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Introduction: Monitoring the heart rate (HR) of pets is challenging when 
contact with a conscious pet is inconvenient, difficult, injurious, distressing, or 
dangerous for veterinarians or pet owners. However, few established, simple, 
and non-invasive techniques for HR measurement in pets exist.

Methods: To address this gap, we propose a novel, contactless approach 
for HR monitoring in pet dogs and cats, utilizing facial videos and imaging 
photoplethysmography (iPPG). This method involves recording a video of 
the pet’s face and extracting the iPPG signal from the video data, offering a 
simple, non-invasive, and stress-free alternative to conventional HR monitoring 
techniques. We validated the accuracy of the proposed method by comparing it 
to electrocardiogram (ECG) recordings in a controlled laboratory setting.

Results: Experimental results indicated that the average absolute errors between the 
reference ECG monitor and iPPG estimates were 2.94 beats per minute (BPM) for 
dogs and 3.33  BPM for cats under natural light, and 2.94  BPM for dogs and 2.33  BPM 
for cats under artificial light. These findings confirm the reliability and accuracy of 
our iPPG-based method for HR measurement in pets.

Discussion: This approach can be applied to resting animals for real-time 
monitoring of their health and welfare status, which is of significant interest to 
both veterinarians and families seeking to improve care for their pets.
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1 Introduction

Cats and dogs, the most popular pets in society, are frequently regarded as family 
members. Therefore, their health has received widespread attention in recent years. 
Considering that pets are unable to communicate and inform their owners when they are ill, 
monitoring their heart rate (HR) becomes extremely useful in detecting diseases and observing 
their behavior and responses to treatment (1, 2).

A significant increase or decrease in the HR may indicate severe illnesses such as 
dehydration, heart disease, fever, or shock. Furthermore, the HR is commonly used as an 
emotion-related physiological indicator for assessing the mental states of cats and dogs, such 
as anxiety and depression (3–6).

Currently, contact sensors are widely used for obtaining the HR of pets. However, this method 
frequently requires invasive preparation procedures and causes significant distress in animals (7). 
Thus, pets are occasionally anesthetized or placed under strict restraint to prevent movement that 
could disturb the measurement setup (8, 9). Traditionally, the most common contact-sensing tool 
for measuring the HR of a pet is the electrocardiogram (ECG), which is practices frequently 
adopted for HR waveforms. It requires stable electrical contact with the skin electrode during 
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TABLE 1 Specimen information.

Subject Animal Sex Age Weight (kg) Species

D1 Dog Male 1 year 7 Chinese indigenous dog

D2 Dog Male 9 years 30 Golden retriever

D3 Dog Female 3 months 3 Chinese indigenous dog

D4 Dog Female 1 year 25 Golden Retriever

D5 Dog Female 3 months 5 Border Collie

D6 Dog Female 3 months 5 Siberian Husky

C1 Cat Male 3 years 4 American Shorthair cat

C2 Cat Male 7 months 3 British Shorthair cat

C3 Cat Female 3 years 5 American Shorthair cat

C4 Cat Female 4 years 4 British Shorthair cat

C5 Cat Female 4 years 7 Chinese indigenous cat

FIGURE 1

Data collection from animals. (A) Chinese indigenous dog. 
(B) Golden Retriever. (C) Border Collie. (D) Siberian Husky. 
(E) American Shorthair cat. (F) British Shorthair cat. (G) American 
Shorthair cat. (H) Chinese indigenous cat. (I) British Shorthair cat.

measurement for which hair may have to be removed; in some cases, 
even anesthesia may be necessary (10–12). A collar is another widely-
used method for measuring HR via sensors that come into contact with 
the body of the animal (13, 14). However, the collar must be extremely 
tight around the neck of the pet if the sensor is to capture such signals, 
impairing the animal’s normal behavior and comfort.

Compared with contact sensors, contactless HR detection does not 
require sensors attached to the target body, contributing to improved 
target comfort and preventing changes in the physiological parameters 
of contact-sensitive pets caused by touch. Owing to their advantages, 
non-contact sensors have attracted considerable research attention. 
Photoplethysmography (PPG) is a widely-used optical technology used 
for HR monitoring (15–17). However, they cannot be used to monitor 
pet vital signs because they have a short detection range and are limited 
by the condition of the body surface of the animal. Similarly, hair 
covering the body surface also renders camera- or video-based 
approaches complex, limiting their application to animals (18, 19). 
Recently, radar, a contactless vital sign monitoring method, has 
received extensive interest and has been applied to various scenarios 
(20–22). Ultra-wideband (UWB) radar has been used to measure vital 
signs in dogs and cats (6). Suzuki et al. (23) proposed a respiratory 
monitoring system based on a microwave radar antenna operating at a 
frequency of 10 GHz to measure the breathing rate of a Japanese black 
bear during hibernation without any physical contact. A millimeter-
wave radar was used to measure the vital signs of rats and rabbits (24). 
To be sufficiently sensitive to the vital signs of small animals, they 
raised the carrier frequency to the millimeter-wave level, which not 
only increased the system cost but also reduced the operational 
distance. However, the short detection range restricted its applicability 
in monitoring the vital signs of pets at home, and the sensor used in 
their study was limited to short distances within the electrical field, 
resulting in additional costs for modifications to the environment.

Thermal cameras have also been extensively adopted in animal 
research (25–28) because they are suitable for long-term monitoring 
in dark environments. However, the limitations of such measurements 
include the difficulty in extracting the signal with a partially occluded 
region of interest (ROI), ambient environmental thermal noise, high 
cost, and comparatively short distances owing to the low resolution, 
optics, size, and cost that are all connected to thermal imaging physics, 
and lack of a consumer market for the devices (29).

Considering the market demand, digital visible-light cameras may 
be a better choice for animal surveillance, as they offer at least three 

visible channels with high levels of resolution, intensity (bits per pixel), 
spatial (pixels per degree), and temporal (frames per second) capacity. 
Additionally, recording videos in a variety of settings is enabled by the 
flexibility of the visible-light optical design, which provides panoramic, 
microscopic, and telescopic solutions in seamlessly integrated 
commercial product families (30). Imaging photoplethysmography 
(iPPG) has been proposed (31, 32) as a remote and non-contact 
alternative to conventional PPG in humans. An iPPG is acquired using 
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a video camera instead of a photodetector under dedicated or ambient 
light (31, 33–35). Videos are usually recorded from facial regions (36). 
Recently, Unakafov et al. (37) established a non-contact pulse-monitoring 
system to extract iPPG signals from red, green, and blue (RGB) facial 
videos of rhesus monkeys. Pilot studies demonstrated the possibility of 
extracting iPPG from anesthetized animals, particularly pigs (38, 39).

