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Assessing the pathogenicity of a disease-associated genetic variant in animals accurately 
is vital, both on a population and individual scale. At the population level, breeding 
decisions based on invalid DNA tests can lead to the incorrect inclusion or exclusion of 
animals and compromise the long-term health of a population, and at the level of the 
individual animal, lead to incorrect treatment and even life-ending decisions. Criteria to 
determine pathogenicity are not standardized, i.e., no guidelines for animal variants are 
available. Here, we aimed to develop and validate guidelines to be used by the community 
for Mendelian disorders in domestic animals to classify variants in categories based on 
standardized criteria. These so-called animal variant classification guidelines (AVCG) were 
based on those developed for humans by The American College of Medical Genetics 
and Genomics (ACMG). In a direct comparison, 83% of the pathogenic variants were 
correctly classified with ACMG, while this increased to 92% with AVCG. We described 
methods to develop datasets for benchmarking the criteria and identified the most 
optimal in silico variant effect predictor tools. As the reproducibility was high, we classified 
72 known disease-associated variants in cats and 40 other disease-associated variants 
in eight additional species.
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1 Introduction

The pace at which disease-associated genetic variants in animals 
are discovered is increasing and is associated with technological 
advancement (1) (Figure 1). Genetic tests for these variants have 
become very accessible as well, also for a layman audience thanks to, 
e.g., the direct-to-consumer genetic testing companies. The challenge 
of the interpretation of DNA variants and the translation to the 
clinic is well known in human medicine (2–5). The functional 
mechanisms of identified disease-associated DNA variants are often 
unclear and the associated diseases may have variable expression and 
incomplete penetrance, which leads to ambiguous interpretation of 
the pathogenicity of given variants. In animals, these challenges have 
also been recognized, nevertheless, no standardized evaluation 
protocol of variant pathogenicity has been developed (6–8). The 
potential consequences associated with misinterpretation of the 
importance of genetic variants however are far reaching (9–11). 
Ranging from incorrect treatment to even euthanasia, individual 
animals can suffer directly, however, the consequences can even 
negatively affect the entire population by impacting breeding 
decisions (9–11). As genetic diversity in several cat and dog breeds 
is low compared to the general human population, the exclusion of 
animals based on invalid associations can drive a further increase in 
other disease prevalences, and substantiate the concerns linked to 
animal welfare (12–18).

The American College of Medical Genetics and Genomics 
(ACMG) developed, and updates, widely used guidelines in human 
genetics to provide guidance when interpreting the potential 
pathogenicity of genetic variants (2, 19–28). While these ACMG 
guidelines have been considered a few times more recently in animal 
genetics, their implementation is overall very limited, and concerns 
about the appropriateness of some criteria have led to the exclusion of 
certain criteria in some publications (29–32). More recently, applying 

the ACMG guidelines has been objectively shown to lead to 
misclassification of variants in cats (6). Currently, no guidelines have 
been established that assist the process of variant classification in 
animals, which implies that decisions on pathogenicity are not 
standardized and are based on individual investigator experience alone.

We present guidelines tailored for variant classification in 
domestic animals and demonstrate their superiority on animal variant 
classification relative to the ACMG guidelines. To benchmark these 
animal variant classification guidelines (AVCG), a reference dataset 
was created, with allele frequencies (AF) derived from a large 
population study. An evaluation of in silico variant effect predictor 
tools was performed. The reproducibility of labelling variants in a five-
category classification system was examined and variants in nine 
species were evaluated.

2 Materials and methods

2.1 Ethics

Samples were non-invasive buccal swabs, collected by the animal 
owner or in veterinary practices, or EDTA whole blood, collected by 
veterinary clinics, in accordance with international standards for 
animal care and research. In some cats, blood was obtained as part of 
routine clinical procedures for diagnostic purposes, at the request and 
with the consent of the owner. As these samples were from client-
owned cats for which no harmful invasive procedures were performed, 
there was no animal experimentation according to the legal definition 
in Europe (Subject 5f of Article1, Chapter I of the Directive 2010/63/
UE of the European Parliament and of the Council). All cat owners 
provided consent for the use of their cat’s DNA sample in scientific 
research. Written informed consent was obtained from the owners for 
the participation of their animals in this study.

FIGURE 1

Number of new variants published per five year-period for the three species with currently over >100 published disease-causing variants in OMIA (1). 
While the extent is species-dependent, an increase can be seen in all three.
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2.2 Samples

The feline AF dataset was based on non-invasive cheek swab 
samples collected by cat owners, and either blood or cheek swab 
samples collected at certified veterinary clinics, for submission to 
commercial DNA testing. The samples submitted for MyCatDNA™/
Optimal Selection™ Feline (Wisdom Panel, Helsinki, Finland and 
Wisdom Panel, Vancouver, WA, USA, respectively) DNA genotyping 
based on a custom-designed Illumina® Infinium HD array between 
September 2016 and November 2023 consist of 30,577 individual cat 
samples, of these 11,036 samples (36%) have been previously 
published (33) and 19,541 samples are new entries. The samples 
submitted for Antagene DNA genotyping consist of 32,841 individual 
cat samples (Antagene, La Tour de Salvagny, France). The owners 
provided written consent for data use in research upon submission of 
samples for commercial genetic testing. All tests are routinely run and 
offered commercially. Geographically, these samples originate from all 
over the world, with the majority from Northern America (USA, 
Canada) and Europe (>20 countries) and some samples from Africa 
and Asia.

The breed of a cat was reported by its owner typically with 
additional accompanying information confirming registration under 
The International Cat Association, Fédération Internationale Féline, 
Livre Officiel des Origines Félines, The Cat Fanciers’ Association, or 
World Cat Federation standards. Additional breeds not yet recognized 
by any major breed registry but with an established community of 
breed hobbyists were also considered breeds for the purposes of this 
study. A cautionary note specifying examples regarding this aspect 
was added (Supplementary Table S1). The non-pedigreed cat sample 
set consisted of mixed breeds, breed crosses, or random-bred cats.

2.3 The decision-making process to obtain 
variant classification guidelines

In agreement with recommendations assisting the development 
of guidelines, the following steps were taken (34, 35). Prior to the 
actual development process, the scope and starting point were decided 
on. The starting point for this process were the original 2015 ACMG 
guidelines used in human medicine (Supplementary Table S2) (2). 
Throughout the manuscript, when a criterion from the original 
ACMG guidelines is mentioned, the criterion name will always 
be preceded by ACMG. If this is not the case, the criterion mentioned 
is part of the newly developed AVCG.

A multidisciplinary group was composed including veterinarians, 
geneticists from universities, and from commercial laboratories 
offering DNA-tests, and fell within the recommended 6 to 15 members 
(35). Individuals from this multidisciplinary group have worked and/
or published on various species, including cats, dogs, horses and 
chickens. The development process was divided into three phases: the 
pre-meeting preparatory phase (phase one), a group decision phase 
(phase two), and the optimization phase (phase three) (34, 35). The 
first phase was an individual evaluation phase, whereas the focus 
group approach was used in phase two and three. In the first phase, 
each member of the multidisciplinary team independently provided 
remarks and voted (accept, revise, or remove) on each of the ACMG 
criteria, as well as had an opportunity to propose new criteria. The 
remarks and votes from phase one were shared anonymously in the 
decision phase in a powerpoint presentation (phase two). Decisions 

to retain, revise, or exclude ACMG criteria for AVCG were made by 
anonymous voting [using the Wooclap platform (wooclap.com)] and 
were based on a two-thirds majority rule. Modifications were linked 
to the text of the criterion and/or the weight assigned to that criterion. 
Finally, in the optimization phase, individuals who worked with the 
guidelines could propose changes, which were again voted on 
anonymously by the entire group (phase three). All group meetings 
(phase two and phase three) were recorded.

While various classification development approaches exist, the 
focus group approach was chosen in phases two and three as the goal 
was to opt for a method that allowed (1) a group discussion to 
stimulate new ideas and insights (requirement one), and (2) a safe 
decision environment in which personal opinions can be reflected 
(requirement two) (36). While focus groups allow a thorough 
discussion and enrichment of ideas, potential drawbacks are the lack 
of confidentiality and power relations (36). To resolve that and fulfil 
requirement two, voting was anonymous in phases two and three and 
participants were invited to submit remarks prior to the decision 
phase, and these were also included anonymously in the presentations 
used in phase two. During the entire process, the stepwise development 
was tracked.

