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Canine Chiari-like malformation (CM) is a neuroanatomical condition associated

with conformational change of the cranium, craniocervical junction and

neuroparenchyma, resulting in pain (Chiari associated pain or CM-P) and the

development of syringomyelia (SM). The associated neuro-disability in a�ected

individuals compromises quality of life. CM is characterized by overcrowding of

the brain and cervical spinal cord and is predisposed by skull-base shortening

and miniaturization with brachycephalic toy dogs overwhelmingly represented.

Magnetic resonance imaging (MRI) is conventionally used for diagnosis; however,

CM is complex and ubiquitous in some dog breeds so that diagnosis of CM-P

relies on a combination of clinical signs, MRI, and elimination of other causes of

pain. This research aimed to identify cranial and spinal pathologies and neural

morphologies linked to CM-P and SM in dogs using MRI scans and machine

learning with the aim of identifying novel data driven biomarkers which could

confirm CM-P and identify dogs at risk of developing SM. The methodology

identified four regions of interest as having robust discrimination for CM-P, with

89% sensitivity and 76% specificity. A set of morphological features linked to

CM-P were identified. Four regions of interest were also identified as having

robust discrimination for SM, with 84% sensitivity and 80% specificity. Overall,

these findings shed light on the distinct morphologies related to CM-P and SM,

o�ering the potential for more accurate and objective diagnoses in a�ected

dogs using MRI. These results contribute to the further understanding of the

complex pathologies associated with CM and SM in brachycephalic toy pure and

mixed breed dogs and support the potential utility of data-driven techniques for

advancing our knowledge of these debilitating conditions.
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1 Introduction

Canine Chiari-like malformation (CM) is a complex developmental condition of

the skull and craniocervical vertebrae characterized by a conformational change with

overcrowding of the brain and spinal cord, particularly at the craniospinal junction

(1–3). The bony abnormalities associated with CM are a combination of brachycephaly

(skull base shortening), craniofacial hypoplasia, caudal (posterior) fossa insufficiency and
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craniocervical junction abnormalities. A degree of CM is

ubiquitous or extremely common in predisposed toy breed dogs

(both purebred and crossbred). Research by Cerda-Gonzalez et al.

(4) found 92% of MRIs from clinically normal Cavalier King

Charles spaniels (CKCS) dogs showed at least one craniocervical

morphologic abnormality. Some dogs are free of clinical signs but

dogs with more extreme brachycephaly can have clinical signs

of pain typically associated with Valsalva mimics (manifest as

vocalization on rapid postural changes including being picked

up, jumping, and shifting position when recumbent) and signs

suggesting back of head, ear or facial pain (scratching or rubbing

these areas), reduced activity levels, spinal pain and behavioral

changes. This collection of signs is referred to as CM-associated

pain (CM-P) (5). The signs of CM-P can lead to a drastic reduction

in the affected canine’s quality of life (6).

Morphological changes linked to CM can also serve as a risk

factor for the disruption to the flow of cerebrospinal fluid (CSF), a

consequence of this disruption is fluid cavitation in the spinal cord:

known as syringomyelia (SM). These cavities (singular: syrinx,

plural: syringes) are comprised of a fluid, similar to CSF, that if

large can result in myelopathy and a central spinal cord syndrome.

This is characterized by pain including allodynia, fictive scratching

(a maladaptive scratch reflex associated with syrinx involvement of

the mid cervical superficial dorsal horn), thoracic limb and spinal

weakness and cervico-torticollis (7). Brachycephalic toy dogs that

are predisposed to CM will therefore be at greater risk of having

both CM-P and SM, and as such are often studied in tandem (8).

For example, one study in Griffon Bruxellois dogs found 61.7% of

those with CM also suffered from SM (9). Additionally, CM is a

heritable condition (10), and SM has a moderately high estimate

of heritability (11), both of which can become progressively worse

with each generation (12). Therefore, it is important to detect these

conditions in dogs to suitably inform breeding choices for breeders

and ideally prevent these conditions from being passed on.