In the current pilot study, a new, non-contact, non-invasive, and 
cost-effective monitoring system based on iPPG was explored to 
extract the HR at different distances and lights using motion on the 
face of the pet. Continuous wavelet transformation (CWT)-based 
analyses were then performed on the extracted iPPG video signals. 
They were revealed to be motion tolerant on poor-quality video data 
(40, 41). Concurrently, comparison of the RGB three-layer color 
signals suggested that the red-layer signal was more suitable for the 
analysis of the HR signal of the pet and that selecting different signal 
channels according to different situations was more appropriate. 
Considering that iPPG enables easy and noninvasive estimation of 
pulse rate, it can be useful for pet studies. We minimized potential 
annoyance by using a non-invasive, contactless iPPG method, training 
animals to remain still with positive reinforcement, and conducting 
measurements in familiar environments, thus ensuring minimal stress 
and discomfort. Overall, this method can be generalized as a tool for 
tracking the HR of pets for etiological, behavioral, or welfare purposes.

2 Materials and methods

2.1 Animals and animal care

This pilot study included six dogs (two Chinese indigenous dogs, 
two Golden Retrievers, a Siberian husky, and a Border Collie) and five 
cats (two American Shorthair cats, two British Shorthair cats, and a 
Chinese indigenous cat). The patients were aged 3 months–9 years 
old. Details are presented in Table 1. The animals were acquired from 
Kunming Xinyi Pet Hospital (Kunming, Yunnan, China). The pets 
engaged in the current study had previously participated as subjects 
in ECG monitoring experiments, boasting a wealth of experience in 
this experimental setting.

This research was based only on filming, so that the routines of the 
animals were not disrupted. None of the animals had known health 
problems during the filming. For the current trial, we trained pets to 

perform a lie-down behavioral task for approximately 30 s and return 
on command. Each pet’s facial video was recorded at distances of 
30 cm, 60 cm, and 90 cm under both natural and artificial lighting 
conditions. The duration of each video clip was 30 to 50 s, with a total 
recording time of approximately 5 to 7 min per pet to ensure sufficient 
data for heart rate estimation. The pets were individually moved from 
their home cages to the testing laboratory and calmly lie on the familiar 
reclining chair after receiving training with positive reinforcement.

All animals were handled in strict accordance with good animal 
practices as defined by the relevant national and local animal welfare 
bodies. All experiments were performed in accordance with relevant 
guidelines and regulations and authors complied with the 
ARRIVE guidelines.

2.2 Data acquisition and experimental 
setup

The videos were recorded using HD video cameras (iPhone 11) 
on October 14, 2022. Within the experimental plots, videos of the 
animal faces were recorded for each animal. Videos of each animal 
was recorded for 30–50 s at a frame rate of 30 fps, with frames 
measuring 1,280 pixels in width and 720 pixels in height, saved in 
MP4 on a laptop.

Fluorescent lamps mounted on the ceiling or walls of the room were 
used for illumination. The recorded video was compared to natural and 
artificial light. All videos were recorded under ambient (non-dedicated) 
light. Different illumination conditions were adopted to enable our 
video-based approach to cope with this variability because setting a 
particular illumination is often impossible in everyday situations.

To cope with the variability in distances, distances of 30, 60, and 
90 cm between the camera and the face of the animal were set for 
comparison. Figure 1 shows a single frame of the facial video data 
collected from the animals.

During the experiments, the pets were extensively trained with 
positive reinforcement, transported individually from their home 
cages to the testing laboratory, and lie on a familiar reclining chair. The 
positive reinforcement training helped ensure that the pets remained 
still on the reclining chair during the monitoring process.

Each animal underwent habituation prior to beginning data 
collection for this study to get accustomed to the chairing processes. 

FIGURE 2

(A) Reference ECG module (3303 B, 3 Ray). (B) Experimental scene for dogs.

https://doi.org/10.3389/fvets.2024.1495109
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hu et al. 10.3389/fvets.2024.1495109

Frontiers in Veterinary Science 04 frontiersin.org

Matlab GUI environment

Recorded video

RGB

ROI Selection

Extraction of iPPG Signal

R G B

Moving Average Filtering

Heart rate

Averaged  R G B  channel pixel signals

Peak Detection

Spectral Analysis & Filtering

FFT

Compute POS

Band-pass filter

CWT

FIGURE 3

Schematic of the process by which contactless video data is obtained using an HD video camera (iPhone 11) to extract the HR of pets.

This enabled video recordings to be taken while the animals worked 
on tasks in the ECG. Synchronized video recordings and ECG (3303 
B, 3 Ray, China) measurements of the pets were conducted to verify 
the video-based measurements of the HR of dogs and cats.

Figure  2 shows the experimental setup. The ECG monitor 
measures HR data during behavior. Spectral analysis was performed 
using the video and the data that the ECG recorded were compared 
with that from the spectral analysis.

2.3 System framework and data analysis

2.3.1 System framework
A schematic of the pilot system used to extract the HR of pets 

from video data is shown in Figure 3. This image outlines a system for 

 (A)                                       (B) 
FIGURE 4

Regions of interest used for iPPG signal extraction from the (A) dog 
and (B) cat videos.
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FIGURE 5

Flowchart of iPPG signal extraction.

FIGURE 6

Comparison of true and noisy iPPG signals at varying heart rates.
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extracting and analyzing iPPG signals. It starts with video recording 
and region-of-interest (ROI) selection, followed by the extraction and 
averaging of RGB channel signals to generate the iPPG signal.

The signal is then filtered, analyzed using plane-orthogonal-to-
skin (POS) and fast Fourier transform (FFT), and processed with 
continuous wavelet transform (CWT) for feature extraction. Peak 
detection is performed to calculate heart rate, which is displayed in a 
MATLAB graphical user interface (GUI) environment. Facial videos 
of dogs and cats were processed to compute iPPG signals.

Video processing, ROI selection, and color signal computation 
were implemented in C++ using OpenCV,1 which is a widely used 
open-source computer vision library. iPPG extraction and processing, 
along with HR estimation, were performed using MATLAB 2016a,2 
a powerful numerical computing environment.

2.3.2 Region of interest selection
As shown in Figures 4A,B a rectangular boundary for the ROI 

was manually selected for the first video frame. This boundary 

1 http://opencv.org

2 www.mathworks.com

remained the same throughout the video because no prominent 
motion was expected from head-stabilized dogs and cats. The 
regions with the best iPPG extraction for most sessions were the 
cheeks. The values of the color channels over the ROI were 
averaged to reduce spatially uncorrelated noise and enhance the 
pulsatile signal.

2.3.3 Extraction of iPPG signal
Particularly, the selection of pixels that might contain pulse-

related information is described in the extraction section (37), and 
the region of interest, computation, and processing of iPPG is refined 
in the extraction section and processing of iPPG. Moreover, to 
enhance the quality of the iPPG signal, the pixels containing the 
maximal amount of pulsatile information were selected, as shown in 
Figure 5. (A) A region of interest (ROI) is defined from a sequence of 
RGB frames. (B) For each frame, ROI pixels containing pulse-related 
information (shown in white) are selected. (C) For these pixels, 
across-pixel averages of unit-free non-calibrated values for red, green, 
and blue color channels (D) are computed. (E) iPPG signal is 
computed as a combination of three-color signals and then (F) 
refined using several filters.

