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Introduction: Infection by pathogenic bacteria during weaning is a common 
cause of diarrhea and intestinal inflammation in piglets. Supplementing the diet 
with synbiotics is beneficial for animal health. The strain of Lactiplantibacillus 
plantarum L47 (L47) isolated in our lab exhibited good probiotic properties when 
combined with inulin. Here, the effectiveness of combining L47 and inulin (CLN) 
in protecting against enterotoxigenic Escherichia coli (ETEC) induced colon and 
liver inflammation in weaned piglets was evaluated.

Methods: Twenty-eight piglets aged 21  days were randomly assigned into 4 
groups: CON (control), LI47 (oral CLN culture fluid, 1010  CFU/d of L47 and 1  g/d 
of inulin), ECON (oral ETEC culture fluid, 1010  CFU/d), and ELI47 (oral CLN and 
ETEC culture fluid). After 24  days, the colon and liver samples were collected for 
further analysis.

Results and discussion: CLN alleviated colon damage caused by ETEC challenge, 
as evidenced by an increase of colonic crypt depth, mRNA expression of tight 
junction Claudin-1 and Occludin, GPX activity, the concentration of IL-10 and 
sIgA (p  <  0.05). Moreover, there was a decrease in MDA activity, the load of E. 
coli, the concentration of LPS, gene expression of TLR4, and the concentration 
of TNF-α and IL-6 (p  <  0.05) in colonic mucosa. Additionally, CLN counteracted 
liver damage caused by ETEC challenge by modulating pathways associated 
with immunity and disease occurrence (p  <  0.05).

Conclusion: Supplementing with CLN alleviated colon inflammation induced 
by ETEC challenge by decreasing the E. coli/LPS/TLR4 pathway and regulating 
hepatic immune response and disease-related pathways, suggesting that CLN 
could protect intestinal and liver health in animals.
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1 Introduction

Post-weaning diarrhea in piglets presents a significant challenge 
for intensive pig farms, resulting in substantial economic losses due 
to high morbidity rates (1, 2). Reports indicate that mortality among 
piglets affected by post-weaning diarrhea ranges from 20 to 30% (3). 
Enterotoxigenic Escherichia coli (ETEC) is a pathogen causing 
diarrhea in piglets, exerting its pathogenic effects by releasing 
adhesins and enterotoxins (4), thereby instigating intestinal 
inflammation, compromising intestinal barrier function (5), and 
consequently reducing gut microbiota diversity (6).

Probiotics are widely used to alleviate post-weaning stress in 
piglets due to their environmental friendliness, safety, and 
effectiveness (7, 8). For example, Lactobacillus plantarum has been 
found to preserve intestinal mucosal barrier function, thereby 
shielding intestinal epithelia from exogenous stimuli (9). 
Lactobacillus plantarum LLY-606 restored gut microbiota dysbiosis 
and reduced inflammation by inhibiting the activation of the TLR4/
MYD88/NF-kB signaling pathway (10). Prebiotics are utilized by 
specific gut microbiota, for example, Bifidobacterium and 
Lactobacillus metabolize them into acetate and lactate, thereby 
providing nourishment for other microbes (11, 12). Inulin, a 
soluble dietary fiber categorized as a prebiotic, is found in the roots 
and stems of plants such as Asteraceae and Campanulaceae, and is 
metabolized into short-chain fatty acids (SCFAs) by colon microbes 
(13). Reports indicate that inulin relies on gut microbiota to 
alleviate inflammation, enhance intestinal integrity, and boost host 
immunity (14–16). Liu et  al. found that the combination of 
Lactobacillus rhamnosus and inulin increased the abundance and 
diversity of the colonic microbiota, enhancing the levels of 
beneficial bacteria such as Lactobacillus and Alistipes, and 
alleviating dextran sulfate (DSS) induced ulcerative colitis (17). 
Ayala-Monter demonstrated that the combined use of inulin and 
Lactobacillus casei increased the weaning weight of nursing lambs 
while reducing the abundance of E. coli in fecal samples and the 
incidence of diarrhea (18). In our previous study with mice, 
we  observed similar results, where the combination of 
Lactiplantibacillus plantarum L47 and inulin (CLN) increased the 
production of SCFAs in the colon, decreased the abundance of 
E. coli, and reduced the expression of inflammatory factors, thereby 
alleviating DSS-induced colitis (19).

