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The maintenance of host health and immune function is heavily dependent on 
the gut microbiota. However, the precise contribution of individual microbial 
taxa to regulating the overall functionality of the gut microbiome remains 
inadequately investigated. Chickens are commonly used as models for studying 
poultry gut microbiota, with high-throughput 16S rRNA sequencing has emerged 
as a valuable tool for assessing both its composition and functionality. The 
interactions between the gut’s microbial community and its host significantly 
influence health outcomes, disease susceptibility, and various mechanisms 
affecting gastrointestinal function. Despite substantial research efforts, the 
dynamic nature of this microbial ecosystem has led to inconsistencies in findings 
related to chicken gut microbiota, which is largely attributed to variations in 
rearing conditions. Consequently, the interaction between the chickens’ gut 
microflora and its host remains inadequately explored. This review highlights 
recent advances in understanding these relationships, with a specific focus on 
microbial composition, diversity, functional mechanisms, and their potential 
implications for improving poultry production.
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1 Introduction

The gut microbiota refers to the diverse collection of microorganisms, including 
bacteria, archaea, fungi, and viruses, residing in the digestive tracts of animals (1, 2). The 
gastrointestinal metagenome encompasses the collective genomes of these gut 
microorganisms (3, 4). These microbiota exert wide-ranging effects, influencing factors 
such as colonization resistance against pathogens, maintenance of the intestinal 
epithelium, metabolism of dietary and regulation of immune function, and even 
modulation of host behavior through the gut-brain axis (4). The microbial composition 
of the gut varies across different regions of the digestive tract (5), the gastrointestinal 
tract (GIT), which is densely populated with microorganisms that interact with both the 
host and ingested feed (6). In birds, the GIT contains a complex microbiota that plays a 
crucial role in nutrient absorption and pathogen defense (7). Specifically, in terms of 
pathogen defense, the gut microbiota establishes a protective barrier that limits the 
colonization of pathogenic bacteria (8). Additionally, dietary changes and treatment 
interventions have been shown to enhance poultry growth while reducing the risk of 
enteric infections (9). The intricate relationship between the intestinal microbiome, 

OPEN ACCESS

EDITED BY

Jianzhu Liu,  
Shandong Agricultural University, China

REVIEWED BY

Daniel Hernandez-Patlan,  
National Autonomous University of Mexico, 
Mexico
Rajesh Durairaj,  
Institut de Recherche en Sémiochimie et 
Ethologie Appliquée (IRSEA), France

*CORRESPONDENCE

Papungkorn Sangsawad  
 papungkorn@sut.ac.th

RECEIVED 07 September 2024
ACCEPTED 04 November 2024
PUBLISHED 19 November 2024

CITATION

Yue Y, Luasiri P, Li J, Laosam P and 
Sangsawad P (2024) Research advancements 
on the diversity and host interaction of gut 
microbiota in chickens.
Front. Vet. Sci. 11:1492545.
doi: 10.3389/fvets.2024.1492545

COPYRIGHT

© 2024 Yue, Luasiri, Li, Laosam and 
Sangsawad. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Review
PUBLISHED 19 November 2024
DOI 10.3389/fvets.2024.1492545

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2024.1492545&domain=pdf&date_stamp=2024-11-19
https://www.frontiersin.org/articles/10.3389/fvets.2024.1492545/full
https://www.frontiersin.org/articles/10.3389/fvets.2024.1492545/full
https://www.frontiersin.org/articles/10.3389/fvets.2024.1492545/full
http://orcid.org/0009-0004-0904-8390
http://orcid.org/0009-0007-2332-324X
http://orcid.org/0000-0003-1684-338X
http://orcid.org/0000-0003-2420-8634
mailto:papungkorn@sut.ac.th
https://doi.org/10.3389/fvets.2024.1492545
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2024.1492545


Yue et al. 10.3389/fvets.2024.1492545

Frontiers in Veterinary Science 02 frontiersin.org

microorganisms, host, and diet has profound effects on both the 
nutrition and health of poultry (10). These interactions involve 
nutrient exchange, changes in gut morphology, as well as host 
physiology and immunity (6).

Interestingly, various feed additives, including probiotics, 
prebiotics, enzymes, amino acids, and phytobiotics, have been 
demonstrated to enhance gut health (10–14). By optimizing the 
gut environment, these interventions lead to better feed 
conversion and overall health (Figure 1). Following the hatching 
process, the gastrointestinal tract of the chick is rapidly exposed 
to a diverse array of external microorganisms, fostering an 
optimal environment for the proliferation of anaerobic species. As 
these microorganisms colonize the gut, they interact with the 
host’s digestive processes. Over time, microbial communities 
diversify, and by the time chickens reach maturity, a relatively 
stable microbial balance is established (15). Notably, the chicken 
gut microbiota differs from those of other animals due to the 
chicken’s smaller and faster digestive tracts, resulting in a unique 
microbial composition (16, 17). As chickens develop, the 
interaction between gut microbes and host performance becomes 
increasingly complex (6, 18). The enzymatic degradation of 
indigestible dietary polysaccharides produces fermentable sugars 
and short-chain fatty acids (SCFAs) (19, 20). SCFAs promote the 
proliferation of epithelial cells in the gastrointestinal tract, thereby 
enhancing the surface area available for nutrient absorption (21). 
The bacteriostatic effects of SCFAs contribute to the elimination 
of foodborne pathogens, such as Salmonella spp. (22). Moreover, 
the microbiota facilitates nitrogen metabolism, incorporating 
nitrogen into bacterial cellular proteins. This process enables 
these bacteria to provide essential amino acids, proteins, and 
vitamins to the host (23). This review investigates the factors that 
influence the development of the poultry gut microbiome, with a 
particular emphasis on the interactions between the host and its 
microbiome, as well as the repercussions of microbiome 

disturbances on poultry health, disease susceptibility, 
and productivity.