FIGURE 7

RGB signal analysis in time and frequency domains.
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FIGURE 8

Comparison of preprocessed iPPG signal and CWT-extracted features.

FIGURE 9

GUI main panel of the proposed image analyzing system.
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2.3.4 Processing of iPPG signal
The novelty of the proposed method is that it uses a plane 

orthogonal to skin tone in a temporally normalized RGB space for 
pulse extraction. This is named “plane-orthogonal-to-skin” (POS), 
which is also a unique character distinguishing it from prior work. Its 

algorithm was kept as simple as possible to highlight the fundamental/
independent performance of the POS, although the commonly used 
band-pass filtering was not adopted. The bare core algorithm of POS 
is described in Algorithm 1 and can be implemented in a few lines of 
MATLAB code (35, 42).

FIGURE 10

Signals obtained from the video (A) CWT power spectrum of noisy iPPG signal and (B) comparison of true iPPG, noise, and noisy iPPG signals.
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ALGORITHM 1 Plane-orthogonal-to-skin (POS) Thus, the task of extracting the pulse-signal from the observed 
RGB signals can be translated into defining a projection-system to 
decompose ( )C t . We project a temporally normalized RGB signal Cn, 
measured from the skin in a video.

Over a wide range of lighting spectra and commonly used 
camera sensitivities, the R-channel has the largest pulsatile 
amplitude, followed by the G-channel and B-channel, respectively. 
We project ( )Cn t  onto the plane orthogonal to 1, which is expressed 
as ( )Sn t , and obtain 1S , 2S . We leave the task of finding an exact 
projection direction to the alpha-tuning, which can be expressed as 
h . Assuming that ( )h t  is estimated from short video intervals in a 
sliding window (with length l ), we can derive a long-term pulse-
signal H  by overlap-adding the partial segments ( )h t  (after making 
them zero-mean).

The implementation of POS strictly follows Algorithm 1 
presented in this paper. The sliding window length of POS is defined 
as l  = 32 given a 30-fps camera, which measures cardiac activities in 
1.6 s, i.e., it can capture at least one cardiac cycle of the measured 
signal in a broad heart rate range [40, 240] beat per minute. The 
parameters in the benchmarked methods are set according to the 
original papers.

For fair comparison, all parameters remained identical when 
processing different videos. For each frame, all outlier pixels that 
differed significantly from other pixels in the ROI were excluded. This 
step eliminates the pixels corrupted by artifacts. Thus, pixel ( ),i j  in the 
k -th frame are excluded if the value of any color channel ,i j

kc  does not 
satisfy the inequality (30) by the Equation (1):

 
,1.5 1.5i j

k k k kkm c mσ σ− < < +
 (1)

where km  and kσ  denote the mean and standard deviation of the 
color channel c for the pixels included in the ROI of the k -th frame, 
respectively.

TABLE 2 HR average values of dogs detected by ECG and iPPG under the natural light.

Illumination Subject ECG Distance (cm) iPPG Abs. error Rel. error

Natural light

D1 130

30 126 4 3.08%

60 134 4 3.08%

90 133 3 2.31%

D2 131

30 131 0 0.00%

60 131 0 0.00%

90 135 4 3.05%

D3 166

30 162 4 2.41%

60 164 2 1.20%

90 160 6 3.61%

D4 117

30 115 2 1.71%

60 116 1 0.85%

90 113 4 3.42%

D5 188

30 188 0 0.00%

60 186 2 1.06%

90 183 5 2.66%

D6 215

30 212 3 1.40%

60 219 4 1.86%

90 210 5 2.33%
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iPPG signals were extracted and processed. Color signals kr′, kg ′ , 
and kb′  were computed as averages for each color channel over the 
ROI obtained by refining the cheek regions for every frame k . Prior 
to iPPG signal extraction, each color signal kc′  was centered and 
scaled to make it independent of the brightness level and spectrum 
of the light source. Equation (2) is the standard procedure for 
iPPG analysis.

 
,

,

k k M
k

k M

c m
c

m

′ −
=

 
(2)

where ,k Mm  indicates an M -point running from Equation (3):

 
,

1

1 k
k M l

l k M
m C

M
′

= − +
= ∑

 
(3)

For k M<  we  use 1,Mm . We  followed (35) in taking M  
corresponding to 1 s.

As illustrated in Figure 6, the image displays two comparisons of 
true and noisy iPPG signals, one at a heart rate of 112 BPM (C1) and 
the other at 131 BPM (D1), highlighting how noise affects the accuracy 
of the signals under different conditions.

iPPG-based HR estimates were compared with reference estimates 
using a contact ECG monitor to assess the quality of the HR 
estimation. Additionally, percentages with estimation errors within a 
certain range are presented to facilitate the interpretation of the results.

2.3.5 Signal analysis and selection of RGB 
component

The second phase of processing involved the manual identification 
of regions of interests (ROIs) within the facial area where the HR 
signal was subsequently analyzed using MATLAB’s inbuilt command 
“Gin put.” The ROIs are outlined as rectangles.

As illustrated in Figure  7, the time-domain and frequency-
domain analyses of the RGB signals extracted from the video data are 
presented. The red channel exhibits the most distinct and consistent 
periodic waveform in the time domain, while its frequency-domain 
analysis reveals a sharp, well-defined peak corresponding to the heart 
rate range. In comparison to the green and blue channels, the red 
channel demonstrates a higher signal-to-noise ratio (SNR) and more 
effectively captures the heart rate signal with minimal noise 
interference. Therefore, the red channel was selected as the optimal 
channel for heart rate extraction in this experiment.

The next processing step was to average the intensity pixel values 
over the image sequences of the selected ROI from the R-component 
of the RGB color space, expressed as Equation (4)

 
( )

( ), ROI
R

, ,

ROI
x y I x y t

i t ∈=
∑

 
(4)

where ( ), ,I x y t  signifies the intensity pixel value at image location 
( ),x y  over time ( )t  from the recorded frames, and ROI  refers to the 
size of the selected ROI. A wavelet signal-denoising method based on 
an empirical Bayesian method with a Cauchy prior was employed to 
remove motion artifact noise from ( )Ri t , which was induced by pet 
movement during recording. MATLAB’s built-in command, called 
“wdenoise,” was used to denoise the signal at four levels through the 
wavelet Daubechies family (db15), with a universal threshold as a 
denoising method and a level-dependent approach as a noise 
estimation method at each resolution level (30). The process of signal 
denoising was followed by applying a moving average filter with a 
span equal to 5 to smooth the denoised signal using MATLAB’s 
built-in command, “smooth.”

2.3.6 Spectral analysis and heart rate extraction
A spectral analysis method based on the FFT was applied to 

transform the smoothed signal Ri  smoothed ( )t , from the time 
domain to the frequency domain. An ideal separating band-pass filter 
with selected frequencies was then adopted according to the HR 
range of the pet to separate the HR signal. After passing through the 
bandpass filter, the vital signs are used as the input signal of the 
continuous wavelet transformation. An appropriate decomposition 
level is set to reduce the aliasing phenomenon of the decomposed 
natural mode components. The value was selected based on actual 
measured signals.