The diagnosis of CM-P and SM currently requires the use

of magnetic resonance imaging (MRI) (13). Syringomyelia is

straightforward to identify and can be measured objectively as

the maximum transverse width of the syrinx (13). This has been

previously correlated with likelihood of clinical signs (7). However,

diagnosis of CM-P relies on a combination of clinical signs, MRI,

and elimination of other causes of pain and is more subjective

(13). Many research teams have explored the morphologies linked

to both CM-P and SM using tools from statistical analysis (2),

morphometric measurements from MRI and CT (3, 14–16), and

machine learning (1, 17). Morphometric mapping, such as that

used in (3, 14), works to identify key areas of the brain associated

with the conditions and be used as a diagnostic tool, however, this

is a lengthy process. Machine learning can automate this process

and has the potential to detect subtle common patterns within

the data that human operators may not perceive. For example,

work by Knowler et al. (1) highlighted the importance of assessing

MRI scans of the whole head, rather than solely the hindbrain,

for diagnosis. Spiteri et al. (17) attempted to derive a data-

driven method to analyze local neuromorphologies adjacent to the

hindbrain linked to CM-P and grades of SM using techniques from

machine learning; this identified key areas diagnostically relevant

to the conditions and was able to successfully discriminate between

conditions. The aim of this latest study is to further extend and

TABLE 1 Demographics for all participating dogs (n = 120), separated

into study categories: CM-N (n = 34), CM-P (n = 51), and SM-S (n = 35).

CM/SM
status

Age Sex

≤3
years

3–5
years

≥5
years

Male Female

CM-N 7 11 16 26 8

CM-P 13 17 21 21 30

SM-S 11 8 16 16 19

enhance the approach originally proposed by Spiteri et al. (17) to

search for novel discriminative regions linked to CM-P and/or SM

across the entire sagittal image using a purely data-driven approach.

2 Materials and methods

Midsagittal T2 weighted MRI slices of one-hundred and twenty

Cavalier King Charles spaniels (CKCS) dogs were provided from

one veterinary practice, and included 63 males and 57 females,

ranging from 1.3 to 9.7 years. Information on the dogs included

is available in Table 1. The data was collected using a 1.5 T MRI

scanner (Siemens Symphony Mastro Class, Enlargen, Germany)

with the default slice thickness obtained being 3.2mm with a

pixel resolution of 0.7mm by 0.7mm in the sagittal plane and

was T2-weighted. The MRI series captured the full head in all

subjects, terminating at the C4 vertebrae (n = 59) or up to the C6

vertebrae (n = 61). The data was anonymized with demographic

data pertaining to the subjects’ age and gender being retained. An

ECVN diplomat and international expert on CM-P and SM graded

each subject for CM-P and SM status and assigned them to one

of three groups based on their physical exam, medical history,

and the full MRI imaging of the entire neuroaxis according to a

syringomyelia protocol (13):

• (CM-N): Considered clinically normal for the breed and at

least 3 years old. MRI may show signs of mild CM, but no

history or signs of CM-P and no syrinx present (n= 34).

• (CM-P): CM identified on MRI. Clinical history and exam

suggested CM pain with other diagnoses ruled out. Central

canal diameter < 1mm. For this study syringomyelia is

defined as a central canal dilatation of 1mm or more (n= 51).

• (SM-S): CM identified on MRI. Clinical history and exam

suggested clinical signs associated with SM with or without

CM-P. Syrinxmaximum transverse diameter> 4mmdetected

(n= 35).

The in-between phenotype with a small diameter syrinx (1–

4mm maximum transverse diameter) (so called SM-mild or SM-

M) was excluded because these dogs are typically presented with

clinical signs of pain and are less likely to have signs directly related

to SM. This study was submitted for ethics and governance review

to the University of Surrey NASPA Ethics Committee and granted

a favorable ethical opinion (NASPA-2018-005).

The methodology for this research can be partitioned into four

key steps: image preprocessing, feature selection, feature evaluation
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FIGURE 1

Schematic diagram highlighting the key steps within the research pipeline.