2 Limitations and potential of 16S 
rRNA sequencing in microbial 
identification

The 16S ribosomal RNA is widely recognized as a fundamental 
genetic marker for the classification and identification of bacterial 
species. Its ubiquitous presence across diverse bacterial taxa, 
conserved function in critical cellular processes, and adequate 
sequence length facilitate precise differentiation among various 
bacterial species (24). The methodology for sequencing the 16S rRNA 
gene targets a specific segment of microbial DNA, providing valuable 
insights into microbial community diversity and identification. 
Encoded within prokaryotic cells encompassing bacteria and archaea, 
the 16S rRNA gene specifies the RNA component of the 30S 
ribosomal subunit. Recognized as a “molecular clock” owing to its 
ubiquitous presence in bacteria and archaea, this gene plays an 
essential role in delineating phylogenetic relationships and species 
divergence. Leveraging the structure and functionality of the 16S 
rRNA gene enables researchers to trace evolutionary lineages while 
gaining deeper comprehension of genetic interrelationships among 
diverse microbial species (25). The structure of 16S rRNA comprises 
highly conserved segments interspersed with nine hypervariable 
regions facilitating concurrent sequencing of multiple species using 
universal primers while offering potential discrimination based solely 
on variable regions (26). Numerous studies have shown that 16S 
rRNA gene sequencing can achieve genus-level identification in over 
90% of cases, but its ability to identify species-level ranges from 
approximately 65 to 83% (27). The Ribosomal Database Project 
(RDP) is a comprehensive, publicly accessible resource dedicated to 
the acquisition, analysis, and dissemination of ribosomal RNA 

FIGURE 1

The role of probiotics, prebiotics, enzymes, amino acids, and phytobiotics in enhancing intestinal barrier and preventing infections.
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(rRNA) gene sequences. It serves as an essential tool for researchers 
investigating microbial diversity, taxonomy, and phylogenetics. The 
Ribosomal Database Project (28) and SILVA databases encompass 
comprehensive rRNA sequence data spanning bacteria, eukarya, and 
archaea (29). However, 16S rRNA sequencing has several limitations 
(Figure 2). It does not offer insights into the metabolic potential or 
activity of microbial communities. The 16S rRNA gene, as a 
conserved housekeeping gene present in all prokaryotes, primarily 
reflects phylogenetic relationships rather than functional attributes 
such as metabolic capabilities, virulence, or antibiotic resistance. 
Moreover, the sequenced region of the 16S rRNA gene may lack 
sufficient variability to distinguish between closely related species or 
strains, for instance, differentiating between pathogenic and 
commensal strains of Escherichia coli.

3 Composition and function of the gut 
microbiota in chickens

3.1 Composition of the gut microbiota in 
chickens

The GIT of a newly hatched chick is nearly devoid of 
microorganisms, indicating a state close to sterility. In this early stage, 
only a limited number of microbial inhabitants are present in the GIT 
(Figure 3). These initial microbes are not randomly acquired from the 
environment but are instead vertically transmitted from the mother hen 
to her chicks, either through the oviduct or via the eggshell pores. This 
early microbial colonization plays a crucial role in the chick’s 
development and health by establishing a foundation for a more 

complex and diverse gut microbiome as the chick matures (30, 31). 
Additionally, microbiota can be transferred to the gastrointestinal tract 
during hatchery handling and transportation (32), and microbes have 
been detected in the chick’s GIT while it is still inside the shell (33). The 
early stage of the post-hatch microbial contamination affects the 
immune system and intestinal microbiota (34). The natural intestinal 
microflora develops after hatching and rapidly increases (35), from the 
1st to the 19th day of life (36). The microbial colonization continuously 
grows until the GIT population reaches its balance (37). The fungi are 
more inhabited in the upper GIT site than the lower parts, while the 
bacterial inhabitance follows an opposite pattern (38). The microbiota 
of young chickens exhibits high variability (39–41) and defining the core 
chicken gut microbiota necessitates a focus on the microbiota of adult 
chickens, specifically those aged at least 20 weeks. This is due to the high 
variability and incomplete establishment of microbial communities in 
younger chickens. By studying adult chickens, researchers can discern 
the stable and consistent microbial populations that typify a well-
developed gut microbiota. These matured adult chickens have 
undergone significant maturation, leading to a more stable and 
representative state of their gut microbiota, thereby offering a clearer 
understanding of the essential core microbial species for maintaining 
gut health and function (42–45). The microbial diversity within the 
gastrointestinal tract of chickens exhibits regional variations (Figure 4). 
Lactobacilli dominate the proximal parts of the digestive tract in adult 
chickens, although other species are also present (46, 47). Composition 
and complexity of the microbiota increase significantly in the distal 
segments of the intestinal tract, such as the cecum and colon. However, 
variations in colonic microbiota can be  attributed to the chicken’s 
intestinal physiology and may exhibit similarities to either ileal or 
cecal microbiota.