Growing evidence indicates a correlation between gut microbiota 
dysbiosis and the onset of metabolic liver diseases (20, 21). 
Lipopolysaccharides (LPS) produced by Gram-negative bacteria can 
reach the liver and contribute to the development of chronic hepatitis 
(22). Therefore, we hypothesized that CLN might mitigate damage to the 
colon and liver by regulating gut microbes in ETEC-challenged weaned 
piglets, and we aimed to preliminarily explore its mechanisms of action.

2 Materials and methods

This research followed the animal welfare regulations in China 
for animal experimentation and received authorization from the 
Animal Ethics Committee at Nanjing Agricultural University 
(SYXK-2021-0086).

2.1 Preparation of CLN mixture and ETEC 
culture fluid

The strain of L47, isolated from healthy pig intestines, was 
preserved in our lab (23). Its probiotic properties and synbiotic effect 
with inulin in vitro were evaluated in our previous studies (24). After 
thawing, the strain was inoculated into MRS liquid medium and 
activated at 37°C for 24 h. This activation process was repeated twice. 
The concentration of L47 in the activated culture was 1.0 × 109 CFU/
mL, then mixed with inulin at a 10:1 (v/w) ratio. Additionally, the 
E. coli K88 strain CVCC224 was provided by the China Institute of 
Veterinary Drugs Control, and the concentration of ETEC culture 
fluid was 1.0 × 109 CFU/mL.

2.2 Animal experimental design

A total of 28 castrated male piglets, aged 21 days and of the 
Duroc × Landrace × Yorkshire breed (6.80 ± 0.84 kg), were allocated 
into 4 distinct groups, designated as the CON, LI47, ECON and 
ELI47 groups. The experimental period was separated into two 
stages, totaling 24 days, and all piglets were fed a basal diet 
throughout the experiment. In the first stage (d 0–21), the piglets 
were orally administrated with 10 mL PBS (CON and ECON group) 
or a mixture of CLN (LI47 and ELI47 group) daily. In the second 
stage (d 22–24), the piglets received a single oral administration of 
10 mL PBS (CON and LI47 group) or ETEC culture fluid (ECON 
and ELI47 group) on d 22 of the experiment. The detailed procedure 
is shown in Figure 1A.

2.3 Experimental diet and management

All piglets were free to access an antibiotic-free basic diet, which 
was formulated following the NRC (2012) guidelines to fulfill the 
nutritional needs of weaning piglets, as detailed in 
Supplementary Table 1 (25). The nutritional level of dry matter in the 
diet was measured according to the method described by Zhang (26). 
The piglets were raised in individual cages with controlled 
temperatures (27 ± 2°C) and had free access to water.

2.4 Sample collection

The piglets were weighed and slaughtered on d 24 of the 
experiment. Blood from the neck artery was collected into centrifuge 
tubes, centrifuged at 4°C (3,500 × g, 10 min) and the serum was 
carefully transferred to new cryo-tubes.

The entire colon and liver were collected, and their weight and 
length were measured. A 1.5 cm segment of the middle colon and 
1 cm × 1 cm liver tissue sample were carefully dissected using a 
surgical knife and forceps, then fixed in a 4% paraformaldehyde 
solution for a minimum of 24 h. The liver tissue and the colonic 
contents were then collected. The colon tissue was gently rinsed with 
pre-cooled physiological saline, and the colonic mucosa was collected 
by scraping it using a glass slide (27, 28).
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2.5 Serum biochemistry

The serum samples were prepared and preprocessed according to 
the protocol of the kit manufacturer (Angle Gene, Nanjing, China) to 
determine the levels of the target serum markers (Table 1).

2.6 Morphological observation

The fixed colon and liver tissue samples (as described by 2.4) 
were embedded in paraffin. Cross-sections of each sample were 
prepared and stained using either H&E or AB-PAS staining methods, 

then sealed with neutral resin (29, 30). Ultimately, the Image-Pro Plus 
6.0 image system was utilized to measure the crypt depth and count 
goblet cells in the colon samples, as well as to examine the liver 
samples. Eight different fields were randomly selected per slide, and 
the average values were calculated as single-slide data.