(machine learning) and inference of morphologies, summarized in

Figure 1. This methodological pipeline allowed for an assumption-

free (i.e., purely data-driven) assessment of morphologies linked to

disorder and exploration into the dominant morphological trends

linked to disorder. All experimental processes were carried out

using MATLAB ver. 9.13.0 R2022b (18).

The image pre-processing step is based around selecting a

reference CM-N average dog. This will be used for warping (using

image registration methods) MRI images of all other dogs in the

dataset to this individual and then using machine learning to reveal

and highlight subtle morphological patterns associated with CM-

P and SM-S within the data. The feature selection step was then

implemented, whereby a map of pixel displacements created by

the image warping/registration process for each dog were explored

to identify local candidate regions that may be predictive of CM-

P/SM-S. The feature evaluation step used machine learning to

identify themost highly predictive candidate regions. These regions

were further refined to improve predictive performance. This

enabled the morphologies predictive of CM-P/SM-S to be isolated.

Each step is detailed below.

2.1 Image preprocessing

Our approach is based on mapping mid-sagittal MRI images to

a suitable reference subject, and from this, using machine learning

to infer where morphological abnormalities are located which

may be associated with CM-P or SM-S. The use of a reference

subject was favored to preserve definition of all anatomical features,

especially those of a smaller size and/or variable position based

on age/weight or other factors which would be during any

averaging process.

A suitable reference dog was selected, deemed to be a CKCS

that was clinically unaffected by CM-P and SM (i.e., CM-N group),

as well as exhibiting no other known head morphological diseases.

To identify the optimum reference dog, a set of key anatomical

landmarks weremanually annotated for all 34 CM-N subjects in the

dataset and analyzed using principal components analysis (PCA).

The annotation located the center of mass of seven key anatomical

structures chosen for repeatability of identification, as shown in

Figure 2. These anatomical landmarks were selected based on ease

of identification and repeatability across different subjects.

The reference dog’s age and weight were subsequently

compared to the average age and weight data from the CM-

N subjects to ensure it was also representative of an average of

the group. The average age and weight (and standard deviation)

FIGURE 2

Anatomical structures used to generate a set of morphometric

measurements, on one example subject, which were then

computed for every CM-N subject and analyzed using principal

components analysis (PCA), to identify the optimum reference dog.

(1) Center of intra-thalamic adhesion; (2) mamillary body of

hypothalamus (directly above caudal border of sella turcica and at

rostral and ventral edge of midbrain); (3) apex of 4th Ventricle; (4) tip

of caudal cerebellar vermis (at junction between parenchyma and

CSF); (5) occipital pole; (6) center of CSF space between rostral

frontal lobe and olfactory bulb; (7) junction between hard and soft

palate. The most rostral point of soft palate.

of dogs in the CM-N class were 4.9 years (± 1.8 years) and

11.4 kg (± 3.6 kg), respectively, with the reference dog having

an age of 5.1 years (53% percentile) and a weight of 11.9 kg

(54% percentile).

The selection of the reference dog allowed for subsequent image

registration of all subjects in the study (CM-N, CM-P and SM-S) to

the reference dog, from which a deformation map for each subject

was produced. This was achieved by first undertaking a rigid-body

registration consisting of rotation and translation operations to

ensure all subjects images were in the same approximate initial

alignment. The rigid-registration steps ensured the center of each

image corresponded to the center of intra-thalamic adhesion

(point 1 in Figure 2) and that all subjects are facing the same

direction as the reference subject. Once all subjects were rigidly
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FIGURE 3

A schematic diagram illustrating the non-rigid registration process, Demons deformation, aligning one T2-weighted mid-sagittal MRI slice to

another. (A) upper-left image, shows query dog prior to registration; (B) upper-right image, shows the reference dog image to which the query dog

(A) would be registered; (C) lower-left image shows a down-sampled illustration of the deformation image mapping the query dog (A) to reference

dog (B); (D) lower-right image, shows the result of the transformations from (C) applied to query dog (A).

registered to the reference dog, non-rigid Demons registration was

performed (19).