FIGURE 2

16S rRNA high throughput sequencing and bioinformatics analysis.
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3.2 Microbiota composition in the cecum

In the composition of the gut microbiota in chickens, bacteria 
represent the predominant group, constituting over 90% of the total 
microbial population. The most common bacterial groups include 

Lactobacillus, Bacteroides, Bifidobacterium, Clostridium, and Bacillus 
cereus, as well as Escherichia coli, yeast, and other fungi (48). The 
complexity and absolute numbers of gut microbiota significantly 
increase with age and environmental exposure. Most of these 
microbial species are classified into two major phyla, including the 

FIGURE 3

Early microbial colonization of the gut during the chicken life cycle.

FIGURE 4

Anatomy of the chicken gastrointestinal tract and factors influencing gut microbiota composition.
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Gram-positive Firmicutes and the Gram-negative Bacteroidetes. The 
diversity and abundance of these groups highlight their essential role 
in digestion and maintaining gut health. Several studies emphasize 
the importance of a balanced microbial community within the 
cecum for optimal gut ecosystem function (49, 50).

In addition to Firmicutes and Bacteroidetes, two less dominant 
phyla, Actinobacteria (Gram-positive) and Proteobacteria (Gram-
negative), are also present. In healthy adult hens, Firmicutes and 
Bacteroidetes typically represent about 45% each of the total 
microbiota, while Actinobacteria and Proteobacteria usually range 
from 2 to 3%. It is important to note that studies using 16S rRNA 
sequencing may slightly underestimate the abundance of 
Actinobacteria due to the low copy number of the 16S rRNA genes in 
species like Olsenella, Collinsella, and Bifidobacterium (51). While 
there is broad agreement on the overall composition of the cecal 
microbiota, significant individual variation persists. For instance, the 
proportion of Bacteroidetes can range from 10 to 90% without any 
signs of abnormality, and cases have been documented where chicks 
exhibit over 10% Actinobacteria and Proteobacteria. Despite 
variations in abundance, representatives from all four phyla are 
consistently found in the ceca of nearly all adult chickens.

3.3 Composition of small intestine 
microbiota

The small intestinal microbiome of chickens is a sophisticated and 
dynamic system, characterized by intricate interactions among 
numerous microorganisms. The bacterial composition in the small 
intestine is primarily dominated by four major phyla: Firmicutes, 
Bacteroidetes, Proteobacteria, and Actinobacteria. Among these, 
Firmicutes, represented by genera such as Lactobacillus and 
Clostridium, typically dominate. These bacteria can act either as 
symbionts or pathogens, depending on the strain type (52–54). The 
composition of the microbiota in the different sections of the small 
intestine, such as the duodenum, jejunum, and ileum, shows a high 
degree of similarity, as indicated by previous studies (45, 55). However, 
further comprehensive research is necessary to precisely identify the 
bacterial species uniquely adapted to each specific compartment of the 
small intestine. Occasionally, the microbiota of the ileum can 
intermingle with microorganisms originating from the caecum (55).

Firmicutes remain the most prevalent phylum in the small 
intestine, with genera such as Lactobacillus, Enterococcus, Turicibacter, 
Clostridium sensu stricto, as well as isolates from the Clostridium 
cluster within the family Peptostreptococcaceae, and the genus 
Romboutsia. In addition to Firmicutes, bacteria from the phylum 
Proteobacteria, including Escherichia coli and Helicobacter, can also 
be found in the small intestine. Notably, the presence of Helicobacter 
has been associated with reduced performance in chickens (56).

Moreover, despite the diversity of microbial species, the small 
intestine’s microbiota demonstrates limited diversity, with one to five 
genera accounting for around 50% of the entire ileal microbiota. This 
suggests a simpler microbial structure compared to other regions of 
the gastrointestinal tract (56). The ileum, a crucial component of the 
chicken’s digestive system, plays an essential role in nutrient 
absorption and immune regulation. It harbors a diverse microbial 
community that contributes significantly to maintaining intestinal 
health, enhancing nutrient absorption, and protecting against 

pathogens. These microorganisms break down complex carbohydrates, 
proteins, and lipids to produce short-chain fatty acids such as acetic 
acid, propionic acid, and butyric acid. These fatty acids not only 
provide energy for intestinal epithelial cells but also improves feed 
efficiency by promoting sodium and water absorption (40, 57, 58).

3.4 Fecal microbial composition

Many scientific studies utilize fecal samples to characterize the 
microbiota of chickens (46, 55, 59, 60). When experiments require 
repeated sampling from the same bird, researchers must often rely on 
fecal material. However, several considerations must be addressed 
during sample collection. First, it is difficult to prompt each chicken 
to defecate on command. Consequently, researchers frequently collect 
fecal material directly from the floor, making it impossible to control 
how long the droppings were exposed to air, whether for 10 min or 5 h. 
This is important because many gut colonizers are strict anaerobes, 
and exposure to air may reduce their viability or alter their community 
structure, potentially influencing the study’s final results.