2.7 Colon antioxidant activity

A 1:9 ratio of the colonic mucosa sample and pre-cooled 0.9% 
physiological saline were mixed and then centrifuged at 4°C 
(3,500 × g/10 min). The protein concentration was determined by 

FIGURE 1

CLN alleviates colon morphology and barrier function damage. (A) Experimental design diagram. Colon tissues stained with (B) H&E and (C) AB-PAS. 
Scale bar, 100  μm. (D) Number of goblet cells in the colon under each field of view (n  =  7). Gene expressions of (E) MUC2, (F) claudin-1, (G) ZO-1 and 
(H) occluding in the colon mucosa. Results are expressed as mean  ±  SEM (n  =  7), and shoulder markings without the same letter indicate differences 
(p  <  0.05). CON, PBS intervention. LI47, a mixture of CLN intervention. ECON, PBS intervention and challenged by ETEC. ELI47, a mixture of CLN 
intervention and challenged by ETEC. The p-value of LI47  <  0.05 indicates a significant difference between the groups with CLN treatment (LI47 and 
ELI47) and those without CLN treatment (CON and ECON). The p-value of ETEC <0.05 indicates a significant difference between the groups treated 
with ETEC (ECON and ELI47) and those without ETEC (CON and LI74). The p-value of interaction <0.05 indicates a significant interaction between 
these two factors (CLN and ETEC) (as shown in the following figure).
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utilizing a kit (Beyotime, Shanghai, China). Finally, the concentrations 
of total antioxidant capacity (T-AOC), malondialdehyde (MDA), 
glutathione peroxidase (GPX), catalase (CAT), and total superoxide 
dismutase (T-SOD) were determined following the kit instructions 
(Nanjing Jiancheng, China).

2.8 16S rRNA sequencing

The total DNA was obtained from colon digest using a kit from 
Omega Bio-Tek (Norcross, GA, USA), and primers 515F (5′- 
brocade-GTGCCGCCAGCMGCCGG-3′) and 907R (5′- 
CCGTCAATTCMTTTRAGT-TT-3′) were used to amplified the 
V4-V5 region of the 16S rRNA gene, where brocade is the unique 
eight base sequence for each sample. Subsequently, following the 
Illumina genomic DNA library preparation protocol, the merged 
DNA products were used to construct an Illumina paired-end library. 
The amplicon library was then sequenced on the Illumina MiSeq 
platform (Shanghai BIOZERON Co., Ltd) according to the standard 
protocol using paired-end sequencing (2 × 250). The Illumina PE250 
sequencing reads were processed to obtain valid sequences for all 
samples based on the barcode, and quality control filtering was 
performed on the reads, followed by optimization and statistical 
analysis of the data. Operational taxonomic units (OTUs) were 
defined at a 97% similarity level for bioinformatics statistical analysis 
and alpha diversity assessment.

2.9 Colon short-chain fatty acids

A previously described method was used to determine the 
contents of SCFAs (31). Firstly, the pre-treated sample was mixed 

with a 25% (w/v) metaphosphate acid solution and then stored 
overnight at −20°C. After thawing, the mixture was centrifuged to 
obtain the supernatant, which was then filtered through a 
0.22 μm filter.

2.10 RNA-seq analysis in liver

According to the manufacturer’s instructions (Invitrogen), total 
RNA was extracted from liver tissue using TRIzol reagent, followed 
by the removal of rRNA and enrichment of mRNA. The Illumina 
TruSeq™ RNA Sample Prep Kit was then employed to construct a 
cDNA library by reverse transcribing the mRNA into cDNA. The 
purified double-stranded cDNA underwent end repair, A-tailing, 
and adapter ligation, followed by the selection of approximately 
200 bp cDNA fragments. These fragments were PCR amplified and 
purified again to obtain the final library. Quality control of the 
library was performed using agarose gel electrophoresis, and RNA 
concentration, purity, and integrity were assessed. After passing 
quality control, sequencing was conducted using the Illumina 
TruSeq SBS Kit (300 cycles). The raw data underwent quality control 
to generate valid data, which were aligned to the reference genome 
to identify differentially expressed genes (DEGs, p < 0.05) among 
the samples. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) was used for annotation and functional enrichment of 
the DEGs.

2.11 Enzyme-Linked Immunosorbent Assay

The concentrations of immune cytokines, tumor necrosis factor 
(TNF)-α, secretory immunoglobulin A (sIgA), and LPS in the colonic 

TABLE 1 The effects on serum biochemical markers of ETEC challenged piglets with the treatment of CLN.