FIGURE 11

(A) Linear regression plot and (B) Bland-Altman plot comparing HR 
assessed with iPPG and HR assessed using ECG under the natural 
light.
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The decomposed natural mode components are transformed via 
1,024-point FFT to obtain the spectrum information. Due to the dogs 
and cats’ heartbeat frequency ranges (2–4 Hz, respectively), the 
frequency selector can be used to extract the final HR successively. An 
inverse FFT was applied to the filtered signals to obtain the HR 
signals, ( )HRI t .

2.3.7 CWT for peak detection and HR estimation
Subsequently, a peak detection method based on the wavelet 

transform was employed to identify the periodicity of the peaks, their 
locations, and the number of peaks in the acquired signals. CWT was 
defined as the scalar multiplication of the acquired signals, ( )HRI t , 
and scaled, shifted versions of the wavelet mother function ψ  for 
each signal.

As illustrated in Figure  8, this image presents a comparison 
between preprocessed iPPG signals and feature signals extracted using 
CWT. The top plot displays the iPPG signal post-preprocessing, while 
the bottom plot highlights the smoother and more periodic feature 
signal derived from CWT, with detected peaks marked. CWT offers 
significant advantages, including superior time-frequency resolution, 
multi-scale analysis capabilities, and effective noise suppression, 
making it an ideal method for accurately extracting features from 
iPPG signals.

Mathematically, the CWT functions of the signals ( )HRI t  at 
points ( ),s h  are described as Equation (5) (43, 44).

 
( ) ( ) ( ) ( )H ,, R ,

1d ,
s hs hH s h H

t hW I t t t t
ss

ψ ψ ψ
+∞

−∞

− = =  
 ∫

 
(5)

where ( )HRI t  represents the HR signals after denoising and 
smoothing and ( ),s hH tψ  indicates the wavelet function ( )tψ  of the HR 

signal. Both are translated by the scale s and shifted by h. The outcome 
of the CWT coefficients contains patterns of peaks and periodicity and 
can be used to detect the number of peaks, their locations, and their 
strengths in both signals. All the peaks in ( )HRI t , regardless of their 
width, can be detected because varying scales in wavelet functions 
yield wavelets with different widths.

Finally, HR (beats per minute b/m) is calculated by Equation (6).

 
r60HR pF

n
=

 
(6)

where p denotes the number of peaks in the acquired signal, n  
refers to the number of frames in the selected video, and rF  denotes 
the video frame rate.

2.4 Data MATLAB graphical user interface

A GUI model was implemented in MATLAB R2016a (MathWorks, 
NSW, Australia) with a Microsoft Windows 10 operating system to 
enable the user to load video data, manually select the cardiopulmonary 
range for pets, select the ROI where the cardiopulmonary signal was 
most apparent, and execute the algorithm. The experimentally 
proposed GUI provides an easy tool to observe video information and 
the selected ROI and enables the user to recognize the cardiopulmonary 
readings of the pet. Figure 9 shows the main GUI panel of the proposed 
experimental image analysis system.

The upper left of the GUI panel displays the input video. Upon 
clicking the “Start” button, a single frame from the video appears in 
the top left corner of the panel, where the user can manually define 
the ROI corresponding to the area with the most visible 
cardiopulmonary activity. The middle section of the GUI showcases 

TABLE 3 HR average values of dogs detected by ECG and iPPG under the artificial light.

Illumination Subject ECG Distance (cm) iPPG Abs. error Rel. error

Artificial light

D1 130

30 131 1 0.77%

60 127 3 2.31%

90 131 1 0.77%

D2 131

30 131 0 0.00%

60 134 3 2.29%

90 135 4 3.05%

D3 166

30 165 1 0.60%

60 164 2 1.20%

90 164 2 1.20%

D4 117

30 120 3 2.56%

60 123 4 3.42%

90 111 6 5.13%

D5 188

30 182 2 1.06%

60 193 5 2.66%

90 185 3 1.60%

D6 215

30 210 5 2.33%

60 209 6 2.79%

90 213 2 0.93%
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the extracted signals, including the noise signal, the iPPG signal, and 
the heart rate signal. In the lower part of the GUI, the HR reading for 
the selected pet is displayed. Additional buttons on the panel allow 
the user to start, reset, pause, or exit the process as needed.

3 Results

This section demonstrates the feasibility of the proposed iPPG for 
estimating the HR based on the motion of the face surface caused by 
cardiopulmonary activity without touching the body of the pet. The 
outcomes of this study concerning the HR were consistent with the 
respective normal cardiopulmonary ranges of the species. A time 
period of approximately 30 s was selected from the video data to 
recover the HR for each animal by averaging the measurements over 
these periods.

Two different lighting conditions (natural light under natural 
conditions and artificial light) were compared to set up a control 
group experiment while capturing videos. Second, various shooting 
distances may affect our results. Thus, the distances were set to 30, 60, 
and 90 cm for comparison with the adjusted lighting conditions. The 
ECG device was simultaneously connected to the pet to obtain 
findings while capturing the video.

3.1 Results of dogs

The feasibility of iPPG for estimating HR based on a dog’s face 
surface is discussed in this section. This experiment was conducted 
under different settings, and the signals were separated from videos 
recorded under natural and artificial light conditions. Filters were 
used to process iPPG signals. Additionally, the extracted iPPG signals 
were transformed into the average HR estimates to demonstrate the 
importance of heart rate estimation quality. The signals obtained from 
the video were processed and analyzed in the form of pictures, as 
shown in Figure 10.

The data collected from the six dogs were then analyzed 
statistically to characterize iPPG performance and evaluate whether 

FIGURE 12

(A) Linear regression plot and (B) Bland-Altman plot comparing HR 
assessed with iPPG and HR assessed using ECG under the artificial 
light.
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FIGURE 13

Success HR of the iPPG measurements.
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this kind of system could be used for dog HR monitoring. Data for all 
dogs were obtained using iPPG.

First, we summarized the average HR of the dogs from the ECG 
and iPPG and the data, as listed in Table 2. Abs. Error is the absolute 
error, whereas Rel. Error is the relative error.

Table 2 presents the performance of the algorithm developed for 
the estimation of the HR in the iPPG of natural light. A comparison 
of both monitoring techniques showed that the mean absolute error 
reached 2.94 beats per minute (BPM); therefore, the mean relative 
error was 1.89%.

FIGURE 14

Signals obtained from the video (A) CWT power spectrum of noisy iPPG signal and (B) comparison of true iPPG, noise, and noisy iPPG Signals.
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As shown in Figures  11A,B natural light exhibits a linear 
regression plot and a Bland–Altman plot comparing both monitoring 
techniques, the iPPG and the HR assessed using an ECG. The results 
indicated that the R-squared (coefficient of determination) was 0.99; 
the Bland–Altman plot registered a mean difference of 1.28 BPM; the 
95% limits of agreement ranged from −5.2 to 7.7 BPM.

