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Introduction: Chronic wasting disease (CWD) among cervids in Kansas has seen 
a consistent rise over the years, both in terms of the number of infections and its 
geographical spread. In this study, we assessed the occupancy patterns of CWD 
among white-tailed deer and mule deer across the state.

Methods: Using surveillance data collected since 2005, we applied a dynamic 
patch occupancy model within a Bayesian framework, incorporating various 
environmental covariates. Using principal components analysis, 13 fully 
orthogonal components representing cervid habitat, soil, and elevation were 
derived. Competing models with different temporal patterns were fit, and the 
best model selected based on Watanabe-AIC values and AUC value of 0.89.

Results: The occupancy pattern produced by this model revealed a steady 
progression of the disease toward the east and southeast of the state. A random 
forest analysis of covariates at annual intervals indicated that geographic 
location, elevation, areas occupied by mixed forests, and several soil attributes 
(pH, clay content, depth to restrictive layer, available water content, and bulk 
density) explained most of the variability in the surveillance data (R2  =  0.96).

Discussion: The findings reported in this study are the first for the state of Kansas 
but are consistent with previous findings from other geographic jurisdictions 
in the US and Canada. This consistency underscores their value in designing 
surveillance and management programs.
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1 Introduction

Chronic wasting disease (CWD) is a neurodegenerative disease of cervids caused by a 
misfolded prion protein (PrPCWD), through contact with other infected deer, from the 
environment as well as transmitted vertically during birth (1, 2). Infected deer, including 
white-tailed deer (Odocoileus virginianus), mule deer (O. hemionus), elk (Cervus canadensis), 
and moose (Alces alces) exhibit symptoms of wasting, display behavioral changes such as 
decreased social interaction, loss of awareness, and loss of fear for humans, and exhibit 
polydipsia (increased drinking), polyuria (increased urination), and hypersalivation (excessive 
salivation) (3). Infection will lead to premature death, which leads to concerns for conservation 
as well as loss of revenue to rural economies that rely on big game hunting (4, 5). Although 
currently there is no evidence, there is additionally a looming concern that CWD spillover to 
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humans could occur in the future (6, 7) as venison consumption is 
common among hunters and their families, which may result in 
human suffering similar to that seen with mad cow disease outbreak 
in the 1990s. Such negative perception will lead to a decline in big 
game hunting, which will have a serious economic impact and 
consequences for deer conservation and management. There are no 
vaccines or effective preventive options available for managing this 
disease among free-ranging or captive cervids at the present time.

The geographic distribution of CWD-positive cervids has steadily 
increased over time. First noted in Colorado in 1967 at a research 
captive deer facility (1), CWD-positive captive and free-ranging 
cervids have since been detected in at least 35 states in the US and 5 
provinces in Canada, mainly in the Great Plains region (8). 
Independent of the North American spatial distribution, the disease 
has also been reported among cervids in Norway, Sweden, and 
Finland, with an unclear origin, and in captive cervids in South Korea, 
which was imported from Canada (9, 10).

The past two decades have revealed a number of factors that 
influence the persistence of CWD infection among cervids, 
particularly white-tailed deer, and these factors could potentially 
promote spatial spread (11–13); although, the ecology and 
epizootiology of this disease remains yet to be fully understood. In 
Kansas for instance, the focus area for the present study, CWD was 
first noted in the year 2005 in Cheyenne county, the northwestern 
most county in the state, and every successive year since then the 
disease has been detected among white-tailed deer and mule deer 
from additional counties during annual surveillance. The current 
potential spatial distribution extent of the disease in the state, and any 
of its potential drivers are not known. Predicting the spatial 
distribution and expansion, and determining what factors, if any, in 
the environment could be contributing to the geographic spread of 
diseases, is important for planning appropriate management and 
surveillance strategies and for informing policy makers and public.

As it is typical for many wildlife diseases, much of the information 
we  currently have on CWD in Kansas is based on opportunistic 
surveillance efforts, which rely on samples submitted for CWD testing 
by volunteers, viz., hunters, taxidermists, meat processors, and wildlife 
biologists. Conducting spatial pattern analyses and subsequent 
interpretations based on such data is problematic because they are 
likely to be  a biased representation of underlying disease 
spatiotemporal prevalence. Novel methods have been developed over 
the years that addresses some of these concerns. For a disease like 
CWD with a highly heterogeneous prevalence across different regions 
in Kansas, for which surveillance data is sparsely available and 
collected non-uniformly over time and space, it is ideal to use 
occupancy methods that are flexible enough to accommodate for 
spatiotemporal heterogeneities in sampling and do not rely on host 
ecological data such as density, distribution, or population dynamics 
(14, 15).