2.4 Obtaining a dataset of pathogenic and 
benign variants for benchmarking

To evaluate (1) the performance of both the ACMG and the 
AVCG, and, (2) the accuracy of in silico tools, datasets of “true” 
disease-causing variants and benign variants had to be created. A 
systematic review according to the PRISMA guidelines was conducted 
to evaluate the existing methodologies for selecting pathogenic and 
benign variants in studies involving these tools (37). The process is 
explained in Supplementary Data S1, graphically represented in 
Supplementary Figure S1 and methods are summarized in Table 1.

Based on the summarized methods (Table  1), the following 
procedure was followed to collect a set of pathogenic variants. Every 
geneticist was asked to independently “provide at least five variants 
that he/she considers to be pathogenic without a doubt.” A list was 
compiled, removing all duplicates. Subsequently, these variants were 
manually checked and were excluded if they met any of the following 
exclusion criteria: somatic variants associated with cancer, variants 
(risk/protective) associated with complex traits, structural variants 
(defined as sequence variants >50 bp in size (38)). Next, variants were 
removed if (1) the original paper could not be retrieved and/or (2) if 
there were errors in the paper (e.g., if the effect of the variant did not 
match the current annotation or the annotation that was used at the 
time of publication) and/or if (3) the paper was considered to be too 
old to make a proper judgment (e.g., some papers predated the public 
availability of genome sequences, as such it was not always possible to 
link the sequence data published in the paper to any of the current 
resources), and/or if (4) the variant caused a non-disease 
Mendelian phenotype.

To be  retained in the final list, variants had to pass all the 
aforementioned exclusion criteria and consistent and independent 
labelling as “without a doubt pathogenic” by at least three experienced 
(defined as >10 years of experience in the field) geneticists. If a 
variant was put on the list independently by three geneticists during 
the collection process, the variant was considered pathogenic. If a 
variant was proposed by less than three geneticists, other geneticists 
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than the ones that put it on the list, were asked to review the variant. 
If the variant was only reported once, two other geneticists were 
consulted, if it was reported twice, then only one other geneticist was 
consulted. Variants were allocated to reviewing geneticists randomly 
and during the entire process (submission for the initial list and 
reviewing of the remainder) no instructions were given on the 
methodology, i.e., every geneticist did this at their own discretion. 
The concordance of the independent evaluations was tracked. If a 
variant was not consistently labelled by at least three geneticists as 
“without a doubt pathogenic,” it was not included in the “truth” 
pathogenic dataset. At that moment, however, it was eligible for the 
subgroup of variants that were not consistently considered pathogenic 
by all three evaluators, which were used to assess inter-evaluator 
agreement of classification (see “2.7 Evaluation of the performance 
of variant classification guidelines: inter-evaluator agreement 
of classification”).

This dataset was completed with AF data as this is an important 
part of the evaluation process in the ACMG guidelines. To provide a 
standardized and as complete dataset as possible, allelic frequency 
data from two commercial laboratories (Antagene and Wisdom Panel) 
were added for every variant that was routinely tested (for details: see 
“2.2 Samples”).

Similarly, based on the results of the systematic review according to 
the PRISMA guidelines (strategy detailed in Supplementary Data S1, 

graphically represented in Supplementary Figure S1 and methods 
summarized in Table 1), the following selection strategy was used to 
retrieve variants that were most likely benign (37). First, a random 
selection of a variant with a certain effect was done from BioMart (39). 
The following settings were used: (1) Database: Ensembl Variation 111, 
Cat short variants (SNPs and indels excluding flagged variants) (Felis_
catus_9.0); (2) Filters: Region: none; General variant filters: none; Gene 
associated variant filters: “missense_variant,” “frameshift_variant,” “stop 
gained,” (3) Attributes: variant associated information: variant name, 
variant source, chromosome/scaffold name, chromosome/scaffold 
position start (bp), chromosome/scaffold position end (bp) (default 
settings). The results were exported and a random selection was 
performed in R version 4.3.2 using a custom script. Second, the gene in 
which the selected variant resides was checked for a reported association 
with disease in Online Mendelian Inheritance in Animals (OMIA) (1). 
Third, a homology-based search through ConVarT was used to identify 
whether a variant in humans was reported to be pathogenic or likely 
pathogenic according to ClinVar (40). Only when OMIA yielded no 
result and the variant was not classified pathogenic or likely pathogenic 
in ClinVar, the variant was retained in the list. This process was 
continued until a number equal to the number of pathogenic (missense/
nonsense/frameshift) variants was achieved. This list is available in 
Supplementary Table S3. For splice sites, this approach was not used. 
As there is no functional proof that a random splice variant from the 

TABLE 1 Overview of variant selection methods used in benchmarking studies.

Method Comments Suitable?

 A. Pathological variants

Database (e.g., ClinVar, Humsavar) Usually based on a pathogenic/likely pathogenic label assigned with the ACMG 

classification. While the number of databases in veterinary medicine is limited, a database 

like OMIA is currently the closest proxy.

✓

Functional studies (e.g., RNAseq, enzyme 

assays)

Conducted when there is a focus on one specific phenotype and with limited number of 

variants linked to that phenotype. Taking the wide range of phenotypes and variants into 

account, this approach is not feasible.



Literature review Classification based on published literature. To decrease risk of misclassification, three 

independent, experienced reviewers, with only one reviewer per institution, reviewed the 

literature.

✓

 B. Benign variants

Allele frequency While the exact cut-offs used in human studies vary greatly (e.g., >1, >40%, …), the 

suitability of allelic frequency cut-offs in veterinary medicine has been heavily debated. 

Furthermore, first basing selection of genetic variants on allele frequency criteria and next 

using these allele frequency criteria for variant classification results in a circular reasoning 

that will bias the results and should thus be avoided.



Database (e.g., ClinVar, Humsavar) Often based on a benign/likely benign label assigned with the ACMG classification. No 

“benign/neutral” database is available in veterinary medicine.



Functional studies (e.g., RNAseq, enzyme 

assays)

Conducted when there is focus on one specific phenotype and with limited number of 

variants linked to that phenotype. As several genes are expressed in various tissues and an 

individual variant can have an effect in various ways, the investigation of the potential 

absence of an effect is beyond the scope of most gene/disease investigations.



Random set of variants Taking into account that the ratio of disease-causing variants relative to the total number of 

variants in a variant database is extremely small, this strategy starts with random selection of 

variants from a variant database. Subsequently, to reduce the probability of erroneously 

including disease-associated variants further, we excluded variants linked with disease in 

other species, including humans.

✓

ACMG, American College of Medical Genetics and Genomics, OMIA, nline Mendelian Inheritance in Animals, ✓, suitable, , not suitable.
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database will actually result in altered splicing, neither that the absence 
of such a variant will not, it would not be possible to check whether a 
tool correctly predicts the effect. However, as the splice site variants 
from the pathogenic dataset contained both the creation and removal 
of donor as well as acceptor sites and functional proof for the effect (i.e., 
cDNA/mRNA sequence evaluation) for seven out of eight variants was 
provided, these were used to assess the predictions of the tools.

The pathogenic and benign dataset were restricted to one species 
to avoid potential bias due to species differences; species transferability 
of AVCG was evaluated in a subsequent dataset (see “2.8. Evaluation 
of the performance of variant classification guidelines: cross-species 
classification”). From the nine species mentioned individually on 
OMIA, the species selected had to have a sufficiently large number of 
disease-associated variants published (>100) and to ensure maximum 
confidence in the dataset, the geneticists involved in the variant 
evaluation, had to have ample experience with that species.

2.5 Selection, analysis, and optimization of 
the in silico variant effect predictor tools

A systematic review according to the PRISMA guidelines was 
conducted to obtain a list of in silico tools (37). The procedure is 
described in Supplementary Data S2 and graphically represented in 

Supplementary Figure S2. After the initial list was compiled, all tools 
were subsequently evaluated for (1) easy accessibility, defined as whether 
there is an online interface available (i.e., no download is necessary to 
use the tool), and (2) whether non-model species were supported. The 
remaining tools were all included in the benchmark analyses. Two of 
the remaining tools (PredictSNP and MetaSNP) are metapredictors (i.e., 
tools that use the output of other tools to predict the effect of variants). 
An overview of all tools used, is provided in Table 2.