Demons registration is a non-rigid technique which applies

non-linear transformations to images to “squeeze and squash” a

target image to best align it with the reference image; an example

of demons deformation can be found in Figure 3. This produced an

aligned image of a query image mapped to the reference image, a

deformation map representing the individual pixel displacements

that map the query image to the reference image, and a reverse

aligned reference image, which mapped the reference image to the

query image.

2.2 Feature selection

Spiteri et al. (17), observed that the severity (i.e., magnitude)

of pixel displacements seen in the deformation maps were more

significant for predictive purposes than simple (x, y) displacements

or the angles of the pixel displacements. Therefore, this approach

was adopted in this latest work.

We then systematically examined every pixel location and

its local neighborhood as a potential candidate biomarker for

neuromorphological abnormality. We refer to these as a seed

point centered on a local pixel neighborhood (locale); previous

pilot investigations demonstrated that a 9 × 9 region, as shown

in Figure 4, yielded the best predictive performance. These local

displacement maps were then used to build a local set of machine-

learned (rather than human prescribed) features that could be used

to predict presence of CM-P/SM-S. This process was then repeated

across the entire image, stepping one pixel at a time to build up

thousands of local models for prediction.

2.3 Feature evaluation

To evaluate the aforementioned local displacement maps for

their potential to predict CM-P and SM-S, a machine learning (ML)

algorithm was implemented. We selected a support vector machine

(SVM) (20) as the preferred approach. Experiments to detect

morphologies linked to CM and SM were carried out separately:

the CM experiment treats CM-N as controls and CM-P as disease

subjects, and the SM experiment treats CM-N as controls and SM-S

as disease subjects.

Each local displacement maps, identified by its central pixel

location or seed point was evaluated numerically using receiver

operating characteristic (ROC) curve, from which the area under

the curve (AUC) score was calculated and assigned to each

seed point. A seed point with an AUC score approaching 1.0

(100% accuracy) represents perfect predictive performance, a score

approaching 0.5 (50% accuracy) would be deemed analogous to

random guessing.

For machine learning, the datasets are to be partitioned into

training and testing sets, according to a ratio of approximately

80/20 where the training data is used by the SVM to learn, and the

test data is reserved to monitor how well the SVM has performed.

Initially the SVMwill use all training data at once (per locale) which
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FIGURE 4

Exemplar deformation field with center pixel (blue box) and its

locale (yellow box). In the feature evaluation step, the deformation

data from corresponding locales are collected from all query dogs

and serve as the 81 selected features from the 9 × 9 locale for a

machine learning (ML) classifier.

is followed by cross-validation to gain an understanding of how

well the predictive models performed when trained on different

subsets of training data. The entire training dataset was grouped

into eight “folds”. Each fold was allowed to train on 7/8 of the

training data, and the remaining 1/8 data was used as an interim

validation set. This was repeated across all combinations of train

and validation folds to examine how predictive value varies across

different subjects within the dataset, and so indicate how well such

an approach might work when deployed in a clinical setting. The

reserved test data is only then introduced to the model and its

performance noted.

The average performance across all folds, in terms of AUC was

then visually expressed by mapping individual pixel performance

across the entire reference image, as exemplified in Figure 5 for

the CM-P study. Rather than rely on a single region as the

sole arbiter of CM-P or SM-S presence, we then sought to

aggregate the best performing regions in an optimized manner

to enhance overall performance of the ML model. To do so, the

map of AUC performance was thresholded at an AUC score of

0.62. This was deliberately set relatively low so that potentially

small, highly predictive, regions tempered by adjacent regions

with relatively poor predictive value would not be inadvertently

removed. Each remaining region was then repeatedly dilated

to include a new one-pixel wide boundary, and subsequently

tested for AUC performance until the AUC score of the dilated

region plateaued. At this point each pixel adjoining the dilated

boundary was then individually tested to examine whether

its inclusion increased or decreased overall AUC performance.