Free-ranging and farmed ungulates in N. America are highly 
susceptible to CWD, and since its first detection the disease has 
numerically increased over the years and has spread relatively rapidly 
to newer geographic areas (8). Despite control efforts, the disease has 
proven difficult to contain; possibly due to the many different ways by 
which it is transmitted, environmental reservoirs, including soil and 
potentially plant materials in which the prions can remain viable for 
several years (16, 17). Additionally, the regulatory factors that govern 
big game hunting and stakeholder, landowners’ preferences influence 

executable management options (18, 19). The steady, almost 
exponential growth in white-tailed deer populations over the past 
decades (20), and potentially varying levels of their genetic 
susceptibility (21, 22) and cervid social behavior (23, 24) could also 
be  contributing factors. Fundamental to proper management of 
wildlife diseases is to understand how far the disease has spread 
geographically, what/if there are any discernable distributional 
patterns, and the potential factors that contribute to such patterns. In 
this effort, we evaluated these aspects for CWD in Kansas for the first-
time using surveillance data collected since 2005.

In this study, we used a dynamic patch-occupancy model in a 
Bayesian framework to quantify the spatial distribution of CWD in 
Kansas. Additionally, we  utilized elevation, and environmental 
covariates derived from the land cover/land use and soil survey in 
order to estimate which of these factors play a role in the 
spatial distribution.

2 Materials and methods

2.1 Study region

Surveillance data used in this study was collected from the state 
of Kansas, situated in Great Plains region, and has diverse landscape 
and climate that is suitable for supporting cervid populations. 
Although cervids were virtually extirpated in Kansas in the beginning 
of 1900s, through hunting regulations and natural migration from 
neighboring states, the state’s current deer population has been 
restored and is considered to be healthy. White-tailed deer, the most 
commonly found deer species in N. America is found throughout the 
state with some differences in their density, in diverse land use areas 
such as agricultural land as well as periurban areas. Mule deer, the 
second most common cervid species in Kansas, have been declining 
overall but remain more prevalent in the western parts of the state. 
Climate in Kansas is continental, with great extremes between 
summer and winter temperatures but only short periods of extreme 
hot or cold. The growing season is from mid-March to mid-September 
and the precipitation gradually varies from east to west, with east 
receiving progressively more rainfall around 40 inches annually, 
compared to 20 inches in the west.

Kansas lies in the center of the United  States, and mainly 
experiences three different types of climates. A small western part of 
the state has a semi-arid steppe (Köppen climate classification BSk) 
with hot summers and cold winters. The significant eastern portion 
has hot and humid summers and falls under the humid continental 
(Köppen Dfa) type. Southeastern Kansas displays a humid subtropical 
type (Köppen Cfa) with mild winters.

2.2 Disease data

2.2.1 Data collection
Surveillance for CWD positive cervids in Kansas started in 

2005. Since this time, the Kansas Department of Wildlife and 
Parks (KDWP) has continuously surveyed cervids in the state for 
CWD presence; however, the area under surveillance changed in 
2012–2013 period when the surveys were conducted in one of 5 
contiguous regions in the state, such that a higher amount of time 
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were spent by KDWP personnel in soliciting and collecting 
samples from volunteers in one of these five regions, who were 
compensated for submitting samples. State-wide surveillance 
resumed in 2020. During the “deer season” from mid-November 
to mid-January, tissue samples viz., lymph nodes and/or obex 
from different cervid species, but predominantly white-tailed 
deer were obtained through one of many sources, viz., 
taxidermists and meat processors. Also, samples were collected 
from wildlife biologists, and seasonal technicians who collected 
samples from roadkill deer, and from deer harvested by private 
hunters, who were compensated for their samples by providing 
free CWD testing. Diagnostic testing for CWD was performed 
with immunohistochemistry test.

2.2.2 Data curation
Surveillance data from years 2005–2019 were maintained by the 

KDWP and data from 2019 to 2022 were collected by University of 
Missouri. Records in both cases were digitized from originally 
handwritten data on data cards that were sent by sample collectors 
along with tissue samples for CWD testing. The location information 
provided on the data card, either as geographic coordinates or verbal 
description were geocoded using Google Earth software. The 
distribution of positive and negatively tested samples submitted for 
CWD testing is depicted in Figure 1. Additional variables included 
CWD test result (positive, negative, unsuitable); age (0.5, unknown); 
species (white-tailed deer, mule deer); and sex (male, female, 
unknown). The domain values for each of these variables were 
standardized prior to their use in the study.