Items Treatments SEM p-value

CON1 LI472 ECON3 ELI474 LI47 ETEC Interaction

AST, U/L 42.17 34.00 46.00 31.67 5.61 0.01 0.85 0.45

ALT, U/L 26.17 20.00 25.67 21.00 2.64 <0.01 0.90 0.69

TP, g/L 59.10 61.46 58.11 58.37 2.38 0.45 0.24 0.54

ALB, g/L 32.50 35.94 32.77 35.03 2.10 0.07 0.83 0.69

GLOB, g/L 26.63 25.51 25.34 23.34 2.30 0.35 0.30 0.79

A/G 1.28 1.43 1.36 1.57 0.18 0.18 0.42 0.79

ALP, U/L 191.00 152.29 186.33 194.00 23.62 0.35 0.27 0.17

LDH, U/L 652.83ab 606.00ab 881.00a 523.67b 120.63 0.03 0.40 0.08

SUN, mmol/L 4.82 6.10 4.54 5.09 0.70 0.08 0.21 0.47

GLU, mmol/L 4.31 4.50 4.39 4.43 0.56 0.79 0.98 0.84

TC, mmol/L 2.05 1.73 1.64 1.80 0.21 0.60 0.21 0.13

TG, mmol/L 0.58 0.56 0.59 0.49 0.10 0.45 0.69 0.61

ETEC, enterotoxigenic Escherichia coli; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; TP, Total protein; ALB, Albumin; GLOB, Globulin; A/G, Albumin/ Globulin; ALP, 
Alkaline phosphatase; LDH, Lactate dehydrogenase; SUN, Serum urea nitrogen; GLU, Glucose; TC, Total cholesterol; TG, Triglycerides. Without a shared letter within a row indicate 
significant differences (p < 0.05).
1CON, PBS intervention.
2LI47, a mixture of CLN intervention.
3ECON, PBS intervention and challenged by ETEC.
4ELI47, a mixture of CLN intervention and challenged by ETEC.
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mucosa were determined using ELISA kits supplied by Nanjing 
Jiancheng (Nanjing, China).

2.12 Quantitative real-time PCR

Total RNA was extracted from both colonic mucosa and liver 
tissue using a kit from Accurate (Hunan, China), and the RNA 
quality was assessed using the ND-2000 (Thermo Scientific, 
Wilmington, United  States). Subsequently, PCR detection was 
performed using a kit (Accurate, Hunan, China). The primers utilized 
in the study are listed in Table 2. Finally, the expression levels of the 
target genes were assessed using the 2-△△Ct method (32).

2.13 Statistical analysis

Presented the data as mean ± standard error of the mean (SEM) 
and analyzed by SPSS 25.0 software (SPSS Inc., Chicago, IL, 
United  States). p-value <0.05 means statistical difference, 
0.05 < p < 0.10 means a trend. The general linear model (GLM) 
procedure with a two-factor (LI47 and ETEC) analysis of variance 
(ANOVA) design was employed. Significant differences were 
conducted by Tukey’s multiple range test. Different bacterial 
populations were compared using the Mann–Whitney U test, and 
multiple comparisons were corrected using the Benjamini-Hochberg 

false discovery rate. Finally, graphs were formed using GraphPad 
Prism 8.0.2 (La Jolla, CA, United States).

3 Results

3.1 CLN improves colon morphology 
induced by ETEC-challenged

As shown in Table 3, treatment with CLN did not affect either 
colonic length or weight. Figures 1B,C shows that ETEC challenge 
decreased the colonic crypt depth, while treatment with CLN 
increased it (p < 0.05). An interaction effect on crypt depth was 
observed between ETEC challenge and treatment with CLN 
(p < 0.05).

3.2 CLN enhances colon barrier function

The goblet cell count was decreased by ETEC challenge, but 
treatment with CLN increased it (Figure 1D, p > 0.05). Additionally, 
treatment with CLN increased the mRNA expression of MUC2 
(Figure 1E, 0.05 < p < 0.1), Occludin and Claudin-1 (Figures 1F–H, 
p < 0.05). No interaction was found in the goblet cell count and the 
mRNA expression of MUC2, Occludin, Claudin-1, and ZO-1 between 
ETEC challenge and CLN treatment (p > 0.05).

TABLE 2 Primer sequences of RT-PCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