FIGURE 5

AUC heatmap overlayed onto reference image (Figure 3B) showing

potential regions of interest (ROIs) in the detection of CM-P related

morphologies. The AUC scores attributed to individual pixels

represent those averaged during a cross-validation process, to

assess performance of the ML model at predicting CM-P presence.

The resultant heatmap is thresholded to remove noise by only

showing distinction between regions whose AUC scores exceed 0.5

up to the maximum recorded score of 0.73.

Increases in performance meant the pixel was appended to

the region, and decreases resulted in exclusion. This process

was continued until maximum performance for the region was

attained. This produced a set of expanded regions with consistently

enhanced AUC performance compared to those in the initial

thresholding step.

In order to combine these regions in a way that improved

upon individual region performance, we then embarked on an

exhaustive search of all possible combinations of these modified

regions, from each one considered individually up to all regions

jointly. Each combination was evaluated using the AUC score

following training. The resulting combination of region(s) from

this brute force search yielding the highest possible AUC score

during training were chosen as the final regions of interest.

2.4 Inference of morphologies

The final stage is to understand the local deformation

information found in the identified ROI’s, to understand the

morphologies that are linked to disease/disorder. In the case for

each disorder, an application of principal components analysis

(PCA) was employed, to identify the most salient deformations

within the ROI’s. This was visualized using a vector line

plot overlayed onto the reference subject and allows for the

comparison between control and disease subjects, thus allowing

for the direct comparison of natural morphologies with disorder-

indicative morphologies.
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FIGURE 6

The most significant regions, extracted from Figure 5, in the

detection of CM-P morphologies, are enveloped in red and serve as

the designated regions of interest in further experimentation.

3 Results

3.1 CM-P analysis

In the case of CM-P, the performance of the individual seed

points, evaluated in the feature evaluation stage, were visually

expressed as a heatmap as shown in Figure 5. The thresholding of

AUC scores exceeding 0.62 resulted in the fifteen solitary regions

found in Figure 6. The optimization of the ROI boundaries to

maximize AUC score added an average of 6.1 pixels per region and

excluded an average of 4.2 pixels per region; the resultant ROI’s

were visually indistinguishable from those shown in Figure 6; the

median improvement in AUC scores during this process was 0.019.

The brute force search for region combinations found that four

ROI’s were the most highly predictive of CM-P presence: these can

be seen in Figure 7A. Surprisingly, all four predictive regions were

outside the brain and three were outside nervous system, these

ROI’s being (1) the caudal end of the soft palate (AUC = 0.70),

(2) larynx and the soft tissue directly dorsal the larynx (AUC =

0.73), and (3) the fascia containing the carotid artery caudal to the

bifurcation and ventral to caudal C2 (AUC = 0.81). Additionally,

there was a region (4) at the level of the C3 spinal cord segment

(spinal cord associated with the caudal third of the C2 vertebral

body) (AUC= 0.64).

The machine trained on the union of these four regions’

morphological data yielded an AUC score of 0.87, an improvement

between 0.06 and 0.23 compared to individual regions. The

corresponding receiver operating characteristic (ROC) curve,

shown in Figure 7B, emits an operating point yielding 89%

sensitivity and 76% specificity. This shows the machine has an 89%

accuracy at producing a true positive diagnosis.

A PCA analysis was used to better understand the

morphological changes seen in the four key selected regions

that were predictive of CM-P, with results shown in Figure 7C.

The first principal component from this analysis, shown in orange

for CM-P presence against CM-P absence (CM-N) shown in

blue, explained 91% of the variance within the dataset. The visual

summary of these CM-P morphologies is plotted in Figure 7C,

highlighting the average displacements and prominent direction

most deformations can be measured against. When exploring

the dominant morphological behaviors in the ROI’s, we are able

to understand how these can vary between CM-N and CM-P

dogs. Morphologies in region (1) of the soft palate show ventral

displacements with separation of 31 degrees between CM-N

and CM-P; region (2) at the larynx shows CM-N and CM-P

exhibiting caudally directed and ventrally directed morphologies,

respectively. Region (3) at the facia containing the carotid artery

shows directly opposing morphologies between CM-N and CM-P

subjects, directed ventrally and dorsally, respectively. Region

(4) situation within the C2/C3 spinal cord shows CM-N related

morphologies point ventrally/caudally, with CM-P subjects

directed ventrally/rostrally.