For missense, nonsense and frameshift variants, to evaluate 
performance, all corresponding variants from the “truth” pathogenic 
dataset and benign dataset were used, resulting in a balanced design, 
i.e., an equal number of pathogenic and benign variants was included 
during benchmarking. For each tool, the number of variants that gave 
a result, as well as the accuracy, sensitivity, and specificity were 
calculated. The default settings were used. While most tools 
dichotomize classification, PANTHER and PolyPhen2 have 
subcategories (probably/possibly benign or damaging, respectively), 
which were collapsed into pathogenic or benign (41–43). For splice 
sites, reporting is slightly different: the output of the tools is not 
pathogenic or benign, but whether a donor or acceptor splice site is 
created or not. As such, the overall accuracy is reported.

Whenever >1 tool was available to assess a specific category of 
variants, the most optimal combination of two tools was identified 
to adhere to the in silico criterion as mentioned in ACMG and the 

TABLE 2 Overview of in silico tools.

Name Category Accuracy No 
score

Sensitivity Specificity Metapredictor? Method Supervised?

PhD-SNP Missense 86% (36/42) 0 81% (17/21) 90% (19/21)  SVM ✓

SNPs&Go Missense 81% (34/42) 0 62% (13/21) 100% (21/21)  SVM ✓

MutPred2 Missense 90% (38/42) 0 81% (17/21) 100% (21/21)  NN ✓

PolyPhen2-

HumDiv

Missense 85% (33/39) 3 90% (19/21) 78% (14/18)  NBC ✓

PolyPhen2-

HumVar

Missense 85% (33/39) 3 86% (18/21) 83% (15/18)  NBC ✓

PredictSNP Missense 86% (36/42) 0 81% (17/21) 90% (19/21) ✓ WMA ✓

LIST-S2 Missense 88% (37/42) 0 81% (17/21) 95% (20/21) x Empirical 

MetaSNP Missense 83% (35/42) 0 76% (16/21) 90% (19/21) ✓ RF ✓

SuSPect Missense 79% (30/38) 4 60% (12/20) 100% (18/18) x SVM ✓

PANTHER Missense 81% (17/21) 21 88% (14/16) 60% (3/5)  Empirical 

PANTHER Nonsense 55% (6/11) 15 67% (6/9) 0% (0/2)  Empirical 

MutpredLOF Nonsense 48% (12/25) 1 0% (0/13) 100% (11/11)  NN ✓

MutpredLOF Frameshift 52% (11/21) 1 0% (0/10) 100% (11/11)  NN ✓

GenScan Splice site 63% (5/8) 0 NA NA  HMM ✓

Spliceator Splice site 75% (6/8) 0 NA NA  NN ✓

SSPnn Splice site 100% (8/8) 0 NA NA  NN ✓

The variants that were not scored, were not used to calculate accuracy, sensitivity and specificity, and their number is depicted in the column “No score.” Sensitivity is calculated as the number 
of disease-causing variants scored pathogenic by the in silico tool, divided by the total number of disease-causing variants that received a score. Specificity is calculated as the number of benign 
variants scored benign by the in silico tool, divided by the total number of benign variants that received a score As tools for splice sites do not classify a variant as pathogenic or benign, only 
their overall accuracy is provided. For each tool, it is specified whether it is a metapredictor (i.e., whether it uses the output of other tools to predict the effect of variants), its underlying 
methodology and whether during their development, they needed a training dataset with variants with known effects (= supervised) or not (= unsupervised). The latter is important as it can 
lead to biased performance estimates due to circularity. The tools can be accessed on the following links: PhD-SNP (https://snps.biofold.org/phd-snp/phd-snp.html), SNPs&Go (https://snps.
biofold.org/snps-and-go/snps-and-go.html), MutPred2 (http://mutpred.mutdb.org/), Polyphen2 (HumDiv and HumVar: http://genetics.bwh.harvard.edu/pph2/), PredictSNP (https://
loschmidt.chemi.muni.cz/predictsnp/), LIST-S2 (https://list-s2.msl.ubc.ca/), MetaSNP (https://snps.biofold.org/meta-snp/index.html), SuSPect (http://www.sbg.bio.ic.ac.uk/suspect/index.
html), PANTHER (http://www.pantherdb.org/tools/csnpScoreForm.jsp), MutpredLOF (http://mutpred2.mutdb.org/mutpredlof/), GenScan (http://hollywood.mit.edu/GENSCAN.html), 
Spliceator (http://www.lbgi.fr/spliceator/), SSPnn (https://fruitfly.org/seq_tools/splice.html). HMM, hidden Markov model, NBC, Naïve Bayes Classifier, NN, Neural network, RF, random 
forest, SVM, Support Vector Machine, WMA, weighted majority algorithm.
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AVCG. This step was restricted to tools that assessed all variants in 
their category for two reasons: (1) to achieve general applicability, 
more versatile tools that score more variants can be more widely 
used, and (2) to avoid biased accuracy estimates because the 
omitted variants might be  more difficult or easier to score. For 
missense, nonsense and frameshift variants, most optimal was 
defined as the combination of tools that led to the least consistent 
misclassification, i.e., the least false positives (variants from the 
benign list that were allocated a “pathogenic” label) and false 
negatives (variants from the pathogenic list that were allocated a 
“benign” label) relative to the total number of consistent 
classifications. If there was a tie, the combination that classified 
most variants correctly, was preferred. For splice sites, the best 
combination of tools was defined as the two tools that together 
consistently predicted most often correctly the creation/removal of 
donor/acceptor sites, respectively.

2.6 Evaluation of the performance of 
variant classification guidelines: 
classification of pathogenic variants

The variants in the aforementioned “truth” pathogenic variant list 
were classified twice: once with the traditional ACMG guidelines and 
once with the newly developed AVCG guidelines (2), based on the 
data provided in the original publications (with the publications used 
per variant specified in Supplementary Table S5). This data was 
complemented with the new criteria added to AVCG (see below) and 
for the criteria linked with the in silico tools, only the results from 
those tools that adequately performed (based on “2.5 Selection, 
analysis, and optimization of the in silico variant effect predictor 
tools”), were used. To avoid the tendency to look for additional criteria 
supporting pathogenic classification if the threshold would not 
be met, the reviewers were only asked to check the criteria and not to 
calculate the final label. No variants were reviewed by the same 
investigator who made the original variant discovery. Furthermore, 
the work was divided, where each time two geneticists reviewed the 
in silico tools, two others reviewed the newly added criteria and the 
final two reviewed the remaining criteria. Label assignment was finally 
done by a different geneticist who adhered to the decision table exactly.

Practically this entails that for each variant, all the evidence of the 
various criteria that were fulfilled, was weighted and counted to 
determine a classification. While the decision-making process changed 
slightly from ACMG to AVCG, a five-category-based classification 
remained (Table 3) (2). The categories/labels are: pathogenic (P), likely 
pathogenic (LP), variant of unknown significance (VUS), likely benign 
(LB) and benign (B). Each category has consequences for clinical 
decision making and for whether a variant should be  included in 
breeding and/or screening programs. As primarily differences between 
P/LP and the other three categories might lead to differences in medical 
management and/or breeding strategies, these are specifically mentioned 
in subsequent analyses, aside from general classification overviews (3).

2.7 Evaluation of the performance of 
variant classification guidelines: 
inter-evaluator agreement of classification

Five evaluators independently assessed a random subset of an 
overlapping set of variants with the newly developed guidelines. The 
goal was to provide a set that encompassed variants with various 
effects (missense/ nonsense/ frameshift/ splice sites) and that vary 
from easy to more difficult to classify [variants belonging to the set of 
pathogenic variants (n = 6, see “2.4 Obtaining a dataset of pathogenic 
and benign variants for benchmarking”); variants that were submitted 
for the set of pathogenic variants but that were not consistently 
considered pathogenic by all three evaluators (n = 5, see “2.4 
Obtaining a dataset of pathogenic and benign variants for 
benchmarking”); and a set of variants for which the ACMG criteria 
turned out to be unsuitable, resulting in a wide range of classifications 
back then (n = 6)] (6). To ensure that classification differences were 
linked to differences in the interpretation of the guidelines rather than 
differences in terms of access to data linked to the variant, all 
evaluators based their classification on the same papers. In total, 17 
variants were evaluated by three geneticists independently.