The algorithm devised for the estimation of the HR in iPPG under 
artificial light is presented in Table 3. The comparison of the two 
monitoring techniques revealed a mean absolute error of 2.94 BPM, 
resulting in a mean relative error of 1.93%.

As suggested in Figures 12A,B, the artificial light presents a linear 
regression plot and a Bland–Altman plot comparing both monitoring 
techniques, the iPPG, and the HR assessed using an ECG. The results 
demonstrated that the R-squared (coefficient of determination) was 
0.99; the Bland–Altman plot registered a mean difference of 0.83 
BPM; the 95% limits of agreement ranged from −6.9 to 8.6 BPM.

In Figure 13, the HR error is analyzed at shooting distances of 30, 
60, and 90 cm. The results indicated that the HR error remained 
consistently below 6, 4, and 2 BPM for 100, 83.33, and 50% of the 
measurements, respectively. With respect to the measured external 
factor of 60 cm, all HR errors remained under 6 BPM for 100%, 4 
BPM for 75.00%, and 2 BPM for 41.67% of the measurements.

For the measured external factor of 90 cm, all the HR errors 
remained under 6 BPM for 100%, 4 BPM for 58.33%, and 2 BPM for 
25.00% of the measurements, indicating a better detection success rate.

Notably, the accuracy of the HR measurements obtained through 
iPPG was excellent, with errors of less than 6 BPM in all test cases, 
showing that iPPG can correctly estimate the dog’s HR at a typical 
distance under the configuration involved.

3.2 Results of cats

The feasibility of iPPG for estimating HR based on a cat’s face 
surface is described in this section. This experiment was conducted 
under different settings, and the signals were separated from videos 
recorded under natural and artificial light conditions. In addition, the 

TABLE 4 HR average values of cats detected by ECG and iPPG under the natural light.

Illumination Subject ECG Distance (cm) iPPG Abs. error Rel. error

Natural light

C1 115

30 112 3 2.61%

60 111 4 3.48%

90 110 5 4.35%

C2 220

30 216 4 1.82%

60 218 2 0.91%

90 214 6 2.73%

C3 177

30 176 1 0.56%

60 182 5 2.82%

90 175 2 1.13%

C4 94

30 97 3 3.19%

60 98 4 4.26%

90 99 5 5.32%

C5 218

30 217 1 0.46%

60 220 2 0.92%

90 221 3 1.38%

FIGURE 15

(A) Linear regression plot and (B) Bland-Altman plot comparing HR 
assessed with iPPG and HR assessed using ECG under the natural 
light.
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signals obtained from the video were processed and analyzed in the 
form of pictures, as shown in Figures 14A,B.

The data collected from the five cats were then statistically 
analyzed to characterize iPPG performance and evaluate whether this 
kind of system could be properly used for cat HR monitoring. Data 
for all cats were measured using iPPG.

First, a summary of the average HR of the cats from the ECG and 
iPPG was made, and the data of the two heart rates were analyzed, as 
detailed in Table 4. Table 4 lists the performance of the algorithm 
developed for the estimation of the HR in the iPPG of natural light. The 
comparison of the mean absolute error of both monitoring techniques 
reached 3.33 BPM; therefore, the mean relative error was 2.40%.

As shown in Figures  15A,B, natural light presents a linear 
regression plot and a Bland–Altman plot comparing both monitoring 
techniques, iPPG, and HR assessed using an ECG. The results 
demonstrated that the R-squared (coefficient of determination) was 1; 
the Bland–Altman plot registered a mean difference of 0.40 BPM; and 
the 95% limits of agreement ranged from −7.0 to 7.8 BPM.

The performance of the algorithm developed for the estimation of 
HR in the iPPG of artificial light is presented in Table  5. The 
comparison of both monitoring techniques of the mean absolute error 
reached 2.33 BPM; therefore, the mean relative error was 1.65%.

In Figures 16A,B, the artificial light presents a linear regression 
plot and a Bland–Altman plot comparing both monitoring techniques, 
iPPG, and HR assessed using an ECG. The results unveiled that the 
R-squared (coefficient of determination) was 1; the Bland–Altman 
plot registered a mean difference of 0.53 BPM; the 95% limits of 
agreement ranged from −5.4 to 4.3 BPM.

In Figure 17, with shooting distances of 30, 60, and 90 cm, the HR 
error for 30 cm was maintained below 4 and 2 BPM in 100 and 50% 
of the measurements, respectively. For a measured external factor of 
60 cm, all the HR errors remained under 6 BPM for 100%, 4 BPM for 
90%, and 2 BPM for 30% of the measurements. For the measured 
external factor of 90 cm, all the HR errors remained under 6 BPM for 

100%, 4 BPM for 70%, and 2 BPM for 40% of the measurements, 
suggesting a better detection success rate.

Notably, the accuracy of HR measurements using iPPG was reliable 
across different shooting distances. Particularly, when the distance was 
30 cm, the HR error was always less than 4 BPM in all the cases studied.

Moreover, when the distance was increased to 60 cm, the HR error 
remained within the acceptable range of less than 90 cm. These results 
indicate that the iPPG method can accurately estimate the HR of cats 
at typical distances in the relevant configurations.

4 Discussion

This study aimed to monitor the heart rates of cats and dogs 
using iPPG. Video-based measurement is an unrestricted and 
non-contact technology that can provide a more comfortable 
monitoring environment for animals. It also avoids the stress created 
by the touch sensor, which affects the subject’s physiological 
parameters. Compared to existing approaches, the proposed method 
is not influenced by animal hair. Thus, it does not necessitate the 
removal of the target’s hair before measurement, which is critical for 
animal welfare (45).

The accuracy of HR measurements for cats and dogs was verified 
using a contact pressure sensor as a reference. In the experiment, the 
subjects were awake rather than under anesthesia or recovering from 
anesthesia. The experimental results demonstrated that iPPG had high 
measurement accuracy. iPPG, as a contactless measurement device, 
has no restraint on pets and is less affected by pet hair, making it useful 
for HR monitoring (46). The study further demonstrates the feasibility 
of using iPPG for heart rate monitoring in both cats and dogs under 
varying lighting and distance conditions. Compared with ECG, iPPG 
showed strong correlation and accuracy, validating its reliability as a 
non-invasive alternative to traditional methods. One major advantage 
of iPPG is its ability to preserve animal welfare, as it eliminates 

TABLE 5 HR average values of cats detected by ECG and iPPG under the artificial light.

Illumination Subject ECG Distance (cm) iPPG Abs. error Rel. error

Artificial light

C1 115

30 114 1 0.87%

60 118 3 2.61%

90 118 3 2.61%

C2 220

30 222 2 0.91%

60 221 1 0.45%

90 220 0 0.00%

C3 177

30 173 4 2.26%

60 174 3 1.69%

90 174 3 1.69%

C4 94

30 96 2 2.13%

60 97 3 3.19%

90 97 3 3.19%

C5 218

30 214 4 1.83%

60 221 3 1.38%

90 218 0 0.00%
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physical contact and reduces stress associated with HR monitoring. 
By using positive reinforcement and familiar environments, animal 
agitation was minimized, ensuring accurate measurements (47, 48). 
Additionally, iPPG’s ability to perform without sedation is a key 
benefit, making it suitable for continuous, long-term monitoring in 
real-world settings.