Apart from environmental exposure, chicken digestion physiology 
significantly impacts the composition of colonic and fecal microbiota, 
chickens have a remarkably short digestive transit time, with digesta 
passing from ingestion to excretion in as little as 2 h (61, 62). Unlike 
mammals such as pigs or humans, adult chickens have a relatively short 
colon, measuring only about 10 centimeters, which limits the retention 
time of digesta. After stomach processing, most digesta quickly moves 
from the small intestine to the colon and is excreted approximately 
every 2 h (63). In contrast, only a small portion of the digesta moves 
from the ileum to the caecum, where it undergoes fermentation, for 8 
to 12 h (64, 65). This rapid transit and short retention time shape the 
microbial composition found in the colonic and fecal matter, which 
must be considered when interpreting microbiota data. Additionally, 
the periodic voiding of caecal contents into the colon, which typically 
occurs twice daily, adds another layer of variability to sample 
composition (66, 67). If samples are collected immediately after caecal 
voiding, the colonic or fecal microbiota may closely resemble the caecal 
microbiota. Conversely, if samples are collected before the next caecal 
voiding, the microbiota may more closely resemble the ileal 
community. When digesta from the small intestine passes through the 
colon after caecal excretion, the microbiota could represent a mixture 
of both caecal and ileal communities. Thus, variations in the timing of 
sample collection related to periodic caecal voiding and intestinal 
transit contribute to substantial variability in colonic or fecal microbial 
composition (55, 59, 68, 69), and researchers must account for this in 
their experimental designs.

3.5 Major bacterial taxa colonising chicken 
intestinal tract

3.5.1 Classification of intestinal bacteria at the 
major phyla

The gut microbiome consists of bacteria classified across various 
taxonomic ranks, including phylum, class, order, family, genus, and 
species. These bacteria exhibit distinct distribution patterns and 
perform a range of functions in different segments of the intestinal 
tract. Among the major bacterial phyla, Bacteroides predominate in 
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the chicken cecum (Table 1). These bacteria are well-known for their 
ability to degrade complex polysaccharides and plant cellulose, 
engaging in fermentation processes that produce short-chain fatty 
acids such as acetic acid, propionic acid, and butyric acid. These fatty 
acids play a crucial role in maintaining intestinal acid–base balance 
and inhibiting pathogen proliferation (69). It should be noted that 
Bacteroides are involved in vitamin synthesis and bile acid 
metabolism, both of which are essential for nutrient absorption and 
host metabolism (70). Additionally, Firmicutes represent a significant 
group of anaerobic bacteria in the chicken gut, including a substantial 
number of Clostridium species. While some Clostridium species can 
produce potentially harmful metabolites, they also contribute to 
cellulose degradation and short-chain fatty acid production (71). 
Especially, certain Firmicutes bacteria possess probiotic properties, 
helping to modulate the intestinal microecological balance and 
enhance the host’s immune response (72).

3.5.2 Classification of intestinal bacteria at the 
major generic

Actinobacteria are a group of Gram-positive bacteria with high 
GC content (around 65%), playing a key role in the breakdown of 
organic matter and are known for their production of secondary 
metabolites such as antibiotics, enzymes, and other bioactive 
compounds. In the chicken cecum, the predominant genera of 
colonizing bacteria include Coriobacteriaceae, represented by 
Olsenella and Collinsella from the Bifidobacteraceae family, which also 
includes Bifidobacterium. Proteobacteria, which are non-spore-
forming, Gram-negative bacteria, are also present. Common 
colonizing bacteria in the chicken cecum include facultative organisms 
like E. coli, as well as Desulfovibrio, Sutterella, Parasutterella, 
Anaerobiospirillum, and Succinatomonas. Additionally, Actinomycetes 
contribute to poultry health by producing nutrients and metabolizing 
short-chain fatty acids, enhancing digestive efficiency and improving 
feed conversion rates (73).

Helicobacter and Campylobacter are also prevalent components of 
the chicken microbiota. In highly infected chickens (55, 74), E. coli 

and Salmonella constitute approximately 0.1% of the total microbiota, 
while Campylobacter and Helicobacter can account for over 10%. This 
highlights differing colonization patterns between E. coli, Salmonella, 
and bacteria like Helicobacter and Campylobacter. Other bacterial 
families in the cecum include Lactobacillaceae, Veillonellaceae, and 
Erysipelotrichaceae. Trichiidae, which consist of strictly anaerobic 
spore-forming bacteria with a genomic GC content of about 45%, 
produce butyrate from acetyl-CoA. Notable species include Bacillus 
coli, Clostridium lactofermens, and Clostridium saccharolytica, which 
are significant butyrate producers (75, 76).

Cyanobacteria contribute to microbial metabolism by encoding 
enzymes like 5-methyltetrahydrofolate: cobalamin methyltransferase 
and acetyl-CoA synthetase (73). These enzymes enable Cyanobacteria 
to use CO2 and H2 to generate acetic acid through reductive 
acetogenesis (77). Similarly, Blautia plays a key role in scavenging free 
hydrogen released by anaerobic bacteria during fermentation.

Lactobacilli efficiently ferment carbohydrates (78), producing 
lactic acid and lowering the environmental pH. This acidic condition 
inhibits the growth of other bacterial species, giving Lactobacilli a 
competitive advantage in diverse environments, including the 
gastrointestinal tract and fermented foods. Certain strains, like 
Lactobacillus ruminis and Lactobacillus agilis, possess flagella, 
enhancing their motility and ability to colonize and acquire nutrients 
in complex environments, such as the gut (78, 79).

