806 exhibited hepatotoxicity, though none showed
skin sensitization. Based on these findings, we recommend
the ZINC67974679, ZINC67982856, and ZINC05668040
compounds for further experimental validation. Nonetheless,
experimental validation is needed to enhance the efficacy of the
predicted targets.
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