2.2.3 Covariate data
Environmental characteristics such as the host’s habitat and soil 

properties are associated with wildlife diseases and are useful proxies 
for describing how the disease prevalence vary spatially. Human land 
use (25), land cover composition and density (26), and cervid habitat 
in general (27) affect CWD. The CWD prions can survive in the soil 
for several years and affect CWD spread (28, 29). Habitat level 
covariate data were obtained from two sources. The National Land 
cover/land use (NLCD) data was obtained from the US Geological 
Survey Multi-Resolution Land Characteristics MRLC consortium 
(30), and soil attribute data that were deemed to be relevant to CWD 
disease ecology were obtained from the California Soil Resource Lab, 
which is available in a GeoTIFF format, and are created by aggregating 
the USDA NRCS Soil Survey Data at the resolution of 800 m grid cells 
(31). Land cover/land use data were extracted within a 20 km2 grid. 
Representative values of land cover/land were the percent coverage 
within each grid and soil attributes were mean values within each grid. 
A list of land cover/land use and soil attribute data considered in this 
study is presented in Table 1.

2.3 Modeling

2.3.1 Occupancy analysis
We used a dynamic occupancy analysis (32) to model the spatial 

and temporal patterns of CWD across the study area. Occupancy 
models jointly estimate the biological process, whether CWD was 
present or not (occupancy), and the observational process, the 

FIGURE 1

Spatial distribution of lymph node and obex samples tested for Chronic wasting disease in Kansas between 2005 and 2023. Each circle represents a 
sample location within 5  km radius of deer harvest.
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probability that CWD would be detected by the surveillance efforts if 
it were present (detection). We overlaid a 20 × 20 km grid across the 
state of Kansas, each grid represents a site (i). Grid sizes for occupancy 
analyses are often based on the average home range size for the species 
of interest (33). Here although the primary surveillance species was 
white-tailed deer, the subject of interest is CWD. We chose the grid 
size to balance the resolution of the surveillance data while 
maximizing detection probability. We  used a dynamic model to 
account for annual variability in CWD occupancy. Our surveillance 
data were from annual hunting samples and therefore we used an 
annual temporal scale (t) for our analysis.

We are interested in the hidden ecological state, zit, indicating 
whether CWD was present in site i at time t. If zit is zero (indicating 
CWD was absent in site i at time t) there would be  no positive 
detections, yit, of CWD (i.e., assuming no false positives). The gold 
standard diagnostic test for detecting CWD prions is 
immunohistochemistry, which has a negligible rate of false positives. 
If zit is one (indicating CWD is present in site i at time t), then the 
number of positive samples, yit, is a result of the total number of 
samples taken, nit, and the probability of detecting CWD given it is 
present, p (Equation 1). Detection probability, p, is modeled with an 
uninformative prior (Equation 2). The initial hidden ecological state 
of CWD presence/absence, zit, was modeled as a Bernoulli random 
variable with the probability of initial occupancy, ψi1 (Equation 3). The 
initial occupancy can be  modeled as a logit transformation of a 
combination of covariates, Xψ, (Equation 4) and linear regression 
coefficients, βψ (Equation 5). Since we used a dynamic model, the 
hidden state, zi1, and initial occupancy, ψi1, were modeled separately. 
All subsequent hidden states, zit, were modeled conditioned on the 
previous time step, zit-1 (Equation 6) as Bernoulli random variables 
with probability occupancy, ψit. All occupancies after the initial time 
step, ψit, were derived from the previous state, zit-1, and transition 
parameters (Equation 7). If a site was occupied in time t-1 (zit-1 = 1), it 
may become unoccupied at time t, with the probability of local 
extinction, εit-1, or stay occupied (did not go locally extinct, 1- εit-1). If 
a site was unoccupied in time t-1 (zit-1 = 0), it may become occupied at 

time t, with the probability of local colonization, γit-1, or stay occupied 
(1- γit-1). Local extinction, εit, and local colonization, γit, can be modeled 
as a function of covariates (Xε and Xγ respectively) and linear 
regression coefficients (βε and βγ respectively; Equations 8–11). 
We used uninformative priors on p, β𝜓, βε, and βγ as we did not have 
strong prior knowledge to help inform the model.