Ruminococcaceae are primary butyrate producers. Through 
carbohydrate fermentation, most Ruminococcaceae convert two 
acetyl-CoA molecules to crotonyl-CoA, resulting in butyrate 
production (73). Flavonoids and pseudoflavonoids can also produce 
butyrate through lysine fermentation or succinic acid reduction. 
Anaerotruncus represents a potentially mobile intestinal colonizer. 
Due to their high sensitivity to oxygen, Ruminococcaceae and 
Lachnospiraceae are often among the first bacterial families to 
diminish during inflammatory diseases, as reactive oxygen species 
from macrophages and granulocytes damage the gut microbiome. 
Therefore, the reduction of Ruminococcaceae and Lachnospiraceae is 
typically a consequence, rather than a causative factor (78, 79).

TABLE 1 The primary role of the core microorganism.

Gut microbiota Effects on the gastrointestinal tract References

Phylum

Firmicutes Engaged in the synthesis of vitamins and the metabolism of bile acids Flint et al. (70)

Bacteroidetes Promote cellulose degradation and short-chain fatty acid production Louis and Flint (71)

Actinobacteria Improve the digestibility of feed Lewin et al. (142)

Genus

Campylobacter
Invasion of the intestinal epithelial cells leads to damage in the intestinal mucosa Yan et al. (55) and Han et al. (74)

Helicobacter

Clostridium Generate butyrate through the conversion of acetyl-CoA Medvecky et al. (76)

Blautia
In scavenging free hydrogen released by numerous anaerobic bacteria during 

fermentation
Sergeant et al. (77)

Lactobacilli Improved efficiency in the fermentation of carbohydrates Crhanova et al. (75)

Lactobacillus agilis The organism possesses genes responsible for encoding the flagella’s structure Eeckhaut et al. (143)

Ruminococcaceae Production of butyrate occurs Esquivel et al. (144)

Family

Lachnospiraceae Produce various short-chain fatty acids, such as acetate, propionate and succinate Polansky et al. (73)

Porphyromonadaceae

Each family member possesses genes that encode enzymes like methylmalonyl 

epimerase, mutase, and decarboxylase. These enzymes facilitate the biochemical 

conversion process, enabling the production of propionate from succinate

Adamberg et al. (80) and Isar et al. (81)
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3.5.3 Taxonomic classification of predominant 
bacterial families in the intestines

The family characteristics frequently observed in the chicken 
cecum include members of the Bacteroidaceae, as well as Gram-
positive families, like Lachnospiraceae and Ruminococcaceae. The 
genus Bacteroides comprises numerous species that show host-specific 
adaptations. For instance, human-adapted species such as B. dorei, 
B. uniformis, and B. clarus contrast with chicken-associated species 
like B. salanitronis, B. caecigallinarum, and B. coprocola. Interestingly, 
although not yet fully understood, certain chicken-associated 
Bacteroides strains have acquired KUP genes encoding potassium ion 
transporters. In adult chickens, Bacteroidaceae genomes contain a 
high number of genes responsible for the degradation of complex 
polysaccharides. These bacteria produce short-chain fatty acids 
(SCFAs) such as acetate, propionate, and succinate. Notably, in vitro, 
Bacteroides species show nearly the same acidification capability as 
Lactobacilli, which are well-known for their acid production (Table 1). 
As a result, the extensive fermentation by Bacteroides species 
significantly contributes to the acidic environment in the caecum and 
plays a critical role in digestion (73, 76).

The phylum Bacteroidetes includes several distinct families, such as 
Rikenellaceae, Bacteroidaceae, Prevotellaceae, and Porphyromonadaceae. 
Bacteroidetes genomes are relatively large, ranging from approximately 
3 to over 6 megabase pairs (Mbp). Members of this phylum possess 
genes encoding enzymes like methylmalonyl-CoA epimerase, mutase, 
and decarboxylase, which are crucial for the biochemical conversion of 
succinate to propionate (80–82).

The Rikenellaceae and Alistipes stand out with a GC content of 
58–60%, distinguishing them from other members of Bacteroideae. 
Remarkably, Alistipes is one of the earliest colonizers of the chick 
cecum within the Bacteroidetes group (83, 84). The 
Porphyromonadaceae family consists of genera such as Barnesiella, 
Odoribacter, Butyricimonas, and Parabacteroides. Both Bacillus 
putitidis and Bacillus butyricomonas can produce butyrate through 
lysine fermentation and succinic acid reduction pathways. 
Additionally, butyrate can be synthesized from acetyl-CoA (76).

Prevotellaceae is primarily responsible for the degradation of 
cellulose and other complex carbohydrates. Members of this family 
are renowned for their diverse and intricate metabolic capabilities (83, 
85). The characteristics of chicken isolates from the Prevotellaceae 
family remain largely unexplored. The isolates obtained in pure 
culture show only distant relations to characterized Prevotella species, 
with 16S rRNA sequences displaying about 90% similarity to the 
closest GenBank entries. This suggests that the Prevotella family in 
chickens may represent new genera distinct from those in humans, 
mice, or pigs. Omics studies have shown that chicken Prevotellaceae 
specialize in digesting complex polysaccharides (75), paralleling the 
presence of Prevotellaceae in the rural African gut microbiota (84, 86).