3.2 SM-S analysis

The aforementionedmethodology was also applied to develop a

MLmodel dedicated to predicting SM presence. This resulted in an

AUC heatmap (see Figure 8) revealing far more regions attaining

AUC scores exceeding 0.62 than in the CM-P case. Regions with a

threshold AUC score exceeding 0.62 were isolated and are shown

in Figure 9. The aforementioned methodology was also applied to

develop a ML model dedicated to predicting SM presence. This

resulted in an AUC heatmap (see Figure 8) revealing far more

regions attaining AUC scores exceeding 0.62 than in the CM-P

case. Regions with a threshold AUC score exceeding 0.62 were

isolated and are shown in Figure 9. The boundaries of the twenty-

one regions were optimized, revealing that several ROIs could be

merged by including the adjacent pixels shared between them. This

process resulted in fourteen strongly predictive candidate ROIs

associated with SM-S; the median improvement in AUC scores as a

result of the optimization was 0.021.

All combinations of regions were then examined for combined

predictive performance in terms of AUC score. The best performing

combination of ROIs for predicting morphologies associated with

SM-S were determined to be the four ROI’s with the strongest

discriminating ability shown in Figure 10A. Two of these regions

were located within the brain being (1) the rostral cerebellum

and tentorium cerebelli region (AUC = 0.77) and (2) brain stem

immediately ventral to the fourth ventricle (AUC = 0.78). There

were two regions outside the nervous system being (3) rostral to

the soft palate ROI found in the CM-P study (AUC= 0.74) and (4)

the epiglottal region of the larynx (AUC= 0.71), as summarized in

Figure 10A.

The corresponding ROC curve for this combination of ROIs

is shown in Figure 10B, which yields an AUC score of 0.85 (an

improvement of between 0.07 and 0.14) and a sensitivity of 84%
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FIGURE 7

(A) The four optimized ROIs with highest combined predictive performance for CM-P presence superimposed on the reference dog; (B)

corresponding ROC curve for the combined ROIs indicated in (A); (C) visual representation of exemplar locations selected from each of the regions

shown in (A) and the associated deformation directions for CM-N subjects (blue) and deformations linked to CM-P (orange), with solid lines indicating

average displacements and dashed lines indicating the prominent (principal) direction to which most deformations can be measured against.

FIGURE 8

Mosaic-style heatmap overlayed onto reference image (Figure 3B)

showing potential regions of interest (ROIs) in the detection of SM-S

related morphologies. The attributed scores are a result of area

under the curve (AUC) scores, averaged during a cross-validation

process, and thresholded to only show distinction between regions

whose AUC scores exceed 0.5, and up to the maximum recorded

score of 0.805.

and specificity of 80%. This indicates the ML model demonstrates

84% accuracy at producing a true positive diagnosis. We were able

to bootstrap the test data with the CM-P dataset, allowing for fifty-

one dogs to be tested; it was found that themodel correctly classified

76% of CM-P dogs as not being SM-S, consistent with the existing

specificity noted during initial testing. The principal morphologies

FIGURE 9

The most significant regions for predicting SM presence, extracted

from Figure 8 and shown in red, which serve as preliminary regions

of interest pending further experimentation.

attributed to these ROIs linked to SM-S, as shown in Figure 10C

and explain 94% of all inscribed morphologies.