Pets tend to move during filming, whereas a human subject may 
be  instructed not to move. Some of these movements might 
be compensated for using image-processing techniques to extract the 
different components of movement. These improvements curtailed the 
variations that were substantially recorded. Considering that the 
technique is non-invasive, uses less energy, and is unobtrusive, it is 
possible to obtain even more meaningful data by focusing on long-
term observations. This may reveal trends and achieve more stable 
average readings.

One of the major advantages of iPPG is its noninvasiveness. 
Unlike traditional methods of HR monitoring, such as ECG, iPPG 
does not require any physical contact or invasive procedures, 
making it more comfortable for pets. Furthermore, iPPG can 
be used remotely, which suggests that it can monitor the HR of a pet 
even when the pet is moving around or in a natural environment 
(49, 50).

Limited by experimental equipment, the accuracy of pet HR has 
not been fully confirmed under surgical anesthesia conditions. 
Although the pressure sensor could measure the vital signs of pets, 
the data obtained had limitations. For example, obtaining an 
accurate HR as the ground truth for iPPG was difficult. Therefore, 
the results of iPPG measurements of pet HR will be compared with 
those of ECG data under anesthesia conditions in our 
follow-up research.

In conclusion, iPPG has potential as a contactless HR monitoring 
technique in dogs and cats. Its generalizability to experimental and 
ethology animal facilities can be  considered as a significant 
contribution to animal welfare. Although iPPG has some limitations, 
further research can help overcome these challenges and make it a 
valuable tool in pet healthcare.

5 Conclusion

As integral members of the modern family unit, pets deserve 
meticulous attention and care in matters relating to their physical 
health owing to their limited capacity for communication. This study 
proposed a novel, non-contact approach for measuring the HR in 
both feline and canine subjects. This innovative method employs a 
video-based system that features a user-friendly configuration, 
delivering previously unattainable levels of precision while enhancing 
existing animal health monitoring programs without compromising 
the welfare or circadian rhythms of the subjects in question. The 
non-invasive design of the system eliminates the risk of harm or 
discomfort to the animals while simultaneously affording caregivers 
invaluable data to support informed decisions concerning the well-
being of their pets.

In summary, the non-invasive video-based HR extraction method 
proposed in this study can be generalized to experimental situations 
that have not been addressed in previous studies. To the best of our 
knowledge, the iPPG method successfully extracted HR estimates for 
pets from RGB videos, was significantly robust to small head 
movements, and successfully tracked HR in awake cats and dogs. 
Thus, it is a noninvasive, low-cost, and easy-to-implement HR 
tracking method that can be  used in multiple animal behavioral, 
veterinary, and experimental setups. Moreover, association with 
animals will be further considered to generalize this method to open-
field situations, contributing to a real breakthrough in the study of 
animal behavior and well-being.
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FIGURE 16

(A) Linear regression plot and (B) Bland-Altman plot comparing HR 
assessed with iPPG and HR assessed using ECG under the artificial 
light.

https://doi.org/10.3389/fvets.2024.1495109
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hu et al. 10.3389/fvets.2024.1495109

Frontiers in Veterinary Science 17 frontiersin.org

Ethics statement

Ethical approval was not required for the study involving animals 
in accordance with the local legislation and institutional requirements 
because the pets included in this study were all owned by Kunming 
Xinyi Pet Hospital. This study solely involved the use of cameras to 
capture videos of pets’ faces in their natural daily life settings. 
Additionally, the pets that participated in this study received informed 
consent and support from Kunming Xinyi Pet Hospital, all pets were 
handled in strict accordance with good animal practices as defined by 
the relevant national and local animal welfare entities, therefore 
making it exempt from ethical review and approval.

Author contributions

RH: Writing – original draft, Writing – review & editing, 
Conceptualization. YG: Validation, Writing – original draft. GP: 
Methodology, Writing – review & editing. HY: Validation, Writing – 
review & editing. JZ: Conceptualization, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This research 

was funded by the Joint Special Project of Agricultural Basic Research 
of Yunnan Province (No. 202301BD070001-114).

Acknowledgments

The authors are grateful for the support provided by the Kunming 
Xinyi Pet Hospital. The authors would like to thank Editage (www.
editage.cn) for English language editing.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships  
that could be  construed as a potential conflict of  
interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References
 1. Kahankova R, Kolarik J, Brablik J, Barnova K, Simkova I, Martinek R. Alternative 

measurement systems for recording cardiac activity in animals: a pilot study. Anim 
Biotelemetry. (2022) 10:15. doi: 10.1186/s40317-022-00286-y

 2. González-Ramírez MT, Landero-Hernández R. Pet–human relationships: dogs 
versus cats. Animals. (2021) 11:2745. doi: 10.3390/ani11092745

 3. Brown S, Atkins C, Bagley R, Carr A, Cowgill L, Davidson M, et al. Guidelines for 
the identification, evaluation, and management of systemic hypertension in dogs and 
cats. J Vet Intern Med. (2007) 21:542–58. doi: 10.1111/j.1939-1676.2007. 
tb03005.x

 4. Pongkan W, Jitnapakarn W, Phetnoi W, Punyapornwithaya V, Boonyapakorn C. 
Obesity-induced heart rate variability impairment and decreased systolic function in 
obese male dogs. Animals. (2020) 10:1383. doi: 10.3390/ani10081383

 5. Ohno K, Sato K, Hamada R, Kubo T, Ikeda K, Nagasawa M, et al. Electrocardiogram 
measurement and emotion estimation of working dogs. IEEE Robot Autom Lett. (2022) 
7:4047–54. doi: 10.1109/LRA.2022.3145590

 6. Wang P, Ma Y, Liang F, Zhang Y, Yu X, Li Z, et al. Non-contact vital signs 
monitoring of dog and cat using a UWB radar. Animals. (2020) 10:205. doi: 10.3390/
ani10020205

50.00  50.00  

0.00  

30.00  

60.00  

10.00  

40.00  

30.00  30.00  

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0-2 BPM 2-4 BPM 4-6 BPM

Su
cc

es
s  

Ra
te

(%
) 30 cm 60 cm 90 cm

FIGURE 17

Success HR of the iPPG measurements.

https://doi.org/10.3389/fvets.2024.1495109
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://www.editage.cn
http://www.editage.cn
https://doi.org/10.1186/s40317-022-00286-y
https://doi.org/10.3390/ani11092745
https://doi.org/10.1111/j.1939-1676.2007.tb03005.x
https://doi.org/10.1111/j.1939-1676.2007.tb03005.x
https://doi.org/10.3390/ani10081383
https://doi.org/10.1109/LRA.2022.3145590
https://doi.org/10.3390/ani10020205
https://doi.org/10.3390/ani10020205