To evaluate the inter-evaluator agreement, all pairwise 
combinations were checked. Classifications that might lead to medical 
management differences (i.e., P/LP versus B/LB/VUS) and 
disagreements less likely to affect clinical decision-making (P versus 
LP; B versus LB; VUS versus LB/B), were evaluated.

TABLE 3 Description and consequences of each variant pathogenicity classification in the five-category system.

Label Consequence

Pathogenic (P) A healthcare provider can use molecular testing information in clinical decision-making, for breeding programs and/or 

screening.

Likely pathogenic (LP) A health-care provider can use the molecular testing information in clinical decision-making when combined with other 

evidence of the disease in question, for breeding programs and/or screening.

Variant of uncertain significance (VUS) Not to be used in clinical decision-making, for breeding programs or screening. Efforts to resolve the classification of the variant 

as pathogenic or benign should be undertaken.

Likely benign (LB) A healthcare provider can conclude that it is not the cause of the patient’s disorder when combined with other information. It 

should not be used for breeding programs and/or screening.

Benign (B) A healthcare provider can conclude that it is not the cause of the patient’s disorder. It should not be used for breeding programs 

and/or screening.

Each category is linked to specific recommendations in terms of clinical decision making, inclusion in breeding and screening programs. Between P and LP, mainly the strength of the evidence 
varies, while the practical differences are limited. Similarly, the practical differences between VUS, LB, B also have limited consequences. The most significant health and breeding decisions 
would occur when a variant switches between the pathogenic (P/LP) and the benign/uncertain classifications (VUS/LB/B), which can happen when new information becomes available or 
when label assignment differs between evaluators, hence the importance of a high inter-evaluator agreement on classification.
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2.8 Evaluation of the performance of 
variant classification guidelines: 
cross-species classification

While these guidelines were initially tested on a set of feline variants, 
the goal was to develop a set of variant classification guidelines capable 
of classifying variants across a wide range of domestic species. Aside 
from the cat, a first step towards assessing the applicability of AVCG 
across species was taken for all eight other species (dog, cattle, pig, 
sheep, horse, chicken, rabbit, and goat) mentioned in OMIA (1). 
Practically, for every additional species, five variants were evaluated, if 
available, and the evaluator was asked to answer two questions: (1) 
whether there was an incompatibility of any of the criteria in that 
specific species in which that variant was evaluated and (2) whether they 
encountered difficulties not seen in the cat. To avoid any bias, no 
evaluator was allowed to check a variant published by his/her own group.

3 Results

3.1 The development of guidelines for 
variant classification

3.1.1 Defining the scope
The scope was defined as the development of guidelines that are 

used by the community for Mendelian disorders in domestic animals 
to classify variants in categories based on standardized criteria. 
Somatic variants associated with cancer, variants (risk/protective) 
associated with complex traits, and structural variants (defined as a 
variant larger than 50 bp) (38) were considered outside the scope of 
these guidelines.

3.1.2 Evaluation of the ACMG criteria
The development of the AVCG was conducted in three steps. After 

the preparatory phase, seven ACMG criteria were removed, while six 
were altered in phase two. In phase three, one additional criterion was 
altered. Overall, of the 28 initial criteria from the original ACMG 
guidelines published in 2015, half were removed or altered 
(Supplementary Table S2) (2). The final set of criteria can be found in 
Table  4, clarifications for several criteria can be  found in 
Supplementary Data S3.

An overview of the removed criteria is provided in Table 5. From 
the seven criteria that were removed, three were associated with AF 
(ACMG PM2, ACMG BA1, ACMG BS1). The rationale for removal 
of these three criteria was based on a combination of observations. 
First, the large variant databases used by human geneticists, seldom 
exist in other species, hence the data will often not be  available. 
Secondly, animal geneticists must consider breed population 
structures and dynamics. Breeds are not always consistently defined 
across breed registries, and their populations experience the effect of 
(a combination of) breeding practices like population bottlenecks, the 
founder effect, popular sire effects, and inbreeding, which all influence 
AF. The human criteria have not been designed for those situations. 
Thirdly, while methods have been developed to calculate AF cutoffs, 
they rely on estimates of prevalence and penetrance, which can lead 
to debate and different results (44, 45). This causes undesired 
subjectivity in the criteria. While the first reason will become less 

important when more data is generated, the other two could currently 
not be resolved, hence the criteria were removed. Two criteria linked 
to the authority of a reputable source (e.g., investigators from an 
experienced laboratory make a statement about a variant without 
showing the data, ACMG PP5 and ACMG BP6) have also been 
removed, due to the absence of reviewable evidence supporting the 
claim. Information must be available to allow independent checks. 
One criterion (ACMG PM6) was removed as it became redundant due 
to the rewording of another criterion. The final one (ACMG BP1) was 
deemed too restrictive without sufficient evidence.

3.1.3 Inclusion of new criteria
Two new criteria were proposed in phase one, their concept was 

accepted in phase two and their text was optimized and assigned a 
supporting weight in phase three. These two criteria are essentially the 
pathogenic and benign version of an approach integrating 
conservation and clinical data from other species (Table 4, criteria 
PP1/BP1). As such, the newly developed guidelines (Table 4) contain 
23 criteria, of which 14 are linked to pathogenicity and nine support 
benign classification, and these are combined to assign pathogenicity 
labels as detailed in Table 6. This also implies that there are 16 changes 
in AVCG versus the ACMG guidelines (i.e., 14 criteria removed or 
altered, two new criteria added).

3.2 Obtaining datasets for benchmarking

3.2.1 A feline pathogenic variant “truth” set
As the cat is one of the top three domestic species for which 

disease-associated variants are published and several geneticists are 
dedicated feline experts, the cat was the species of choice for this 
analysis (1). The systematic review conducted to identify criteria used 
to search for candidate pathogenic variants in variant effect predictor 
benchmark studies (Supplementary Figure S1 for the PRISMA flow 
diagram), led to a set of 61 descriptions on how to obtain pathogenic 
variants (Supplementary Table S4). Summarizing the approaches led 
to three selection methods (Table 1), of which two were found suitable 
and were combined. To increase the stringency further, it was decided 
that independent literature reviews had to be conducted by at least 
three experienced (>10 years of experience) geneticists. Ultimately, 53 
feline variants, encompassing a variety of mechanisms, inheritance 
patterns, and phene classes were considered pathogenic “without a 
doubt” by at least three geneticists and were used as a “truth set” (46, 
47). The characteristics of this pathogenic dataset are summarized in 
Table  7 and a detailed description per variant is provided in 
Supplementary Table S5.

Importantly for classification purposes, but also part of our 
recommendations on how variants should be  reported 
(Supplementary Data S4), population data could be collected for 44 of 
the 53 variants, with sample sizes ranging from 994 to 48,949 (median: 
31,559 samples), tripling the sample size from the largest feline 
population study so far (33). The AFs retrieved for these 44 variants 
ranged from 0% (i.e., not found in the population, 30/44 variants) to 
>5% (the variant responsible for factor XI deficiency) 
(Supplementary Table S5) (48). Seven variants were reported for the 
first time in at least one new breed (Supplementary Table S1) (49–53). 
Of the remaining nine variants, AFs for six of them were found in the 
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TABLE 5 Overview of the criteria present in the American College of Medical Genetics and Genomics (ACMG) guidelines that were removed to develop 
the animal variant classification guidelines.

Criterion name Criterion

ACMG PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1,000 Genomes Project, or Exome Aggregation 

Consortium.

ACMG PM6 Assumed de novo, but without confirmation of paternity and maternity.

ACMG PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation.

ACMG BA1 Allele frequency is >5% in Exome Sequencing Project, 1,000 Genomes Project, or Exome Aggregation Consortium.

ACMG BS1 Allele frequency is greater than expected for disorder.

ACMG BP1 Missense variant in a gene for which primarily truncating variants are known to cause disease.

ACMG BP6 Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation.

original publication, leading to a total of 50 out of 53 variants with AF 
data (median sample size: 125, range: 28—597 samples). The complete 
list of variants and their overall and breed-specific AFs are provided 
in Supplementary Tables S5 and S1, respectively.