MUC2 AGGACGACACCATCTACCTCA TGTTCCACACGAGAGCAAGG

ZO-1 TCTGCCGAGACAACAGCATC CAGGAGTCATGGACGCACAG

Occludin AGCAGTGGTAACTTGGAGGC CAGTCTTCCTCCAGCTCGTC

Claudin-1 CTATGACCCCATGACCCCAG GGCCTTGGTGTTGGGTAAGA

TNF-α CCTTCCACCAACGTTTTCCTC AGTCGATCATCCTTCTCCAGC

IL-1β CTCTCCAGCCAGTCTTCATTG ATTATTGTTGTCACCGTAGTTAGC

IL-6 GGCCATTCGGATAATGTAGCT GTGTCCTAACGCTCATACTTT

IL-10 CCTGACTGCCTCCCACTTTC GGGCTCCCTAGTTTCTCTTCCT

TLR4 TGACAACATCCCCACATCAGT TTCCCGTCAGTATCAAGGTGG

E. coli CATGCCGCGTGTATGAAGAA CGGGTAACGTCAATGAGCAAA

β-Actin GGACCTGACCGACTACCTCA CCATCTCCTGCTCGAAGTCC

MUC2, Mucin 2; ZO-1, Zonula occludens 1; TNF-α, Tumor necrosis factor; IL-1β, Interleukin 1 beta; IL-6, Interleukin 6; IL-10, Interleukin 10; TLR4, Toll like receptor 4.

TABLE 3 The effects on the intestinal morphology of ETEC-challenged piglets with the treatment of CLN.

Items Treatments SEM p-value

CON1 LI472 ECON3 ELI474 LI47 ETEC Interaction

Colon length, cm 166.21 216.00 178.64 176.98 27.12 0.22 0.50 0.19

Colon weight, g 46.68 50.82 51.56 46.65 6.90 0.78 0.90 0.48

Crypt depth, μm 589.91a 513.73ab 461.20b 553.86a 38.20 0.63 <0.01 <0.01

ETEC, enterotoxigenic Escherichia coli. Without a shared letter within a row indicate significant differences (p < 0.05).
1CON, PBS intervention.
2LI47, a mixture of CLN intervention.
3ECON, PBS intervention and challenged by ETEC.
4ELI47, a mixture of CLN intervention and challenged by ETEC.
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3.3 CLN alleviates colonic inflammation in 
ETEC-challenged piglets

ETEC challenge increased the concentration of TNF-α and IL-6 in 
the colonic mucosa (p < 0.05), while treatment with CLN showed the 
opposite effect (Figures 2A,B, p < 0.05). Additionally, ETEC challenge 
decreased the concentration of IL-10 and secretory immunoglobulin 
A (sIgA) in the colonic mucosa, whereas treatment with CLN 
increased their levels (Figures  2D,E, p < 0.05). No difference was 
observed in IL-1β across the four groups (Figure 2C, p > 0.05). An 
interaction effect on the concentration of TNF-α, IL-6, IL-10, and sIgA 
was found between treatment with CLN and ETEC challenge 
(p < 0.05), while no interaction was observed in IL-1β (p > 0.05).

3.4 CLN improves the colonic antioxidant 
capacity in ETEC-challenged piglets

As shown in Table 4, ETEC challenge decreased the concentration 
of GPX (p < 0.05) and increased MDA (p < 0.05), both of which were 
reversed by treatment with CLN (p < 0.05). Additionally, ETEC 
challenge decreased the concentration of CAT. There was an 
interaction found in the concentration of MDA between treatment 
with CLN and ETEC challenge (p < 0.05), while no interaction was 
found on T-AOC, T-SOD, GPX, and CAT (p > 0.05).

3.5 CLN improves the colonic microbiota in 
ETEC-challenged piglets

In the ELI47 group, ACE and Chao index were lower compared 
to the CON and LI47 groups (Figure 3A, p < 0.05). However, no 
differences were observed in Shannon and Simpson index across the 
4 groups (Figure 3B, p > 0.05). Firmicutes and Bacteroidota were the 
most abundant phylum (Figure 3C). Treatment with CLN increased 
the relative abundance of Firmicutes (p < 0.05) while showing a trend 
toward decreasing the level of Bacteroidota (Figure  3D, 
0.05 < p < 0.10). The proportions of Desulfobacterota and 
Campylobacterota were decreased by ETEC challenge (Figure 3D, 
0.05 < p < 0.10), while CLN treatment showed an increasing trend of 
Desulfobacterota (Figure 3D, 0.05 < p < 0.10).

Lactobacillus was the most abundant genus in the colon 
(Figure  3E), and CLN treatment promoted the proportions of 
Lactobacillus and Marvinbryantia (Figure  3F, P < 0.05), while 
decreasing the levels of Lachnospiraceae NK4A136 group, Escherichia-
Shigella and Streptococcus (Figures 3F,G, p < 0.05). Lower abundances 
of Ruminococcus, Candidatus Soleaferrea, Desulfovibrio, and 
Lachnospiraceae NK4A136 group were observed following ETEC 
challenge (Figure 3G, p < 0.05). However, no differences in the SCFAs 
were found among the 4 groups (Figure 3H, p > 0.05).