4 Gut microbiota and host 
interactions

4.1 Pathogen colonization interacts with 
the gastrointestinal tract

Bacteria pathogenic to poultry include species such as 
Staphylococcus, Escherichia coli, Clostridium, Campylobacter, and 

Salmonella spp. (49). One of the most notable pathogens is Salmonella, 
a bacterial threat in poultry that presents significant risks for human 
health due to its prevalence and potential for contamination (87, 88). 
Salmonella can easily colonize the intestines of poultry. However, 
research is underway to explore the use of targeted bacteriophages to 
eliminate Salmonella from the microbiome of broiler chickens (89). 
Among the various strains, Salmonella typhimurium is particularly 
concerning for humans, as it can colonize the poultry digestive system 
without causing harm to the birds themselves (90). Fortunately, 
current research focuses on microbial interventions, such as probiotics 
and metabolites, to prevent Salmonella colonization and promote the 
restoration of a healthy gut microbiota after infection (90–92).

Another pathogen that affects the poultry intestines is Clostridium 
perfringens (93), particularly types A and C, which can lead to necrotic 
enteritis (NE), characterized by decaying and inflamed intestinal 
tissue. This condition generally arises under specific dietary 
conditions, often in conjunction with the presence of the parasite 
coccidia (93, 94). In addition to intestinal pathogens, respiratory 
infections (RI) in poultry are also a concern. A 2021 study on the 
bacterial composition of the turkey respiratory tract revealed that the 
presence of Ornithobacterium and Mycoplasma increases the risk of 
RI in turkeys (95). Moreover, domesticated turkeys were found to have 
less microbial diversity and a higher prevalence of pathogenic and 
antibiotic-resistant bacterial strains compared to their wild 
counterparts (96).

4.2 Nutritional role of the chicken gut 
microbiome and host

4.2.1 Fermentation and the production of 
short-chain fatty acids

A key function of the chicken gut microbiome is the fermentation 
of dietary fibers and other complex carbohydrates (Figure 5). Since 
chickens lack the necessary enzymes to break down certain fibers 
found in plant-based feeds, their gut microbiota compensates by 
fermenting these substrates in the cecum and colon. This fermentation 
process produces short-chain fatty acids (SCFAs), such as acetate, 
propionate, and butyrate (97), which are crucial energy sources for 
chickens. For example, acetate is absorbed into the bloodstream and 
serves as an energy substrate for various tissues, including muscles, 
and the liver (98). In contrast, propionate and butyrate are mainly 
utilized by the gut epithelium, with butyrate playing a particularly 
critical role in maintaining intestinal cell health, enhancing gut barrier 
function, and reducing inflammation (99). Besides providing energy, 
these SCFAs also contribute to the structural integrity and immune 
function of the gut, which are vital for overall health and efficient 
nutrient absorption.

It is important to emphasize that dietary carbohydrates are broken 
down and absorbed primarily within the proximal gastrointestinal 
tract, while undigested carbohydrates, along with residual digestible 
ones, proceed to microbial fermentation in the distal gastrointestinal 
tract (100). The gut microbiota can hydrolyze non-digestible 
disaccharides, oligosaccharides, and polysaccharides into their 
monosaccharide components through fermentation, producing 
SCFAs, which are then used by the host for energy generation and as 
a carbon source (101, 102). This fermentation activity predominantly 
occurs in the ceca, where the microbial density is highest (103), and 
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increases as the chicken matures. While absent in the ceca of 
one-day-old chicks, optimal SCFA concentrations are typically 
achieved by day 15 post-hatch and remain stable afterward (104). 
Through passive diffusion across the cecal epithelium, SCFAs enter 
various metabolic pathways. Research has also highlighted the 
regulatory roles of SCFAs, which include modulating colonic blood 
flow, stimulating enterocyte development and proliferation, enhancing 
mucin production, and regulating the intestinal immune response 
(105, 106).

4.2.2 Vitamin interaction
The gut microbiota of chickens plays a crucial role in the complex 

biosynthesis of various B vitamins, such as biotin, folate, and 
riboflavin. Research has demonstrated that specific bacterial species 
within the chicken gut can produce these vitamins through 
fermentation processes (107). For instance, Lactobacilli and 
Bifidobacteria are capable of producing folate and biotin, which are 
essential for cellular functions and metabolism (107, 108). However, 
certain gut microbes can degrade vitamins, potentially leading to 
deficiencies. For example, some strains of Clostridium spp. have been 
shown to degrade vitamin B12, reducing its availability to the host 
(109). This degradation may result in vitamin deficiencies and 
subsequent health issues in chickens. Additionally, the gut microbiota 
influences the absorption of fat-soluble vitamins, such as vitamins A, 
D, E, and K. Specific microbial populations can either enhance or 
inhibit the absorption of these vitamins. For example, a study found 
that a diverse gut microbiota improves the absorption of vitamins A 
and E by altering bile acid metabolism and strengthening intestinal 
barrier function (110). Deficiencies or imbalances in vitamins due to 
microbial activity can lead to poor growth rates, immune dysfunction, 
and increased susceptibility to diseases (109).

4.2.3 Protein metabolism
Metabolism of proteins in chickens is a crucial component of their 

nutritional needs and growth requirements. The gut microbiota play 
a significant role in this process by influencing protein digestion, 
amino acid absorption, and the generation of bioactive peptides. 
Although the digestion of dietary proteins begins in the stomach and 
small intestine, a substantial portion of protein digestion and 
fermentation occurs in the cecum and colon, where the gut microbiota 
are abundant. These microbial communities assist in breaking down 
proteins that the host’s enzymes cannot fully digest.