3.2.2 Development of a benign variant dataset
For several categories of variants (i.e., missense, frameshift, and 

nonsense variants, but not for splice site variants), in silico tools aim 
to predict whether they are disease-causing or not. To allow 

TABLE 4 The final set of criteria used to classify pathogenic and benign variants in domestic animals, based on the original American College of Medical 
Genetics and Genomics and genomics guidelines (2).

Name Criterion

PVS1 Null variant (nonsense, frameshift, canonical ±1 or 2 splice-sites, initiation codon, single or multi-exon deletion) in a gene where LOF is a known 

mechanism of disease in the same or another species, if functionality of the gene is expected to be similar across species.

PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change.

PS2 de novo in a patient with the disease and unaffected parental samples tested negative.

PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product.

PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls.

PS5 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease.

PM1 Located in a mutational hot-spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation across 

breeds and/or species.

PM2 Novel missense change at an amino acid residue where a different missense change has been determined to be pathogenic in other individuals.

PM3 For recessive disorders, detected in trans with a pathogenic variant.

PM4 Protein length changes as a result of in-frame deletions/insertions in a non-repetitive region or stop-loss variants.

PP1 Cross-species alignment shows the variant is conserved and other information across species (e.g., ClinVar data) states the variant is pathogenic.

PP2 Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease.

PP3 All computational evidence supports a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).

PP4 Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology.

BS1 Lack of segregation in affected members of a family.

BS2 Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance 

expected at an early age.

BS3 Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing.

BP1 Cross-species alignment shows the variant is not conserved and other information across species (e.g., ClinVar data) states the variant is benign.

BP2 Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance 

pattern.

BP3 In-frame deletions/insertions in a repetitive region without a known function.

BP4 All computational evidence supports a benign effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).

BP5 Variant found in a case with an alternate molecular basis for disease.

BP6 A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice 

site AND the nucleotide is not highly conserved.

The name of each criterion designates whether it supports pathogenic or benign classification of a variant (P or B, respectively), followed by the weight of the support (VS, very strong; S, 
strong; M, moderate; P, supportive, respectively) and a number that represents the criterion. Explanations per criterion are provided in Supplementary Data S3. LOF, loss-of-function.
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benchmarking of the performance of those tools, the aforementioned 
systematic review was conducted to identify criteria used to select 
candidate-benign variants (also described as “neutral,” “nondamaging” 
or “tolerated” in literature) for benchmark studies 
(Supplementary Figure S1 for the PRISMA flow diagram) (54). A set 
of 61 descriptions was obtained describing how to obtain benign 
variants (Supplementary Table S4). These descriptions could 
be  summarized in four selection methods (Table  1) but only one 
method was found suitable. The benign dataset can be  found in 
Supplementary Table S3 and contains 21 missense variants, 13 
nonsense variants and 11 frameshift variants.

3.3 Analysis of in silico variant effect 
predictors

The systematic review returned 78 publications, identifying altogether 
128 variant effect predictor tools (Supplementary Table S6). From this 
initial list of 128 tools, 114 were excluded because they did not allow 
analysis of genetic variants of cats and/or did not have a working online 
tool, leading to 14 tools that were ultimately retained. Of these, nine can 

be used solely to evaluate missense variants (55–63), one for nonsense and 
missense variants (55), one for nonsense variants and frameshifts (64), 
and three for splice sites (65–67), respectively. An overview of their 
performance (i.e., accuracy, sensitivity and specificity) and technical 
summary are provided in Table 2.

For 42 missense variants, from the 10 remaining tools, six scored all 
42 variants and the remaining four a subset. Most variants that were not 
scored were benign (25 times a benign variant versus six times a 
pathogenic variant). While the overall accuracy ranged between 79 and 
90%, the best scores were for MutPred2 (90%), and List-S2 (88%). Two 
tools were available for analysis of 26 nonsense variants, PANTHER and 
MutpredLOF. MutpredLOF did not score one variant and PANTHER did 
not score 15 out of 26 variants. Again, more benign variants were not 
scored (12 times a benign variant versus four times a pathogenic variant). 
The overall accuracy ranged between 48 and 55%. For the 22 frameshift 
variants, only MutpredLOF was available. This tool scored all except one 
benign variant and the accuracy was 52%. For the eight splice site variants, 
three tools were available, with accuracies ranging between 63 and 100%.

Practically, if the results of two in silico tools are consistent, PP3 
or BP4 are fulfilled. Otherwise, the result is not considered. An 
overview of the combinations and their accuracy can be found in 

TABLE 6 Decision rules to assign a genetic variant pathogenicity label.

Step 1: always check branch A and branch B

Branch A: pathogenic variant

Pathogenic (P)  i. Very strong (PVS1) AND

 • ≥1 strong (PS1–PS5) OR

 • ≥2 moderate (PM1–PM4) OR

 • 1 moderate (PM1–PM4) AND 1 supporting (PP1–PP4) OR

 • ≥2 supporting (PP1–PP4)

ii. ≥2 strong (PS1–PS5)

iii. 1 strong (PS1–PS5) AND

 • ≥3 moderate (PM1–PM4) OR

 • 2 moderate (PM1–PM4) and ≥ 2 supporting (PP1–PP4) OR

 • 1 moderate (PM1–PM4) and 4 supporting (PP1–PP4)

Likely Pathogenic (LP)  i. Very strong (PVS1) AND 1 moderate (PM1–PM4)

 ii. 1 strong (PS1–PS5) AND 1-2 moderate (PM1–PM4)

 iii. 1 strong (PS1–PS5) AND ≥ 2 supporting (PP1–PP4)

 iv. 3 moderate (PM1–PM4)

 v. 2 moderate (PM1–PM4) AND ≥ 2 supporting (PP1–PP4)

 vi. 1 moderate (PM1–PM4) AND ≥ 4 supporting (PP1–PP4)

Branch B: benign variant

Benign (B) ≥2 strong (BS1–BS4)

Likely Benign (LB)  i. 1 strong (BS1–BS4) AND 1 supporting (BP1–BP7)

 ii. ≥2 supporting (BP1–BP7)

Step 2: variants without a label or with a label from the pathogenic (L/LP) and benign (L/LB) branch:

Variant of Uncertain Significance (VUS)  i. not enough criteria met to assign label

 iv. labels from two conflicting branches assigned

To assign a pathogenicity classification label, all criteria mentioned in Table 3, were evaluated. Only the criteria that were fulfilled, were then used to determine the classification. The number 
of criteria met in each weight category are counted. These weight categories include strong, moderate and supporting and the weight is reflected by the name of each criterion (i.e., always the 
second letter and, if present, the third letter). Once all criteria have been evaluated and a final count per weight category has been obtained, a variant pathogenicity classification can 
be assigned based on the decision rules mentioned herein. This is a stepwise process in which first both branch A and branch B have to be considered. If no classification is assigned or if a 
classification from branch A and B is assigned, step two also has to be considered.
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Supplementary Table S7. For missense variants, of 15 possible 
combinations, the combination that scored best was the combination 
of MutPred2 and List-S2 (34 out of 35 correctly classified). For 
nonsense and frameshift variants, this comparison was impossible 
as no tools scored all variants or only one tool was available, 
respectively. For splice site variants, the best combination was SSPnn 
and Spliceator.

3.4 Performance of the variant 
classification guidelines

3.4.1 Classification of pathogenic variants
Based on the data provided by the original publications, 

complemented with the in silico data from 3.3 and, for AVCG, the data 
from criterion PP1/BP1, the 53 pathogenic variants were all classified 

with the ACMG criteria and AVCG. Overall, with the ACMG 
guidelines, 38 were classified as P (72%), six as LP (11%), four as VUS 
(8%), and five as B (9%), which implies that 83% of the variants were 
correctly classified. Overall, AVCG classified 42 variants as P (79%), 
seven as LP (13%), and the remaining four as VUS (8%); 92% of the 
variants were thus correctly classified, i.e., misclassification halved. 
The final classification for every variant is denoted in 
Supplementary Table S5.

An in-depth evaluation was performed to assess why six variants 
were classified differently (Table 8) (48–50, 52, 68, 69). For each of 
these, ACMG classified at least one category more in the direction of 
B. Five of these classification differences might affect clinical decision 
making and screening/breeding programs. An assessment of the 
differences demonstrated that this was linked to the removed AF 
criteria (ACMG BA1, five times negative effect), the newly added PP1 
(two times positive effect), and the altered PM2 and PS5 (one and 

TABLE 7 Characteristics of the feline pathogenic variant dataset.