3.6 CLN inhibits the Escherichia coli/LPS/
TLR4 pathway in ETEC-challenged piglets

ETEC challenge resulted in an increased E. coli load (0.05 < p < 0.1), 
a higher LPS concentration (p < 0.05), and an elevated level of TLR4 
(p < 0.05) in the colonic mucosa (Figures 2G–I), while these were 
decreased in ELI47 group (0.05 < p < 0.10). However, there was no 

difference in the load of E. coli in the colonic digest among the 4 
groups (Figure 2G, p > 0.05).

3.7 CLN alleviates the expression of liver 
injury markers in serum in 
ETEC-challenged piglets

Compared with the ECON group, the concentration of LDH 
(p < 0.05) and AST (p = 0.08) decreased in the ELI47 group (Table 1). 
However, there was no difference in the concentrations of ALT, TP, 
TC, TG, SUN, etc. among the four groups (Table 1, p > 0.05). An 
interaction was revealed in LDH level between ETEC-challenge and 
treatment with CLN (p < 0.05).

3.8 CLN has no effects on liver morphology 
and inflammation

There were no differences in liver weight and liver tissue sections 
among the 4 groups, as all exhibited intact liver tissue structure with 
clear and complete hepatic lobules and hepatic cords, well-arranged 
hepatocytes, and no visible lipid droplet accumulation (Figures 2F, 4A). 
Additionally, the mRNA expression of TNF-α, IL-1β, IL-6, and IL-10 
showed no differences among the 4 groups (Figures 4B–E, p > 0.05). 
No interaction was observed on TNF-α, IL-1β, IL-6, and IL-10 levels 
between ETEC-challenged and the supplementation of CLN (p > 0.05).

3.9 CLN regulates pathways related to 
immunity and disease occurrence

The PCA analysis presented no obvious separation trend among 
the 4 groups (Figure 4F). ETEC challenge resulted in 422 differentially 
expressed genes (DEGs) (109 up-regulated, 313 down-regulated) 
compared to the CON group (Figure 4H), while treatment with CLN 
(ELI47 group) showed 277 DEGs (172 up-regulated, 105 down-
regulated) (Figure 4H). Furthermore, 940 DEGs (124 upregulated, 826 
downregulated) were identified in the LI47 group compared to the 
CON group (Figure 4H). Both ETEC-challenge and treatment with 
CLN modulated 98 DEGs (Figure 4I). KEGG enrichment analysis 
based on DEGs was performed (Figure 4G). Pathways associated with 
immune regulation, including Hematopoietic cell lineage, Intestinal 
immune network for IgA production, and Th1 and Th2 cell 
differentiation were down-regulated by ETEC challenge (Figure 4G). 
Besides, treatment with CLN up-regulated pathways such as Th1 and 
Th2 cell differentiation, Hematopoietic cell lineage, while down-
regulating pathways like Alcoholic liver disease, Focal adhesion, and 
Fluid shear stress and atherosclerosis, etc. (Figure 4G).

4 Discussion

The intestinal barrier, formed by numerous epithelial cells, serves 
the crucial role of distinguishing the external environment from the 
internal host system (33). The intestine is a complex and crucial organ 
involved in digesting and absorbing nutrients, managing metabolic 
processes, and regulating immune functions (34). However, ETEC 
infection induces intestinal damage such as villous atrophy, 
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inflammation, oxidative stress, and dysbiosis (5). Therefore, it is of 
practical significance to explore effective strategies to protect intestinal 
health. Synbiotics, which are composed of probiotics and prebiotics, 
maintain or enhance intestinal health through various mechanisms 
(35–37). Here, we aim to explore the potential benefits of dietary CLN 
supplementation against ETEC colonic injury.

The function of intestinal morphology and the integrity of the 
barrier are closely associated with the occurrence of intestinal 
inflammation and oxidative stress (38–43). The intestine is lined with 
numerous intestinal epithelial cells (IECs) that secrete mucins (such as 

MUC2) and antimicrobial proteins to maintain the chemical barrier, 
while intercellular tight junctions maintain the physical barrier of the 
intestine (33, 44, 45). Alexia’s study suggests that the synbiotic 
combination of Lactobacillus acidophilus W37 and inulin can directly 
stimulate IECs or immune cells, thereby activating immune receptors 
involved in immune regulation (46). In this study, ETEC-challenge 
induced colonic injury, while CLN supplementation exhibited protective 
and restorative effects. This is consistent with previous research (17, 47, 
48), indicating that CLN has the potential to protect intestinal health, 
and its protective mechanism warrants further investigation.