Hu et al. 10.3389/fvets.2024.1495109

Frontiers in Veterinary Science 18 frontiersin.org

 7. Hui X, Kan EC. No-touch measurements of vital signs in small conscious animals. 
Sci Adv. (2019) 5:eaau0169. doi: 10.1126/sciadv.aau0169

 8. Luca C, Salvatore F, Vincenzo DP, Giovanni C, Attilio ILM. Anesthesia protocols in 
laboratory animals used for scientific purposes. Acta Biomed. (2018) 89:337. doi: 
10.23750/abm.v89i3.5824

 9. Hernández-Avalos I, Flores-Gasca E, Mota-Rojas D, Casas-Alvarado A, Miranda-
Cortés AE, Domínguez-Oliva A. Neurobiology of anesthetic-surgical stress and induced 
behavioral changes in dogs and cats: a review. Vet World. (2021) 14:393–404. doi: 
10.14202/vetworld.2021.393-404

 10. Mukherjee J, Mohapatra SS, Jana S, Das PK, Ghosh PR, Das K, et al. A study on the 
electrocardiography in dogs: reference values and their comparison among breeds, sex, 
and age groups. Vet World. (2020) 13:2216–20. doi: 10.14202/vetworld.2020.2216-2220

 11. Vezzosi T, Tognetti R, Buralli C, Marchesotti F, Patata V, Zini E, et al. Home 
monitoring of heart rate and heart rhythm with a smartphone-based ECG in dogs. Vet 
Rec. (2019) 184:96–6. doi: 10.1136/vr.104917

 12. Walker AL, Ueda Y, Crofton AE, Harris SP, Stern JA. Ambulatory 
electrocardiography, heart rate variability, and pharmacologic stress testing in cats with 
subclinical hypertrophic cardiomyopathy. Sci Rep. (2022) 12:1963–10. doi: 10.1038/
s41598-022-05999-x

 13. Petpace. (2018). Smart health monitoring collar. Available at: https://petpace.com. 
(Accessed November 2, 2018).

 14. Voyce. (2018). Dog monitoring collar. Available at: https://www.voyce.com. 
(Accessed November 2, 2018)

 15. Cugmas B, Štruc E, Spigulis J. Photoplethysmography in dogs and cats: a selection 
of alternative measurement sites for a pet monitor. Physiol Meas. (2019) 40:01NT02. doi: 
10.1088/1361-6579/aaf433

 16. Allen J. Photoplethysmography and its application in clinical physiological 
measurement. Physiol Meas. (2007) 28:R1:–R39. doi: 10.1088/0967-3334/28/3/R01

 17. Tamura T, Maeda Y, Sekine M, Yoshida M. Wearable photoplethysmographic 
sensors—past and present. J Electron. (2014) 3:282–302. doi: 10.3390/electronics3020282

 18. Froesel M, Goudard Q, Hauser M, Gacoin M, Ben Hamed S. Automated video-
based heart rate tracking for the anesthetized and behaving monkey. Sci Rep. (2020) 
10:17940–11. doi: 10.1038/s41598-020-74954-5

 19. Wang C, Pun T, Chanel G. A comparative survey of methods for remote heart rate 
detection from frontal face videos. Front Bioeng Biotechnol. (2018) 6:33. doi: 10.3389/
fbioe.2018.00033

 20. Zhang Y, Qi F, Lv H, Liang F, Wang J. Bioradar technology: recent research and 
advancements. IEEE Microw Mag. (2018) 20:58–73. doi: 10.1109/MMM.2019.2915491

 21. Wang P, Zhang Y, Ma Y, Liang F, An Q, Xue H, et al. Method for distinguishing 
humans and animals in vital signs monitoring using IR-UWB radar. Int J Environ Res 
Public Health. (2019) 16:4462. doi: 10.3390/ijerph16224462

 22. Wang P, Qi F, Liu M, Liang F, Xue H, Zhang Y, et al. Noncontact heart rate 
measurement based on an improved convolutional sparse coding method using IR-
UWB radar. IEEE Access. (2019) 7:158492–502. doi: 10.1109/ACCESS.2019.2950423

 23. Suzuki S, Matsui T, Kawahara H, Gotoh S. Development of a noncontact and long-
term respiration monitoring system using microwave radar for hibernating black bear. 
Zoo Biol. (2009) 28:259–70. doi: 10.1002/zoo.20229

 24. Churkin S, Anishchenko L (2015). Millimeter-wave radar for vital signs 
monitoring. 2015 IEEE International Conference on Microwaves, Communications, 
Antennas and Electronic Systems (COMCAS). 1–4. IEEE

 25. Barbosa Pereira C, Dohmeier H, Kunczik J, Hochhausen N, Tolba R, Czaplik M. 
Contactless monitoring of heart and respiratory rate in anesthetized pigs using infrared 
thermography. PLoS One. (2019) 14:e0224747. doi: 10.1371/journal.pone.0224747

 26. Lowe G, Sutherland M, Waas J, Schaefer A, Cox N, Stewart M. Infrared 
thermography—a non-invasive method of measuring respiration rate in calves. Animals. 
(2019) 9:535. doi: 10.3390/ani9080535

 27. Redaelli V, Ludwig N, Costa LN, Crosta L, Riva J, Luzi F. Potential application of 
thermography (IRT) in animal production and for animal welfare. A case report of 
working dogs. Ann Ist Super Sanita. (2014) 50:147–52. doi: 10.4415/ANN_14_02_07

 28. Lowe G, McCane B, Sutherland M, Waas J, Schaefer A, Cox N, et al. Automated 
collection and analysis of infrared thermograms for measuring eye and cheek 
temperatures in calves. Animals. (2020) 10:292. doi: 10.3390/ani10020292

 29. Al-Naji A, Gibson K, Lee SH, Chahl J. Monitoring of cardiorespiratory signal: 
principles of remote measurements and review of methods. IEEE Access. (2017) 
5:15776–90. doi: 10.1109/ACCESS.2017.2735419

 30. Al-Naji A, Tao Y, Smith I, Chahl J. A pilot study for estimating the cardiopulmonary 
signals of diverse exotic animals using a digital camera. J Sens. (2019) 19:5445. doi: 
10.3390/s19245445

 31. Huelsbusch M, Blazek V (2002) Contactless mapping of rhythmical phenomena 
in tissue perfusion using PPGI. Medical Imaging 2002: Physiology and Function from 
Multidimensional Images. 110–117.