Variable n Remarks

Variant selection Step 1: Submitted 87

Rejected due to exclusion criteria −16

Step 2: Variants independently reviewed 71

Rejected variants where ≥1 geneticist doubted −18

Outcome: variants “without a doubt” pathogenic 53

Variant effect (n = 53) Missense 21 (40%)

Nonsense 13 (25%)

Frameshift 11 (21%)

Splice site 8 (15%)

Inheritance patterns (n = 53) Autosomal dominant 3 (6%)

Autosomal recessive 45 (85%)

X-linked 5 (9%)

Phene classes (n = 28) Total number of excluded classes: 11

 • Cancer 1 Category: neoplasm.

 • Normal phenotype 2 Categories: normal; taste/olfaction.

 • No disease-causing variant known in cats 8 Categories: mortality/aging; respiratory 

system; growth/size/body region; digestive/

alimentary; adipose tissue; behavior/

neurological phenotype; cellular; embryo.

Total number of remaining classes: 17

 • Represented in dataset 12 (71%) Categories: see Supplementary Table S5.

 • Not represented in dataset 5 (29%) Categories: reproductive system; liver/

biliary system; limbs/digits/tail; 

craniofacial; cardiovascular system.

In silico data (n = 53) Available in original papers 19 (36%) No in silico tool in the original literature 

prior to 2014

Population data (n = 53) Available in original papers 30 (57%)

Current dataset:

 • Population study performed 44 (83%)

 • Data retrieved from original publications 6 (11%)

 • Missing 3 (6%)

Starting with the description of the selection process that led to the final set of pathogenic variants, the pathogenic variant dataset is summarized in terms of the effect on the protein, the 
inheritance pattern of the phenotype and the phene classes (based on the standardized nomenclature for mammalian phenotypes and adopted from OMIA). As population and in silico data 
are important for variant classification, a summary on whether this information was available prior to the current study, was also provided.
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three times positive effect, respectively). In more detail, 
PKD1:c.9882C > A, TRPV4:c.1024G > T, UROS:c.140C > T, 
CEP290:g.112522818C > A and F11:g.17176154G > A all had an AF 
>0.05  in at least one breed, which is heavily penalized by ACMG 
(Supplementary Table S1). In addition, TRPV4:c.1024G > T and 
UROS:c.140C > T are conserved and a ClinVar entry at that position 
indicates that the variant is pathogenic, i.e., PP1 is fulfilled. This 
criterion has no counterpart in ACMG and supports a pathogenic 
classification with AVCG. Furthermore, a similar missense variant as 
UROS:c.140C > T has deemed to be pathogenic in other species, with 
the other species being the driver for the different result. In AVCG, 
this is sufficient to invoke PM2, while this is not taken into account in 
ACMG. Finally, while the wording of the criterion is the same, the 
weight has increased from supporting to strong for PS5. Hence, more 
weight is given to classify PKD1:c.9882C > A, DMD:g.27988938G > A 
and F11:g.17176154G > A as pathogenic.

An evaluation of the incorrectly classified variants (i.e., that did 
not get the label LP/ P) led to a total of nine variants that need to 
be scrutinized (Tables 8, 9). From these nine variants, five are uniquely 
misclassified with the ACMG guidelines (Table 8), while the other 
four were consistently misclassified as VUS (Table 9) (48–50, 52, 68, 
70–73). All five variants that were uniquely misclassified by ACMG 
were all directly caused by the AF criterion ACMG BA1 (Table 5 and 
Supplementary Table S2) which is removed in AVCG.

An analysis of the four VUS misclassified by ACMG and AVCG 
indicates that all four are missense variants with some criteria 

supporting pathogenic classification, however, not enough to 
be considered LP (Table 9). Another similarity is that they were all 
present in one unique case, i.e., there were no additional affected 
individuals or family members. As 15 other variants with n = 1 were 
correctly classified (Supplementary Table S5), a detailed analysis was 
conducted to identify what sets them apart. What differs for the 
majority is their effect at the protein level: in 10/15, the variant is of 
a type invoking PVS1, a very strong criterion that requires limited 
additional criteria to result in an LP/P classification. The five 
remaining missense variants with n = 1 were correctly classified (i.e., 
all as LP). For these five, this LP classification was due to an 
additional strong criterion [i.e., functional studies (PS3, n = 2), an 
identical or other amino-acid change as a previously established 
pathogenic change (PS1, n = 1; PM2, n = 1, respectively)] or a 
combination of a sufficient number of moderate and supporting 
criteria being fulfilled.

3.4.2 Inter-evaluator agreement of classification
The overall inter-evaluator agreement was based on a novel 

dataset comprising three subgroups of variants 
(Supplementary Table S8). As each of these 17 variants were assessed 
with the AVCG by three individual evaluators, there were 51 
classifications assigned.

Overall, 39 of 51 classifications (76%) matched. While there were 
a total of 12 of 51 disagreements on classification (24%), for only 2/51 
(4%), this potentially might influence clinical decision-making (i.e., 

TABLE 8 Variants classified differently with the American College of Medical Genetics and Genomics (ACMG) guidelines and the Animal Variant 
Classification Guidelines (AVCG).

Shared criteria Unique 
criteria

Altered criteria

AVCG 

names

PS1 PS3 PS4 PM4 PP2 PP4 PP1 PVS1 PS5 PP3 BP4 PM2

Variant ACMG 

names

PS1 PS3 PS4 PM4 PP2 PP4 BA1 PVS1 PP1 PP3 BP4 PM5 Label

PKD1:c.9882C > A 

(Polycystic kidney disease)

AVCG NA P

ACMG NA B

TRPV4:c.1024G > T 

(Osteochondrodysplasia 

and folded ear)

AVCG NA P

ACMG NA B

UROS:c.140C > T 

(Porphyria)

AVCG NA LP

ACMG NA B

CEP290:g.112522818C > A 

(Retinal degeneration II)

AVCG NA P

ACMG NA B

DMD:g.27988938G > A 

(Becker muscular 

dystrophy)

AVCG NA P

ACMG NA LP

F11:g.17176154G > A 

(Factor XI deficiency)

AVCG NA P

ACMG NA B

Underneath each variant, the associated phenotype is mentioned. Only the criteria that were fulfilled, are presented. A green label implies support for a pathogenic classification and thus an 
effect in the correct direction, while a red label supports benign classification, which is thus a negative or incorrect result for this specific dataset. The criteria are divided in three groups: the 
ones which remained identical for ACMG and AVCG (“shared” criteria), the ones which are present in only one of those two sets of guidelines (“unique” criteria) and the ones which have been 
altered to make the AVCG (“altered” criteria). The full criterion corresponding with the names can be found in Table 4. While there are, as expected, no differences between ACMG and AVCG 
for the shared criteria, several differences are seen in the other two groups. The criteria uniquely present in ACMG are leading to a B classification five times, while the unique criterion from 
AVCG supports twice a P/LP classification. In the group of the altered criteria, the weight change from supporting (PP1 in ACMG) to strong (PS5 in AVCG) makes a difference in the right 
direction for three variants, and the textual change in ACMG PM5 to AVCG PM2 results in a difference for one variant. ACMG, American College of Medical Genetics and Genomics; AVCG, 
Animal Variant Classification Guidelines; P, pathogenic; B, benign; LP, likely pathogenic; NA, not applicable.
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these were differences between P and VUS). The remaining differences 
were linked to the strength of pathogenicity [8/51 (16%) P vs. LP] or 
VUS versus benign classification (2/51, 4%).

Practically, for 11 variants, the classifications were thus three times 
consistent, while for six variants the classification of each time one 
person did not match that of the other two (Supplementary Table S8). 
There were no variants that received three different labels. Among the 
aforementioned six variants, eight criteria were not consistently used 
(i.e., PS1, PS3, PS4, PS5, PM1, PM4, PP4 and BS2). Half of these 
criteria (PS1, PS5, PM1 and BS2) were used differently in only one 
variant, the other half (PS3, PS4, PM4 and PP4) were used differently 
for two variants. For the variant in which the classification might affect 
clinical decision-making (i.e., CYP27B1:g.86180281del, VUS vs. VUS 
vs. P), the difference was linked to a different evaluation of criterion 
PS3, i.e., whether there was sufficient in vitro or in vivo functional data 
to support a damaging effect.