 ( )~ ,it it ity Binomial z p n∗  (1)

 ( )~ 1,1p Beta  (2)

 ( )1 1~i iz Bernoulli ψ  (3)

 ( )1ilogit Xψ ψψ β=  (4)

 ( )~ 0,1Normψβ  (5)

 ( )1| ~it it itz z Bernoulli− ψ
 (6)

 ( ) ( )1 1 1 11 1it it it it itz zψ ε γ− − − −= − ∗ + −  (7)

 ( )itlogit Xε εε β=  (8)

 ( )~ 0,1Normεβ  (9)

TABLE 1 Environmental variables evaluated in the study.

Covariate 
(Data source)

Variables

Land cover/Land use 

(USGS, MRLC)

Open Water, Developed Open Space, Developed (Low Intensity), Developed (Medium Intensity), Developed (High Intensity), Barren, Deciduous 

Forest, Evergreen Forest, Mixed Forest, Shrubland, Grassland Pasture, Woody Wetlands, Herbaceous Wetlands.

Soil physiochemical 

properties (California 

Soils Resource Lab)

Calcium Carbonate (kilograms/meter2), Cation Exchange Capacity (centimoles/kilogram), Cation Exchange Cap. (0–5 cm) (centimoles/kilogram), 

Cation Exchange Cap. (0–25 cm) (centimoles/kilogram), Cation Exchange Cap. (0–50 cm) (centimoles/kilogram), Electrical Conductivity 

(decisiemens/meter), Electrical Conductivity (0–5 cm) (decisiemens/meter), Electrical Conductivity (0–25 cm) (decisiemens/meter), pH (0–5 cm), 

pH (0–25 cm), pH (25–50 cm), pH (30–60 cm), Sodium Adsorption Ratio ratio, Soil Organic Matter (kilograms/meter2), Soil Organic Matter—Max 

percent by weight, expressed as a decimal, Available Water Holding Capacity (cm), Available Water Holding Capacity. (0–25 cm) (cm), Available 

Water Holding Capacity. (0–50 cm) (cm), Bulk Density (1/3 bar grams/cm3), Drainage Class, Rock Fragments (0–25 cm), percent by volume 

expressed as a decimal, Saturated Hydraulic Conductivity (Ksat)—Mean (micrometers/s), Saturated Hydrologic Conductivity (Ksat)—Min 

(micrometers/s), Saturated Hydraulic Conductivity (Ksat)—Max (micrometers/s), Saturated Hydraulic Conductivity (Ksat) (0–5 cm) 

(micrometers/s), Soil Texture (0–5 cm), Soil Texture (0–25 cm), Soil Texture (25–50 cm), Sand percent by weight, Sand (0–5 cm) percent by weight, 

Sand (0–25 cm) percent by weight, Sand (25–50 cm) percent by weight, Sand (30–60 cm) percent by weight, Silt percent by weight, Silt (0–5 cm) 

percent by weight, Silt (0–25 cm) percent by weight, Silt (25–50 cm) percent by weight, Silt (30–60 cm) percent by weight, Clay percent by weight, 

Clay (0–5 cm) percent by weight, Clay (0–25 cm) percent by weight, Clay (25–50 cm) percent by weight, Clay (30–60 cm) percent by weight, Depth to 

Restrictive Layer cm, Hydrologic Group, Kw Factor (0–25 cm) factor value, Land Capability Class—Non-Irrigated class, Land Capability Class—

Irrigated class, Soil Depth (cm), Soil Order, Soil Temperature Regime, Wind Erodibility Group, Wind Erodibility Index (tons/acre/year)

Elevation USGS 30 × 30 m elevation
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 ( )itlogit Xγ γγ β=  (10)

 ( )~ 0,1Normγβ  (11)

Local colonization rates were of particular interest in this 
analysis, and we modeled many covariate relationships associated 
with local colonization. We  examined habitat effects using the 
National Land Cover Database (34) and we included a collection of 
soil characteristics (full set of possible covariates shown in Table 1). 
We modeled annual variability using splines on time from package 
‘splines2’ (35), and we accounted for the proportion of neighboring 
sites that were occupied on the previous time step (termed neighbor 
effect). We subset the covariates for the occupancy analysis to limit 
those used to ones that were not highly correlated (R > 0.5), using the 
‘caret’ package (36). The dynamic occupancy model has difficulty 
converging when there are too many predictor variables. Therefore, 
we chose the cutoff of 0.5 to ensure the number of predictors was less 
than 20. We then conducted a principal components analysis (PCA) 
[PCA; (37)] to create covariates for the dynamic occupancy analysis 
that were completely orthogonal to avoid potential issues with 
multicollinearity. We  compared models with different temporal 
patterns, we examined a linear trend across years and splines on year 
with 3, 5, or 7 degrees of freedom. Model comparisons were 
conducted using Watanabe-Akaike information criterion—WAIC  
[(63, 38)]. WAIC is similar to AIC where the more parsimonious 
models are suggested with lower values. We examined goodness of fit 
of the model set using the area under the curve (AUC) statistic 
adjusted for the imperfect detection associated with occupancy 
models (39).