FIGURE 2

Effects of the treatment with CLN on the cytokines and the level of E. coli/LPS/TLR4 in the colon mucosa and the liver weight. Concentration of 
(A) TNF-α, (B) IL-6, (C) IL-1β, (D) IL-10, (E) sIgA in the colon mucosa. (F) The weight of the liver. (G) The colonization level of E. coli in colon chyme and 
mucosa. (H) The concentration of LPS and (I) gene expression of TLR4 in colon mucosa. Results are expressed as mean  ±  SEM (n  =  7), and shoulder 
markings without the same letter indicate differences (p  <  0.05). CON, PBS intervention. LI47, a mixture of CLN intervention. ECON, PBS intervention 
and challenged by ETEC. ELI47, a mixture of CLN intervention and challenged by ETEC.
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Recently, there has been a growing interest in altering the 
intestinal microbiota using synbiotics (22, 49, 50). Robin supplemented 
piglets’ diets with Pediococcus acidilactici and lactulose, which 
increased the proportion of beneficial microbes like Lactobacillus and 
Prevotella, and alleviated the intestinal inflammation induced by Shiga 
toxin-producing Escherichia coli (51). Similarly, our previous study 
indicated that intervention with CLN altered the fermentation 
environment of the simulated pig colon and increased the production 
of SCFAs in vitro (24). Firmicutes are Gram-positive bacteria, 
including the genera Bacillus, Clostridium, and Lactobacillus (52). The 
increase in abundance of Firmicutes by supplementing CLN may 
be attributed to the increase in abundance of Lactobacillus, it reported 
that the Lactobacillus genus promoted intestinal epithelial cell 
proliferation, maintained intestinal barrier function, and reduced 
intestinal inflammatory responses (53, 54). Lachnospiraceae are 
considered a beneficial bacterium in the gut in numerous studies, 
involved in fiber digestion and SCFAs production, however, 
Lachnospiraceae may also be  associated with the occurrence of 
metabolic diseases (55–57). In addition, supplementation with CLN 
decreased the proportion of harmful bacteria like Escherichia-Shigella 
and Streptococcus in the colon. This suggests that CLN might exert 
anti-inflammatory and antioxidant properties through its impact on 
intestinal microbiota composition. Several signaling pathways are 
involved in regulating inflammation and oxidative stress, including 
AHR/HTAT3 (58), TLR4/NOD (19), AHR/Nrf2 (59), and NF-kB/
MAPK (60). LPS is a component released upon the death of Gram-
negative bacteria like E. coli, and it plays a role in inflammation and 
can even induce sepsis (61, 62). The recognition and binding of LPS 
to the TLR4 receptor can activate intracellular signaling via MyD88-
dependent or -independent pathways, thereby inducing inflammation 
(63, 64). In this study, ETEC-challenge induced increases in the 
expression of E. coli/LPS/TLR4, while CLN supplementation reduced 
these levels. This suggests that treatment with CLN may alleviate 
colonic inflammation by decreasing E. coli abundance in colonic 
mucosa and inhibiting LPS/TLR4 recognition and binding.

LDH is present in various organs, including the liver, heart, lymph 
nodes, spleen, lungs, and pancreas. It participates in the glycolytic 
pathway and catalyzes the redox reaction between pyruvate and lactate. 
When these tissues are damaged, LDH is released into the bloodstream 
in large quantities (65, 66). Therefore, the elevated serum concentration 
of LDH in the ECON group may indicate that an organ has suffered 
damage. Interestingly, the treatment with CLN could prevent such 
damage from occurring. The liver is a crucial metabolic organ, and 