Among the three groups of variants included in this 
reproducibility evaluation, clear differences in agreement were 
noticed (Supplementary Table S8). For the variants that passed the 
inclusion criteria for the pathogenic reference data set, the 
agreement was strongest [16/18 (89%)] and there were no 
misclassifications that might potentially lead to differences in 
medical management/ breeding/screening programs because they 
ranged between P and LP. Among the variants that were included 
because ACMG classification was difficult, the agreement was in 
the same range [14/18 (78%)] with also no misclassifications 
affecting clinical management. Among the variants that were 
included because there was a disagreement among evaluators 
whether they should be included in the pathogenic dataset, the 
agreement was lower [9/15 (60%)] and 2/15 differences (13%) 
might lead to altered clinical approaches as they ranged between 
VUS and P. For these five variants, this is still an increase in 
agreement compared to the 5/15 (33%) agreement based on 
subjective decision-making on pathogenicity prior to the 
development of the guidelines.

3.4.3 Cross-species classification of variants: 
preliminary assessment of incompatibilities and 
difficulties

Five variants per species, when available, were classified and the 
evaluators were asked to note (1) any incompatibilities, and/or (2) 
difficulties not seen in the cat. For both questions, the answer was “no” 
for every single variant across eight additional species (i.e., dog, horse, 
cattle, pig, goat, sheep, rabbit, and chicken).

As there were no issues encountered, several of the remaining 
variants submitted for the feline pathogenic variant dataset that did 
not pass all criteria, were additionally evaluated, resulting in 72 feline 
variants or 53% (= 72/136) of the disease-associated variants currently 
known in cats, classified. Population data was collected for five of these 
additional variants, but all were observed to be homozygous wildtype. 
Altogether, we have now provided a classification for over 110 variants 
(Supplementary Table S9).

4 Discussion

Breeding strategies, especially in companion animals, significantly 
impact the health of their offspring and the overall population. 
Selective breeding that emphasizes specific traits too narrowly can 
result in reduced genetic diversity, ultimately potentially increasing 
the population’s susceptibility to diseases. Furthermore, prioritizing 
phenotypic traits over health can adversely affect animal welfare. 
Responsible breeding practices that emphasize health, genetic 
diversity, and animal welfare can lead to healthier and more resilient 
animal populations (74). Especially in inbred populations with a small 
effective population size, the use of validated genetic testing is 
essential. Therefore, we have developed and tested the AVCG, aiming 
not only to provide guidance to the practitioner who sees the 
individual animal in a clinical setting but also to assist in improving 
the health of the population, by objectifying when there is sufficient 
evidence for the pathogenicity of a variant. This is the first step in 

TABLE 9 Variants consistently misclassified with the American College of Medical Genetics and Genomics (ACMG) guidelines and the animal variant 
classification guidelines (AVCG).

Shared criteria Unique criteria Altered 
criteria

AVCG names PP2 PP4 PP1 PP3

Variant ACMG names PP2 PP4 PM2 PP3 Label

CYP11B1:g.84247412G > A 

(congenital adrenal hyperplasia)

AVCG NA VUS

ACMG NA VUS

L2HGDH:g.100207200 T > C (L-2-

hydroxyglutaric aciduria)

AVCG NA VUS

ACMG NA VUS

MTM1:g.125938001C > T 

(Myotubular myopathy 1)

AVCG NA VUS

ACMG NA VUS

NPC1:g.48250290 T > G (Niemann-

Pick disease type C1)

AVCG NA VUS

ACMG NA VUS

Underneath each variant, the associated phenotype is mentioned. Only the criteria that were fulfilled, are presented. A green label implies support for a pathogenic classification and is thus 
considered a positive or correct effect. The criteria are divided in three groups: the ones which remained identical for ACMG and AVCG (“shared” criteria), the ones which are present in only 
one of those two sets of guidelines (“unique” criteria) and the ones which have been altered to make the AVCG (“altered” criteria). The full criterion corresponding with the names can 
be found in Table 4. For every variant, there are not enough supporting, moderate and/or strong criteria fulfilled to be classified as likely pathogenic. ACMG, American College of Medical 
Genetics and Genomics; AVCG, Animal Variant Classification Guidelines; VUS, variant of uncertain significance; NA, not applicable.

https://doi.org/10.3389/fvets.2024.1497817
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Boeykens et al. 10.3389/fvets.2024.1497817

Frontiers in Veterinary Science 13 frontiersin.org

determining whether a variant can be  used for screening and in 
breeding programs. This development process is not finished with the 
publication of the current set of guidelines.

Common to both ACMG and AVCG and considered good 
practice, guidelines are subject to change. Since the publication of the 
original ACMG guidelines, several of the criteria have been modified, 
clarified, or are considered for removal, and a thorough analysis 
demonstrates a considerable overlap with the decisions made here for 
AVCG. From the seven criteria that were removed in the process to 
develop the AVCG, the two linked to expert opinion (i.e., ACMG PP5 
and ACMG BP6, see Table 5 and Supplementary Table S2) have also 
been recommended for removal from ACMG, with a rationale similar 
to ours: actual data should be preferred over opinion (19). For three 
others linked to AF (ACMG PM2, ACMG BS1, and ACMG BA1, see 
Table 5 and Supplementary Table S2), parallel observations have been 
made, but different actions have been undertaken, probably driven by 
the difference in occurrence. In more detail, ACMG has recognized 
that, for some variants, the stand-alone criterion for an AF of 5% is 
too strict, which has been tackled by a (very short) exception list, and 
it has been suggested to reduce the moderate weight of the allelic 
frequency criterion supporting pathogenic classification (20, 21). 
Here, 9% (5/53) of the feline variants in the pathogenic list have AFs 
>5% overall or in subpopulations (with subpopulation being a breed 
or a variety within a breed, depending on the registry, see 
Supplementary Table S1 for examples) and even higher percentages 
were found in other population studies in cats (17%, 9/52) (33) and 
dogs (18%, 46/250) (75), indicating an exception list is not feasible for 
species or populations in which genetic diversity is reduced. For 
AVCG, we opted to omit the three criteria linked to AF, as explained 
above, and this led to a marked improved classification. Apart from 
questions about the appropriateness of AF cut-offs for animals, the key 
to use these criteria is also the availability of (public) databases for a 
wide range of species. While this is an ongoing effort for several 
species, data is often lacking. As small databases can lead to biased 
estimates and the absence of a database makes it difficult to assess the 
impact of certain breeding strategies as the AF is unknown, 
we  encourage community efforts to build new and expand the 
currently available databases. The dataset presented here helps by 
providing breed-specific and overall AFs for a large set of variants 
(Supplementary Table S1 and S5, respectively).

Clarifications were also deemed necessary for the criteria linked 
to de novo variants (ACMG PS2 and ACMG PM6) (22). These were 
also considered unclear here and led to a modification of criterion PS2 
and removal of criterion PM6 (see Table 5 and Supplementary Table S2). 
As such, for six out of seven criteria that were removed, at least a 
modification was also deemed necessary after the original ACMG 
guidelines were published. A change implemented by ACMG, but not 
adopted for AVCG, was the update on PVS1 (23). The rationale for a 
more extensive explanation for this criterion for ACMG was that it is 
the only criterion with a very strong weight, hence it can influence the 
classification of a variant easily. The proposed change is an extensive 
flow chart, which is complex and should be re-evaluated as the AVCG 
evolve. Published during this study, the updated ACMG 
recommendations linked to all criteria associated with splice variants 
(PVS1, PS1, PP3, BP4, BP6) could not be included in the evaluation 
process (24). Nevertheless, except for small additions to PVS1 
(explicitly stating that this criterion can also be used across species) 
and PP3/BP4 (explicitly stating the number of tools that should 

be used for in silico criteria), the group considered the criteria linked 
to splicing sufficiently clear. Similarly, criteria PS3/BS3, PP4/BS4, the 
criterion formally known as PP1 but renamed to PS5 here as the 
weight was increased, and PM3 were also considered clear, while 
additional clarifications were published for ACMG (25–27).