We calculated the posterior distributions for the dynamic 
occupancy model using a custom coded Markov Chain Monte Carlo 
(MCMC) algorithm with Metropolis-Hastings steps in Program R 
(40). We assessed convergence visually and using the Gelman-Rubin 
statistic (41).

2.3.2 Post-hoc random forest analyses
All occupancy values after the initial occupancy were derived 

from the previous time steps and transition rates. We  wanted to 
understand factors associated with the derived occupancy estimates. 
We used a random forest approach (42) to evaluate which of a the 
broader set of predictor variables (Table 1) were most able to explain 
the variation in the posterior estimates of occupancy. We implemented 

the analyses using the package ‘randomForestSRC’ (43) in R. The 
training and tested subsets of the data are set automatically within the 
package (43). We trained the random forest model with 1,000 trees 
and no specified maximum tree depth. The analysis presents the 
predictive accuracy of the model using the testing or ‘out-of-box’ data. 
Our response variable for the random forest analysis is the probability 
of CWD occupancy and thus the metric of evaluation used is the of 
out-of-box R2, higher values show better predictive ability of the 
model. Covariates with higher variable importance suggest they are 
more informative at explaining variability in occupancy rates. We used 
all habitat, soil, temporal, and spatial variables in the random 
forest analyses.

Preliminary analyses suggested that the temporal effect of year 
would dominate the variable importance followed by the latitude and 
longitude given the nature of the invasion. As we were particularly 
interested in soil or habitat features that were related with CWD 
occupancy, we fit separate random forest models for each year to 
determine if there were common factors that were important across 
years and how much variability in CWD occupancy was explained by 
these covariates across years.

3 Results

From 2005 to 2020, there were 18,421 samples collected for CWD 
surveillance in Kansas. There were 418 that were CWD positive, 
17,861 that were CWD negative, and 142 that were indeterminant. 
There was a low of zero positive samples in 2006 to a high of 114 
positive samples in 2019. Samples were from five species (Table 2). The 
majority (88%) of samples were from white-tailed deer (Odocoileus 
virginianus), 10% were from mule deer (O. hemionus), 1% from elk 
(Cervus canadensis), and cumulatively less than 1% of samples were 
from fallow deer (Dama dama), sika deer (Cervus nippon), or the 
species was unknown (Table 2).

3.1 Occupancy results

We limited the habitat, elevation, and soil covariate set to 15 by 
removing covariates that were highly correlated (R > 0.5). Using PCA 
we  converted the habitat and soil covariates to fully orthogonal 
covariates and limited the principal components to ensure the 
cumulative proportion of variance explained was over 0.95, thus 
we  ended up with 13 orthogonal covariates to explain habitat, 

TABLE 2 Number of CWD surveillance samples by species, shown with scientific names, number of positive CWD samples, indeterminant samples, and 
total number of samples.

Species Scientific name CWD positive Indeterminant Total

White-tailed deer Odocoileus virginianus 319 129 16,247

Mule deer Odocoileus hemionus 98 6 1,854

Elk Cervus canadensis 0 0 236

Fallow deer Dama dama 0 0 4

Sika Cervus nippon 0 0 3

Species unknown 1 9 77

Total 418 142 18,421
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elevation, and soil relationships. We compared models with different 
temporal patterns (Table 3). A linear trend across time and a model 
with splines with 5 degrees of freedom on year were similarly 
supported based on the WAIC values (Table 3). The linear model had 
a higher AUC (Table 3) and was considered the top model. The top 
model had an AUC of 0.89 suggesting very good model fit.

CWD occupancy varied considerably across space and time 
(Figure 2A). Generally, CWD occupancy was low early in the study 
with a low of 0.05 [95% credible intervals (CI): 0.001, 0.179] in 2008 
to a high of 0.46 (95% CI: 0.04, 0.69) in 2020. The first few years had 
very few CWD positives and thus had greater uncertainty around the 
occupancy estimates than later years (Figure 2B). The probability of 
detecting CWD given it was present was 0.22 (95% CI: 0.19, 0.25).