Proteolytic bacteria in the gut ferment dietary proteins into 
various peptides and amino acids (107). For instance, bacteria such as 
Clostridium and Lactobacillus produce enzymes that degrade proteins 
into shorter peptides and free amino acids. This microbial proteolysis 
provides an essential secondary mechanism to break down proteins 
that escape digestion in the upper gastrointestinal tract (111). The 
amino acids released through microbial protein degradation are 
absorbed by the host and utilized in various metabolic processes 
(Figure 6). Gut microbes affect the availability of these amino acids by 
influencing their absorption and conversion. Some microbial enzymes 
can release amino acids bound in dietary proteins or peptide bonds 
that resist degradation by host enzymes. For example, Bacteroides and 
Bifidobacteria contribute to protein hydrolysis and amino acid release, 
which the host’s intestinal cells subsequently absorb (112).

In addition to aiding digestion, gut microbes produce bioactive 
peptides that exert physiological effects on the host. These peptides 
can influence immune responses, gut health, and growth. Some of 
these microbial-derived peptides possess antimicrobial properties 
or modulate immune functions. For instance, certain peptides 
produced by gut bacteria have been shown to enhance the host’s 
immune system and protect against pathogenic infections (109). 

FIGURE 5

The role of cecal microbiota in the fermentation of dietary fiber and production of SCFAs.
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Furthermore, efficient microbial protein digestion and amino acid 
absorption promote improved growth rates and better feed 
conversion ratios. Research indicates that maintaining a balanced 
gut microbiota optimizes protein utilization, enhancing feed 
efficiency. For example, beneficial microbes such as Lactobacillus 
improve protein digestibility while reducing the production of 
nitrogenous waste, leading to better growth outcomes and 
improved feed conversion (112).

4.2.4 Mineral absorption
Composition of gut microbiota impacts the absorption of essential 

minerals, including calcium, phosphorus and magnesium, by 
modulating the intestinal microenvironment. Beneficial bacteria, in 
particular, can produce short-chain fatty acids (SCFAs) through the 
fermentation of dietary fibers, which enhances the solubility and 
uptake of these minerals. Additionally, certain gut bacteria can 
biosynthesize vitamins and other compounds that further facilitate 
mineral assimilation (113). The presence of specific microbial species 
is linked to increased mineral bioavailability. Research shows that 
probiotic strains positively impact the availability of calcium and 
phosphorus in the gastrointestinal tract, leading to improved mineral 
absorption and utilization (114). In contrast, dysbiosis, or an 
imbalance in gut microbiota, can impair mineral absorption and 
cause deficiencies. Diets high in fiber and prebiotics promote a diverse 
and beneficial microbiota, which in turn optimizes mineral 
absorption. For example, dietary fibers encourage the growth of 
beneficial bacteria that produce SCFAs, thereby aiding in mineral 
absorption (115).

4.3 Modulation of the chicken immune 
system by gut microbiota

The development and function of gut-associated lymphoid tissue 
(GALT) in chickens are strongly influenced by the gut microbiome. A 
well-balanced microbiome strengthens the body’s defense mechanisms 
against threats and promotes a robust immune response (116). 
Additionally, this balance helps prevent excessive immune reactions to 
harmless antigens, such as food or commensal bacteria, thus protecting 
against unnecessary immune activation. Conversely, when microbial 
balance is disrupted, a condition known as dysbiosis (117), it can 
trigger inflammatory responses, increasing the risk of autoimmune 
disorders and making chickens more vulnerable to infections.

The colonization of beneficial bacteria promotes immune 
tolerance, effectively training the immune system to differentiate 
between pathogenic and non-pathogenic stimuli. This symbiotic 
relationship enhances the body’s capacity to mount efficient responses 
to pathogens while mitigating unnecessary immune reactions (118). 
Moreover, the gut microbiota influences the production of immune 
cells, such as macrophages, dendritic cells, and T cells, by releasing 
microbial metabolites (Figure 6). These metabolites act as signaling 
molecules that modulate immune responses both locally in the gut and 
systemically throughout the body. Research suggests that gut 
microbiota can enhance the production of secretory immunoglobulin 
A (sIgA) in the gut mucosa (119). sIgA is a key component of the 
immune system that serves as the first line of defense by neutralizing 
pathogens and toxins before they cross the epithelial barrier. 
Continuous production of sIgA is essential for protecting chickens 

FIGURE 6

The role of gut microbiota in host interactions: metabolism, immunity, and the gut-brain axis.
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from gastrointestinal infections, especially during periods of stress or 
exposure to pathogens. Dysbiosis not only compromises the gut’s 
physical barrier but also impairs the immune system’s ability to defend 
against infections. This disruption increases the risk of diseases such 
as necrotic enteritis, coccidiosis, and other gastrointestinal disorders 
that are common in poultry (119).

4.4 Gut microbiota mediated protection 
against viral diseases

Recent research highlights the essential role of gut microbiota in 
shaping immune responses to viral infections in chickens. Commensal 
bacteria contribute to pathogen defense through direct competition, 
antibody production, and the activation of cytokines, which modulate 
both innate and adaptive immune responses (120). However, several 
significant viral diseases can disrupt the diversity of the intestinal 
microbiota, leading to dysbiosis, a state associated with various 
pathological conditions that facilitate acute viral infections in chickens.