The final recommendation dealt with PP3 and BP4, i.e., the 
performance of in silico tools (28). Remarkably, while there are several 
benchmark studies, there are none for any of the species evaluated 
here. While we wanted to provide guidance, this posed significant 
challenges as there are, to our knowledge, no reference datasets for any 
of the domestic animals evaluated here. To identify the most optimal 
strategy to develop such a dataset, systematic literature reviews were 
conducted. Surprisingly, the number of different strategies was 
limited, and especially for the benign variants, only one method 
remained. As the most common methodology was AF-based, with all 
its limitations in species with limited genetic diversity, we opted for a 
different strategy (6, 29). This strategy has the additional benefit that 
it does not rely on any of the criteria used to classify variants later on, 
which is positive as this would have created some sort of circularity in 
reasoning. While this is important for the development of the AVCG, 
it is also a common issue when in silico tools are tested. Circularity 
occurs when there is an overlap between training and test datasets, 
which is common in humans, and can lead to biased performance 
estimates (54, 76). As none of the tools used feline genetic variants 
during the development process, circularity is no issue here.

Overall, we observed large performance differences between and 
within categories of variant types (Table 2, Supplementary Table S7). 
Similarly, benchmarks in literature indicate even gene- and phenotype-
specific difference (41–43). While individual tools might outperform 
one another in specific cases, we aimed to provide an overview of the 
combination of tools that generally demonstrated the best accuracy, 
which turned out to be the combination of MutPred2 and LIST-S2 for 
missense variants (56, 62). The tools in this combination differ in 
underlying methodology and how they were trained, which is an 
advantage as this also implies less dependency on the same 
information, that is, a more independent analysis and conclusion. 
While a satisfactory performance was achieved for missense variants 
and splice sites, this was not the case for frameshift and nonsense 
variants. As information from variant effect predictor tools can 
be readily generated, we, in general, encourage the use of these kind 
of tools if performance is adequate, which is thus limited to missense 
variants and splice sites based on the current benchmark.

Combined, classification of animal variants with AVCG 
outperformed classification with ACMG. From a breeding and/or 
veterinary practice perspective, one example illustrating the potential 
consequences of a different category, is linked to polycystic kidney 
disease, associated with the PKD1:c.9882C > A variant (52). It is a 
widespread variant, standardly incorporated in screening and these 
screening programs have successfully reduced the prevalence of the 
disease (33). In contrast, based on the ACMG classification, this 
variant should be disregarded when breeding decisions, screening and 
clinical decisions are made, which implies a standstill for a disease that 
was originally found in 40% of the Persian cats (77).

Aside from a good classification, when implemented in practice, 
guidelines ideally also have an additional characteristic, i.e., a high 
reproducibility or concordance between evaluators. If this is not the 
case, results tend to change between laboratories or even between 
evaluators within a laboratory. While interpretation differences have 
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been reported several times, variant classification reproducibility has 
been demonstrated to be rather low with and without the ACMG 
guidelines (34% for both) (3–5). A cautionary note on this result is 
that a disagreement of 66% does not necessarily imply also that clinical 
management will be affected in two out of three cases. Looking at 
differences that might affect clinical management (L/LP versus VUS/
LB/B), the number reduced to 22%. The difference with AVCG is 
remarkable: an exact agreement of 76% and only 4% of the differences 
might have practical consequences. While an obvious explanation 
might be that only variants that were easy to classify were included, 
this was not the case. In fact, even when the comparison solely 
includes the group of variants among which there was debate, the 
agreement was still twice as high with the AVCG (ACMG: 34% versus 
AVCG: 60%).

With this study, we not only provide methods to develop datasets 
for benchmarking, but we also classify and provide AFs, and in silico 
data for over half of the currently known feline pathogenic variants. 
Overall, nearly all variants classified here got an LP or P label, and for 
several of the ones that did not (e.g., three hypertrophic 
cardiomyopathy-associated variants), this was anticipated (6, 29, 78, 
79). The high number of LPs/Ps was expected as the study was based 
on OMIA, a database that focuses on disease-associated variants. The 
range of phenotypes, inheritance patterns, penetrance, and species in 
which the AVCG were successfully applied, indicates that the central 
scope, i.e., providing guidelines that can be  used in general for 
Mendelian disorders, seems to be fulfilled. However, the classification 
of these variants is not written in stone. Similarly to the guidelines 
themselves and the results obtained with the in silico tools, the 
classification of a variant can change when new information becomes 
available (33). One example is the UROS:c.140C > T variant. In the 
original publication that was used to classify the variant here, one cat 
was homozygous for two UROS variants (UROS:c.140C > T and 
UROS:c.331G > T) (68). While functional studies indicated a potential 
effect for both variants (with a more pronounced effect for the latter), 
in that study the effect of the two could not be separated (68). Recently, 
several cats without symptoms but homozygous for the 
UROS:c.140C > T variant were identified, indicating variant 
disassociation with disease (33). This finding suggests the need to 
re-evaluate the pathogenicity of this variant (33). It also substantiates 
the importance of follow-up and identifying additional cases, 
whenever possible.

This study raises interesting questions for future research. First, 
for both frameshift and nonsense variants, the accuracy of in silico 
tools was lower than for the splice site and missense variants. This 
has the consequence that for two large groups of variants, the in 
silico criteria (PP3/BP4) can currently not be used. While these 
criteria have only moderate support, nonsense and frameshift 
variants benefit from the strong PVS1 criterion, which reduces the 
additional evidence needed to end up with a classification as P/
LP. However, an in silico evaluation is easily generated once good 
tools are available. Hence, we encourage the development of new 
tools but also to not limit them to model species as humans and 
the mouse, as has happened for several tools in the past. Second, 
during the analysis process of the variants in the pathogenic 
dataset, a positive finding was that in vitro and/or in vivo validation 
had already been performed for several variants. While it was 
outside the scope for the current study to do this for all the 

remaining variants, functional studies provide significantly more 
evidence. This is also reflected by the strong weight given to these 
criteria, and we strongly encourage these steps. Third, the effect of 
the person evaluating variants, is important. To develop a 
pathogenic dataset, three geneticists checked each variant 
independently, which is more than what is routinely mentioned in 
literature (Table 1, Supplementary Table S4). While this already 
implies quite a workload, it can always be argued that increasing 
the number of evaluators, might have led to an even better (i.e., 
more robust) pathogenic dataset. In taking these kind of decisions, 
it is of course important to balance feasibility and performance. 
Also important is tracking inconsistencies. In more detail, during 
the evaluation of variants that did not receive a consistent 
classification by multiple evaluators with AVCG, certain criteria 
were identified that were interpreted differently and for some, this 
occurred more than once. Future studies should keep track of these 
kind of disagreements and take action to improve the criteria, 
where needed. Fourth, while the across-species results of AVCG 
are preliminary evidence for a use in other species, further research 
should follow these initial steps as the demand for objective 
guidelines to, e.g., provide a first proof of evidence on when to 
include a variant for screening, is widespread (80). Fifth, as some 
disease-causing variants were classified as VUS with AVCG, 
further optimization and tailoring, especially for the n = 1 
situation, should be a future focus. Furthermore, while a large set 
of variants was thoroughly checked, the aim should be to try to 
classify all variants currently published. This will undoubtedly 
identify additional areas of improvement and potential 
classification difficulties. Importantly, while striving for perfect 
accuracy in terms of classification, we also want to stress that there 
will likely always be exceptions that do not follow the rules. Finally, 
we agree with the view of ACMG and that is why these guidelines 
focus specifically on Mendelian diseases and why variants 
associated with complex diseases, somatic variants, and structural 
variants larger than 50 bp, were excluded (2). While the excluded 
variants currently represent a minority of the total number of 
disease-associated variants, more are likely to be discovered in the 
future, requiring solutions for classification for them as well. As 
such, we also support the foundation of expert groups, an initiative 
which is currently underway under the umbrella of the 
International Society for Animal Genetics, to take on the challenge 
of (1) further improving guidelines, (2) keeping track of new data 
and, whenever necessary, updating variant classification, and (3) 
developing guidelines for the variants that were outside the current 
scope. Furthermore, steps are undertaken to make these variant 
classifications publicly available in databases like OMIA.

In short, we provide the AVCG, tailored for variant classification 
in domestic animals, and demonstrate a substantially improved 
classification, as well as reproducibility, even when used on animal 
variants the ACMG guidelines struggle with or on animal variants 
which led to individual conflicting assessments.
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