3.2 Random forest results

Random forest models provide out of box R2 values describing the 
predictive accuracy of the model. Although the R2 values for individual 
years varied, ranging from 0.4 when there were very few cases of 
CWD in the initial years to considerably better (0.86–0.93) in the 
latter years, the random forest out of box R2 value for all of Kansas and 
all years 2006–2020 was 0.96, suggesting the covariates considered 
were able to explain a large majority of the variation in CWD 
occupancy and have very good predictive accuracy. The annual 
variability (i.e., year effect) had, by far, the greatest variable importance 
(0.11). The next highest variable importance was less than 1/14th of 
the importance of the year effect (variable importance of 
elevation = 0.008), suggesting that annual variability explained most 
of the CWD occupancy in Kansas.

We conducted random forest analyses separately by year to look 
more closely at impacts of habitat and soil covariates as well as to 
examine how well the models fit by year. Mean elevation was the most 
important variable across all years (Figure 3A) with higher occupancy 
probabilities being associated with higher elevations (Figure 4A). 
Longitude and latitude were also important explanatory variables for 
CWD occupancy (Figure 3A) as they help describe the spatial spread 
over time (Figures 2, 4B, H). Shallower depths to restrictive soil layers 
were associated with higher CWD occupancy (Figure 4C). Higher 
available water storage capacity related to higher CWD occupancy 
(Figure 4D). When there was no (0%) mixed forest coverage that 
tended to relate to higher CWD occupancy (Figure 4E) and which 

was a more important factor in early and late years (Figure 3A). 
Lower soil temperature regimes tended to correlate with higher CWD 
occupancy (Figure 4F) and this was a more important factor in later 
years of the study (Figure  3A). Higher pH levels also tended to 
correlate with higher CWD occupancy (Figure 4G), which was more 
important earlier in the study (Figure 3A). Higher CWD occupancy 
was also associated with 15–25% of clay composition in the soil 
(Figure 4I) although this relationship was less important than other 
covariates already described (Figure 3A). Of the 77 soil, habitat, and 
elevation covariates that we  examined, the nine described here 
explained the most variability (Figure 3A). The out of box R-squared 
values were higher in later years than earlier years (Figure 3B). Earlier 
years had considerably fewer CWD positive cases and thus most sites 
were likely free of CWD early in the study (Figure 2). Spatial pattern 
of different covariates evaluated in the study is present in 
Supplementary Files 1, 2.

4 Discussion

The spatiotemporal occupancy patterns of CWD-infected deer in 
Kansas (Figure 2) illustrate the geographic expansion of CWD in the 
state, progressing from the northwest corner toward the central and 
eastern areas over the years. This pattern largely reflects a natural 
spatial progression of CWD in the state due to deer movement, rather 
than a pattern of accidental introductions over time into new areas 
aided by hunters or other agents. If the latter were the case, it would 
have likely resulted in a non-uniform spatial pattern with prominent, 
heterogeneous spatial foci of higher occupancies. The initial infections 
in Kansas likely originated from deer that migrated from the western 
states of Colorado and Wyoming, and Nebraska to the north, where 
the disease was established a number of years prior (44, 45). The 
number of positive CWD cases in the central and eastern side of the 
state remains low at the present time, despite higher prevalence of 
CWD infected deer in Missouri to the east [e.g., (46)]. Prevention and/
or management strategies such as targeted culling when new cases 
occur in the central and eastern region Kansas may prevent the further 
spread of CWD in the state.

Areas in the state with higher soil pH values (alkaline) are 
associated with higher CWD occupancy. Additionally, CWD 
occupancy changed non-linearly with increasing clay content in the 
soil, peaking slightly above 20% and gradually declining beyond that 
level, with an optimal range between 18 and 25% by weight. These 
observations are similar to those made in previous studies [e.g., (28, 
29, 47)]. Dorak et al. (28) found that the potential exposure to prions 
in Illinois soils increases when the soil pH is above 6.6 and the clay 
content is below 18%, which aligns with our current findings. The 
similarity is remarkable, given the differences between the two studies 
in terms of modeling approaches and soil environmental datasets. 
We found lower depths to restrictive layer in the soil were associated 
with higher CWD occupancy, suggesting that the areas with soils that 
have shallower distance to claypan, or bedrock are potentially more 
suitable for prion persistence and subsequent transmission to deer. 
This aligns with our observation that regions with soils possessing 
higher available water storage (AWS) capacity also exhibit higher 
CWD occupancy. Soils with shallow restrictive layers generally have 
lower AWS capacity. Higher bulk density indicates more compacted 
soil with less pore space, which can affect prion persistence, 

TABLE 3 Model comparison results from the dynamic occupancy model 
on CWD in Kansas from 2006–2020 to determine the best fitting 
temporal model.