The gastrointestinal tract’s highly dynamic environment presents 
opportunities for pathogens to upset the balance between the host and 
microflora, resulting in dysbiosis and subsequent mucosal infections 
(121). Bacterial dysbiosis has been linked to inflammation and 
alterations in immune functions (122), particularly affecting type 
I interferons (IFNs) and inflammatory responses (123, 124). Diseases 
that destabilize intestinal microflora (125–127) further increase 
chickens’ vulnerability to bacterial infections during dysbiosis (128). 
Moreover, research has established links between gut microbiota and 
distant organs, forming key pathways such as the gut-lung, gut-brain, 
gut-skin, and gut-liver axes (129). In particular, species such as 
Bifidobacterium, Firmicutes, Faecalibacterium, Blautia, and 
Clostridium are essential for preventing and managing viral diseases. 
They outcompete pathogens and colonize the gastrointestinal mucosal 
surface, thereby maintaining microbial balance.

These beneficial microbiota also support digestion and produce 
short-chain fatty acids (SCFAs), which serve as an energy source and 
modulate antiviral immune responses. SCFAs stimulate the 
production of interferons (IFN-α and IFN-β) and enhance the 
function of T regulatory cells. This process promotes the secretion of 
anti-inflammatory cytokines such as IL-22 and strengthens humoral 
immune responses through the production of IgA and IgG antibodies. 
Together, these mechanisms contribute to controlling the severity of 
viral infections in chickens (130–132).

4.5 Interaction between gut microbiota 
and the gut-brain axis

The gut-brain axis (GBA) serves as a bidirectional communication 
network that connects the gut microbiota with the central nervous 
system (CNS). The gut microbiota can influence the production of 
neurotransmitters, which act as chemical messengers transmitting 
signals between the gut and the brain (Figure 6). Specific gut bacteria, 
for example, have the ability to produce neurotransmitters like serotonin 
and gamma-aminobutyric acid (GABA), which play crucial roles in 
mood regulation and behavior. Studies conducted on chickens have 
demonstrated that changes in the composition of gut microbiota can 
affect levels of these neurotransmitters, thereby influencing their overall 

well-being and stress responses (133). The modulation of behavioral 
responses in chickens is closely linked to the functioning of the 
gut-brain axis. Changes in gut microbiota can impact stress levels, 
anxiety, and behavior, suggesting that the gut microbiota, through its 
connection with the gut-brain axis, may modulate behavioral traits, 
potentially affecting productivity and welfare in poultry (134). 
Additionally, alterations in immune function due to changes in short-
chain fatty acids (SCFAs) produced by gut bacteria can affect brain 
health by interacting with inflammatory cytokines and influencing 
neuroinflammation. In chickens, dysregulated microbial communities 
may lead to increased intestinal permeability and systemic 
inflammation, potentially exerting negative effects on brain function 
and behavior (135). Notably, stress responses are influenced by the gut 
microbiota, and stress itself can alter the microbial composition, 
creating an imbalanced state that worsens the stress response and affects 
overall health. Variations in microbial communities have been 
associated with changes in stress hormone levels and intestinal integrity, 
all of which contribute to how chickens respond to stress and influence 
their general health condition (136). Unfortunately, the relationship 
between the gut microbiota and serotonergic activity, as well as related 
psychological health, has not been thoroughly investigated.

The gut microbiota can also affect levels of neurotransmitters such 
as dopamine and serotonin. Certain gut bacteria participate in the 
production of these neurotransmitters or their precursors. For 
example, the microbiota can influence the synthesis of tryptophan and 
tyrosine, the amino acids that are precursors for serotonin and 
dopamine, respectively (137). Alterations in gut microbiota 
composition can lead to changes in neurotransmitter levels, which 
may, in turn, affect behavior and stress responses in chickens. 
Imbalances in the gut microbiota can result in decreased serotonin 
levels, potentially impacting mood and increasing stress (138). 
Changes in dopamine levels may also affect motivational and reward-
related behaviors. Research indicates that dietary changes influencing 
the gut microbiota can modulate these neurotransmitter levels, 
thereby altering behavioral responses in chickens (139). Moreover, the 
gut microbiota can affect the function of the blood-brain barrier and 
modulate levels of neurotransmitters like dopamine and serotonin, 
impacting cognitive functions and emotional states (140). It should 
be noted that imbalances in gut microbiota affecting neurotransmitter 
levels can contribute to stress, anxiety, and other health issues (141). 
Understanding these interactions can help in formulating dietary and 
management strategies to maintain a healthy gut microbiota and 
promote an optimal neurotransmitter balance, ultimately enhancing 
the well-being of chickens.

5 Conclusion

Although advances in biotechnology have improved our 
understanding of the poultry microbiome and its role in poultry health 
and disease, further exploration of the GIT ecosystem, including the 
factors that influence it, and the interactions between the host and 
microbiome in chickens, is necessary to fully grasp the dynamics at play. 
This review aims to enhance our understanding of intestinal ecosystems 
while simultaneously establishing a robust foundation for the 
development of more effective strategies in the management and 
treatment of poultry diseases. A central focus of future research should 
be on investigating how changes in the composition of the poultry 
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microbiome correspond to environmental factors, growth conditions 
and specific feed formulations. Additionally, it is essential to identify 
advantageous microbial strains that play a pivotal role in sustaining 
poultry health through the application of diverse methodologies. The 
potential of nanotechnology to enhance the nutritional value of dietary 
factors presents an exciting opportunity for improving poultry health. 
Lastly, integrating metagenomics and metabolomics approaches will 
advance the study of GIT diseases in poultry, offering a more holistic 
understanding of the relationship between the gut microbiome and 
overall health.
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