AST and ALT are commonly used as biomarkers for liver injury (67). 
Compared to the ECON group, the ELI47 group exhibited a trend 
toward reduced AST concentration, suggesting that CLN may have a 
protective effect against liver injury. Currently, an increasing number 
of studies are focusing on the relationship between gut microbiota and 
liver diseases (68). For instance, excessive exposure to copper has been 
shown to impair intestinal barrier function and disrupt microbial 
communities, leading to increased production of LPS and activation of 
the TLR4/NF-kB signaling pathway, resulting in liver inflammation 
(69). Additionally, Chen demonstrated that Lactobacillus plantarum 
Lp2 could inhibit LPS-induced liver injury (70). Consistent with these 
studies, treatment with CLN demonstrates the ability to inhibit 
LPS/TLR4 production and has the potential to prevent liver injury. To 
further explore the effects of CLN on the liver, we  conducted 
transcriptome analysis, which revealed significant enrichment of the 
Th1 and Th2 cell differentiation pathways. Th1 cells primarily induce 
the production of interferon-γ (IFN-γ), which is critical for the host’s 
autoimmune response. Th2 cells induce the secretion of cytokines such 
as IL-4, IL-5, and IL-13, promoting the production of immunoglobulin 
(Ig) A and Ig E, thereby regulating humoral immune responses and 
allergic diseases (71, 72). It is noteworthy that the balance between Th1 
and Th2 cells is crucial for maintaining a normal immune response 
(73). A study indicated that ginsenoside Rh2 regulates Th1 
differentiation and the Th1/Th2 immune balance through LDC (74). 
In this study, ETEC challenge downregulated the pathway of Th1 and 
Th2 cell differentiation, while CLN treatment upregulated this pathway. 
Additionally, CLN treatment inhibited several signaling pathways 
associated with disease development. The transcriptome results suggest 
that CLN may play a role in maintaining normal immune responses 
and inhibiting disease development. However, further studies are 
needed to validate the roles of these pathways. In conclusion, this study 
demonstrates that treatment with CLN can serve as an effective 
protective measure for promoting animal health.

5 Conclusion

Supplementation with CLN may reduce colonic inflammation 
induced by ETEC in weaned piglets by inhibiting the E. coli/LPS/TLR4 
pathway (Figure 5). Neither ETEC challenge nor the intervention of 
CLN impacted the liver phenotype, such as maintaining intact liver 
tissue structure, well-arranged hepatocytes, and no visible lipid 
droplet accumulation. However, both interventions presented effects 

TABLE 4 CLN enhances the antioxidant properties of colon mucosa in ETEC-challenged piglets.

Items Treatments SEM p-value

CON1 LI472 ECON3 ELI474 LI47 ETEC Interaction

T-AOC, mM 0.38 0.45 0.43 0.42 0.04 0.14 0.56 0.18

GPX, U·mg−1 prot 9.90b 14.06a 5.51c 9.34b 1.25 <0.01 <0.01 0.85

T-SOD, U·mg−1 prot 557.70 565.25 589.81 589.70 15.34 0.74 0.02 0.73

CAT, U·mg−1 prot 4.36a 4.11a 2.75b 2.71b 0.47 0.67 <0.01 0.75

MDA, mol·mg−1 prot 1.00b 1.41b 2.17a 1.56b 0.20 0.50 <0.01 <0.01

ETEC, enterotoxigenic Escherichia coli; T-AOC, total antioxidant capacity; GPX, glutathione peroxidase; T-SOD, total superoxide dismutase; CAT, catalase; MDA, malondialdehyde. Without a 
shared letter within a row indicate significant differences (p < 0.05).
1CON, PBS intervention.
2LI47, a mixture of CLN intervention.
3ECON, PBS intervention and challenged by ETEC.
4ELI47, a mixture of CLN intervention and challenged by ETEC.
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FIGURE 3

CLN regulates the composition of colonic digest microbiota and SCFAs concentration in piglets. (A) ACE, Chao, (B) Shannon and Simpson index 
among four groups. Relative abundance of the microbial (C) phylum and (E) genus, (D) different phyla and (F–G) different genera. (H) The 

(Continued)
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FIGURE 4

Effects of the treatment with CLN on the liver morphology and RNA-seq of ETEC-challenged piglets. (A) Liver tissues stained with H&E. Scale bar, 
100  μm. Gene expression of (B) TNF-α, (C) IL-1β, (D) IL-6, (E) IL-10 in liver tissues (n  =  7). (F) PCA analysis, (H) DEGs, (I) Venn diagram and (G) KEGG 
pathway enrichment analysis of DEGs among four groups (n  =  4). Results are expressed as mean  ±  SEM. CON, PBS intervention. LI47, a mixture of CLN 
intervention. ECON, PBS intervention and challenged by ETEC. ELI47, a mixture of CLN intervention and challenged by ETEC.

concentrations of SCFAs among four groups. Results are expressed as mean  ±  SEM (n  =  7), and shoulder markings without the same letter indicate 
differences (p  <  0.05). CON, PBS intervention. LI47, a mixture of CLN intervention. ECON, PBS intervention and challenged by ETEC. ELI47, a mixture of 
CLN intervention and challenged by ETEC.

FIGURE 3 (Continued)
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on LDH and AST levels in the serum and modulated pathways 
associated with immunity and disease occurrence in the liver.
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