Model k
Delta 
WAIC

WAIC AUC

Linear year trend 16 1.07 1562.43 0.891

Year spline df = 3 18 50.12 1611.48 0.887

Year spline df = 5 20 0.00 1561.37 0.876

Year spline df = 7 22 39.41 1600.77 0.878

All models included 13 principal components of the habitat and soil characteristics and a 
neighbor effect. The temporal models compare the degrees of freedom for the splines used 
on annual variability. The models are compared using WAIC where lower values are more 
parsimonious, the delta WAIC is shown to make comparisons easier. Additional model fit is 
shown as the occupancy adjusted AUC statistic, where higher AUC represents a better model 
fit. The number of parameters (k) are also proved.
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bioavailability, and movement assisted by wind and water. 
We observed that CWD occupancy is non-linearly associated with 
bulk density over a narrow range of values between 1.2 and 1.6 g/cm3. 
Areas with lower bulk density values favor higher CWD occupancy, 
but this occupancy quickly declines over a short range before 
increasing again.

The heterogeneities in soil physiochemical properties that affect 
CWD occupancy are an indication of landscape-level factors that can 
be targeted for management. Understandably, it is impracticable nor 
advised to amend soil properties on such large scales to prevent CWD 
transmission. However, this understanding allows us to focus 
management strategies on 20 km2 areas, or contiguous groups of 
20 km2 areas, which are likely to have higher CWD occupancy and 
also possess high-risk soil properties. One previously proposed 
approach is targeted culling in areas with higher deer density and 
riskier soil physiochemical properties (28, 29, 48). However, the 
practice of targeted or local culling must be continuously evaluated for 
its effectiveness in reducing CWD infection among cervids (49, 50). 
Carcass removal from the landscape in areas where CWD is present 

and soil properties are high risk, and restricting feeding or baiting in 
these areas to minimize deer congregation and thereby concentrated 
prion environmental deposition have also been proposed as 
management actions (cite). In naïve, uninvaded high-risk areas, wild 
and captive cervid movement could be  restricted along with 
restrictions placed on hunting activity and carcass disposal, among 
others, which may prevent the dispersal and invasion of CWD prions. 
The diagnostic detection of CWD prions in environmental samples 
has become more accessible and standardized with the recent 
adaptation of the RT-QuIC assay. This advancement enables the 
establishment of monitoring programs to track CWD prion levels 
across different management zones and monitor prion movement, for 
instance through watersheds or other catchment areas.

The environmental correlations observed in this study may 
represent important relationships with CWD occupancy in the 
broader region; however, it should be  noted that some of these 
associations might be spurious and/or related with the happenstance 
of the invasion. For instance, we observed that higher elevations were 
related to higher CWD occupancy, but this is likely due in large part 

FIGURE 2

(A) CWD occupancy probabilities in Kansas shown every 4  years from 2008 to 2020. (B) The standard errors (SE) associated with the CWD occupancy 
probabilities in Kansas in the same years.

https://doi.org/10.3389/fvets.2024.1492743
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Davis et al. 10.3389/fvets.2024.1492743

Frontiers in Veterinary Science 08 frontiersin.org

to the fact that there is a higher concentration of cases in the relatively 
high-altitude western portion of Kansas where initial invasion likely 
came from Colorado and Wyoming. Infected cervids are known to 
be present in lower elevation area as in the case of their wider presence 
in Illinois and Missouri, in relatively flat terrains. Therefore, elevation 
at the scale of our analysis may not be a good predictor of future CWD 
occurrence within Kansas, but more of an explanation of where it 
came from. Similarly, mixed forest cover was the only habitat-specific 
covariate that was suggested to be important for CWD occupancy in 
Kansas. More mixed forest cover was less associated with CWD 
occupancy. However, the percent of mixed forest cover only ranged 
from 0 to 3% cover within the 20 km2 grids we considered across the 
state. This may be  another example of instances where the 
happenstance of the invasion is suggesting a relationship that is not 
necessarily a driver of CWD occurrence in Kansas. Future studies 
evaluating the association of environmental covariates with CWD, and 
other wildlife diseases may benefit from using derived remote sensing 
variables of factors that affect land cover land use change [e.g., (51–
53)] in addition to the crude estimates as used in the present study.