 32. Verkruysse W, Svaasand LO, Nelson JS. Remote plethysmographic imaging using 
ambient light. Opt Express. (2008) 16:21434–45. doi: 10.1364/oe.16.021434

 33. De Haan G, Jeanne V. Robust pulse rate from chrominance-based rPPG. IEEE 
Trans Biomed Eng. (2013) 60:2878–86. doi: 10.1109/TBME.2013.2266196

 34. Kamshilin AA, Nippolainen E, Sidorov IS, Vasilev PV, Erofeev NP, Podolian NP, 
et al. A new look at the essence of the imaging photoplethysmography. Sci Rep. (2015) 
5:10494. doi: 10.1038/srep10494

 35. Wang W, Den Brinker AC, Stuijk S, De Haan G. Algorithmic principles of remote 
PPG. IEEE Trans Biomed Eng. (2016) 64:1479–91. doi: 10.1109/TBME.2016.2609282

 36. Poh MZ, McDuff DJ, Picard RW. Advancements in noncontact, multiparameter 
physiological measurements using a webcam. IEEE Trans Biomed Eng. (2010) 58:7–11. 
doi: 10.1109/TBME.2010.2086456

 37. Unakafov AM, Möller S, Kagan I, Gail A, Treue S, Wolf F. Using imaging 
photoplethysmography for heart rate estimation in non-human primates. PLoS One. 
(2018) 13:e0202581. doi: 10.1371/journal.pone.0202581

 38. Blanik N, Pereira C, Czaplik M, Blazek V, Leonhardt S (2014). Remote 
photopletysmographic imaging of dermal perfusion in a porcine animal model. The 15th 
International Conference on Biomedical Engineering. 92–95. Springer, Cham

 39. Addison PS, Foo DM, Jacquel D, Borg U (2016). Video monitoring of oxygen 
saturation during controlled episodes of acute hypoxia. 2016 38th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 
4747–4750. IEEE.

 40. Unakafov AM. Pulse rate estimation using imaging photoplethysmography: 
generic framework and comparison of methods on a publicly available dataset. Biomed 
Phys Eng Express. (2018) 4:045001. doi: 10.1088/2057-1976/aabd09

 41. Liu X, Yang X, Jin J, Li J. Self-adaptive signal separation for non-contact heart rate 
estimation from facial video in realistic environments. Physiol Meas. (2018) 39:06NT01. 
doi: 10.1088/1361-6579/aaca83

 42. Suryasari S, Rizal A, Kusumastuti S, Taufiqqurrachman T. Illuminance color 
independent in remote photoplethysmography for pulse rate variability and respiration 
rate measurement. Int J Inform Vis. (2023) 7:920–6. doi: 10.30630/joiv.7.3.1176

 43. Al-Naji A, Perera AG, Mohammed SL, Chahl J. Life signs detector using a drone 
in disaster zones. Remote Sens. (2019) 11:2441. doi: 10.3390/rs11202441

 44. Wee A, Grayden DB, Zhu Y, Petkovic-Duran K, Smith D. A continuous wavelet 
transform algorithm for peak detection. Electrophoresis. (2008) 29:4215–25. doi: 
10.1002/elps.200800096

 45. Zemanova MA. Towards more compassionate wildlife research through the 3Rs 
principles: moving from invasive to non-invasive methods. Wildl Biol. (2020) 2020:1–17. 
doi: 10.2981/wlb.00607

 46. Heimbürge S, Kanitz E, Otten W. The use of hair cortisol for the assessment of 
stress in animals. Gen Comp Endocrinol. (2019) 270:10–7. doi: 10.1016/j.
ygcen.2018.09.016

 47. Whitham JC, Miller LJ. Using technology to monitor and improve zoo animal 
welfare. Anim Welf. (2016) 25:395–409. doi: 10.7120/09627286.25.4.395

 48. Ueda Y, Slabaugh TL, Walker AL, Ontiveros ES, Sosa PM, Reader R, et al. Heart 
rate and heart rate variability of rhesus macaques (Macaca mulatta) affected by left 
ventricular hypertrophy. Front Veterinary Sci. (2019) 6:1. doi: 10.3389/fvets.2019.00001

 49. van Es VA, Lopata RG, Scilingo EP, Nardelli M. Contactless cardiovascular 
assessment by imaging photoplethysmography: a comparison with wearable monitoring. 
Sensors. (2023) 23:1505. doi: 10.3390/s23031505

 50. Djeldjli D, Bousefsaf F, Maaoui C, Bereksi-Reguig F, Pruski A. Remote estimation 
of pulse wave features related to arterial stiffness and blood pressure using a camera. 
Biomed Signal Process Control. (2021) 64:102242. doi: 10.1016/j.bspc.2020.102242

https://doi.org/10.3389/fvets.2024.1495109
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.1126/sciadv.aau0169
https://doi.org/10.23750/abm.v89i3.5824
https://doi.org/10.14202/vetworld.2021.393-404
https://doi.org/10.14202/vetworld.2020.2216-2220
https://doi.org/10.1136/vr.104917
https://doi.org/10.1038/s41598-022-05999-x
https://doi.org/10.1038/s41598-022-05999-x
https://petpace.com
https://www.voyce.com
https://doi.org/10.1088/1361-6579/aaf433
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.3390/electronics3020282
https://doi.org/10.1038/s41598-020-74954-5
https://doi.org/10.3389/fbioe.2018.00033
https://doi.org/10.3389/fbioe.2018.00033
https://doi.org/10.1109/MMM.2019.2915491
https://doi.org/10.3390/ijerph16224462
https://doi.org/10.1109/ACCESS.2019.2950423
https://doi.org/10.1002/zoo.20229
https://doi.org/10.1371/journal.pone.0224747
https://doi.org/10.3390/ani9080535
https://doi.org/10.4415/ANN_14_02_07
https://doi.org/10.3390/ani10020292
https://doi.org/10.1109/ACCESS.2017.2735419
https://doi.org/10.3390/s19245445
https://doi.org/10.1364/oe.16.021434
https://doi.org/10.1109/TBME.2013.2266196
https://doi.org/10.1038/srep10494
https://doi.org/10.1109/TBME.2016.2609282
https://doi.org/10.1109/TBME.2010.2086456
https://doi.org/10.1371/journal.pone.0202581
https://doi.org/10.1088/2057-1976/aabd09
https://doi.org/10.1088/1361-6579/aaca83
https://doi.org/10.30630/joiv.7.3.1176
https://doi.org/10.3390/rs11202441
https://doi.org/10.1002/elps.200800096
https://doi.org/10.2981/wlb.00607
https://doi.org/10.1016/j.ygcen.2018.09.016
https://doi.org/10.1016/j.ygcen.2018.09.016
https://doi.org/10.7120/09627286.25.4.395
https://doi.org/10.3389/fvets.2019.00001
https://doi.org/10.3390/s23031505
https://doi.org/10.1016/j.bspc.2020.102242

	A novel approach for contactless heart rate monitoring from pet facial videos
	1 Introduction
	2 Materials and methods
	2.1 Animals and animal care
	2.2 Data acquisition and experimental setup
	2.3 System framework and data analysis
	2.3.1 System framework
	2.3.2 Region of interest selection
	2.3.3 Extraction of iPPG signal
	2.3.4 Processing of iPPG signal
	ALGORITHM 1 Plane-orthogonal-to-skin (POS)
	2.3.5 Signal analysis and selection of RGB component
	2.3.6 Spectral analysis and heart rate extraction
	2.3.7 CWT for peak detection and HR estimation
	2.4 Data MATLAB graphical user interface

	3 Results
	3.1 Results of dogs
	3.2 Results of cats

	4 Discussion
	5 Conclusion

	References