The 20 km2 spatial units for analysis in this study is somewhat 
artificial and it is not the scale in which deer are managed in the state 
of Kansas—which are several kilometers wide/deep, and they are 
based on road networks for borders (54). Although strictly not 

reflective of the home ranges of white-tailed-and mule deer in the 
region, which varies by season, region, and sex, and can range from 1 
to 5 km2 in Texas (55–57) the spatial unit we used for modeling the 
occupancy status allowed us to potentially account for uncertainties 
associated with harvest locations reported by sample submitters, as 
well as deer movement during the hunting season. Compared to the 
current deer management units, the finer, more uniformly sized 
20 km2 spatial units we used in the present study are potentially more 
suitable when it comes to deciding, implementing CWD management 
strategies, such as localized and targeted culling. This is particularly 
valuable in the newly invaded areas in the central and eastern sides of 
the state, which may not be predictable or visible at coarser scales of 
spatial analysis. Also, in the present work, we did not allow detection 
probability to vary, however, it would be possible with a modification 
to our current approach to estimate detection probabilities separately, 
for instance if differences are expected for different sources of 
surveillance or diagnostic methods, which may help inform 
management and/or surveillance decisions [e.g., (58)].

The probability of detecting CWD in our study exceeded our 
expectations (average detection probability given CWD was present 
was 0.22), given the inherent challenges of modeling spatiotemporal 
patterns for wildlife diseases (58, 59), and it was also higher than that 
reported in similar studies. For instance, our own studies assessing 

FIGURE 3

(A) The variable importance values from the random forest analyses separately conducted on each year of data in Kansas from 2006 to 2020. Larger 
variable importance values suggest the covariate explain more variability in the response variable, in this case CWD occupancy. The covariates are 
shown in decreasing order of cumulative variable importance across all years. The top 20 covariates across all years are shown. The years are 
represented by colors. (B) The out of box R-squared values from the random forest analyses by year. Higher R-squared values suggest that the model 
is better explaining the variability in the system.
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wildlife rabies in North America, which incorporated various 
landscape-level covariates similar to the present study, typically 
reported detection rates ranging from 0.02 to 0.15 at the higher end 
(58–60), compared to up to 0.83 in the present study. The standard 
errors noted for occupancies in the present study are low and did not 
raise concerns. Further, the AUC values for all the models considered 
in the study were within 15% of each other and close to 0.9, suggesting 
an excellent model fit (Table 3). This indicates that the random effect 
terms and the inclusion of fixed environmental covariates in the study 
adequately captured the variability in CWD data.

One of the epizootiological aspects of cervid CWD that is not yet 
fully understood is the potential prevalence of CWD prions in various 
scavenger and predator species, along with their exact role in the 
disease’s spread (61, 62). The soil properties observed in this study that 
influence CWD occupancy also indirectly affect various ecological 
parameters, including nutrient availability, plant growth rate, and 
vegetation density. These factors, in turn, influence the habitat quality 
and suitability for different scavenger species, affecting their 
composition, diversity, density, and movement patterns across the 
landscape. Together, these factors potentially impact CWD dispersal 

FIGURE 4

Marginal plots of relationships between (A) elevation, (B) longitude, (C) depth to restrictive layer (cm), (D) available water storage capacity (cm), 
(E) percent cover of mixed forest, (F) pH, (G) latitude, (H) Bulk density (grams/cm3) and (I) percent clay by weight and the probability of CWD 
occupancy in Kansas shown across years 2006–2020 (shown by color). The lines represent the smoothed marginal relationship from the yearly 
random forest analyses, the shaded regions represent the 95% confidence intervals.
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in the environment. Future studies that evaluate the role of scavengers 
in CWD epizootiology will benefit by considering the underlying 
landscape-level soil characteristics. For instance, spatially informed 
sampling of scavenger species may be  conducted in areas where 
certain soil conditions indicate potential for higher CWD prion levels. 
In conclusion, this study further shows that occupancy class models 
are a valuable tool in wildlife disease spatiotemporal modeling and for 
evaluating environmental drivers of such diseases. The spatiotemporal 
patterns and environmental factors identified in the present study will 
be useful in managing this disease in Kansas and potentially other 
geographic regions.

Some potential defects in our models and the resulting occupancy 
predictions must be mentioned. The choice of spatial extent (20 km2 
grid) for analysis could impact our predictions; too coarse of a scale 
would result in overestimation of occupancy, whereas too fine a 
resolution could have the opposite effect. We also assumed that a site’s 
occupancy status remains constant over the annual time step, which 
may be unrealistic, particularly in areas with fewer CWD-positive 
deer harvested, especially since surveillance was limited to the deer 
hunting season, lasting approximately 7–8 weeks each year. We also 
assume that our surveillance samples all have equal probability of 
detection, which may or may not be the case and needs a second 
assessment with different model specifications.
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