The analysis of the morphological behaviors found in these

four regions also showed key differences between CM-N and SM-

S subjects. Region (1) at the tentorium cerebelli shows a clear

dorsal morphology indicative of SM-S directly opposed by a ventral

morphology linked to CM-N; with similarly dorsal morphologies

linked to SM-S in region (2) at the brain stem. Region (3) located

at the soft palate shows a 40-degree separation between CM-N and

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2024.1492259
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Cumber et al. 10.3389/fvets.2024.1492259

FIGURE 10

The inference of ROIs for SM-S. (A) left image, the combination of regions resulting in the strongest discriminating ability for SM-S morphologies,

obtained with an exhaustive permutative search; (B) center image, the corresponding ROC curve for the ROI morphologies indicated in (A); (C) visual

representation of exemplar locations selected from each of the regions shown in (A) and the associated deformation directions for CM-N subjects

(blue) and deformations linked to SM-S (orange), with solid lines indicating average displacements and dashed lines indicating the prominent

(principal) direction to which most deformations can be measured against.

FIGURE 11

Exemplar MRI scan of a CKCS with CM-P, with a bold yellow arrow pointing to a site of significant curvature at the C2/C3, as mentioned by Cirovic

et al. (24).

SM-S morphologies and region (4) in the larynx shows a 60-degree

separation between CM-N and SM-S subjects’ morphologies.

4 Discussion

An objective and clinically relevant grading of CM and the

diagnosis of CM-associated pain (CM-P) has been the subject of

many research studies with still no clear consensus among the

community. A deeper understanding of the morphological changes

to the skull, cervical vertebrae and underlying nervous tissue and

how they result in CM-P and syringomyelia (SM) will lead to

greater ability for subjects to be more easily diagnosed, properly

treated earlier in life, and screened to assess the likelihood of disease

transmission through offspring. In this work we have sought to

identify data-driven regions that exhibit soft tissue deformations

that are predictive for CM-P and SM when compared to CM-

N individuals.

The consistency of a single neurologist assessing the MRI’s

obtained from a single center using a standardized protocol

allowed for the minimization of inter-operator variance. Therefore,

a machine learning algorithm could be trained independent of

previous veterinary knowledge on the morphological information

found in registering subjects to a reference dog. This approach was

subsequently refined to optimize the identified regions of interest

(ROI) and to concurrently verify the optimum set of ROIs linked

to disease. The statistical analysis of the morphological differences

between CM-N and CM-P/SM-S subjects also allowed for the

potential to learn far more relating to the pathophysiology of both

CM-P and SM-S giving greater clinical relevance. Overall, up to

89% accuracy in the CM-P analysis and 80% accuracy in the SM

study during this testing phase shows there is a high confidence

in the identified ROIs, and their morphologies, for both diseases.
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This represents state-of-the-art predictive performance or these

two conditions.

4.1 CM-P morphologies and clinical
relevance

It was surprising to observe that all major predictive regions

were outside the nervous system, and this shows the value of

a machine learning approach that is not led by human bias or

hypothesis. However, it is difficult to explain the clinical signs

of CM-P with these morphologies. It is most likely a para-

phenomenon and that the conformational changes in the skull are

also resulting in conformational changes in the upper airway and

associated soft tissue. This has been described in humans with the

comparable condition Chiari type 1 malformation (21) and Chiari

malformation associated with complex craniosynostosis (22). An

alternative explanation may be that the confirmation change to the

airway may be affecting intrathoracic pressure and sleep which in

turn may affect cerebrospinal fluid movement and clinical signs

associated with Valsalva maneuver mimics such as rapid postural

changes including being picked up, jumping, shifting position

when recumbent, coughing and defecation. Likewise changes in

conformation of the great blood vessels may affect blood and

lymphatic drainage from the head (23).

In the CKCS spinal cord segment C3 is the area most likely

affected by a syrinx however this cannot be the reason that this

region was highlighted as significant for CM-P as these dogs do

not have syringomyelia. The C2/C3 region is also noted to have

a curvature (24), as exemplified in Figure 11. It is possible that

this curvature is more pronounced in CM-P affected dogs, but this

hypothesis would need to be tested in a further study.

4.2 SM-S morphologies and clinical
relevance

Like CM-P there were two morphologies outside the central

nervous systems and being very close together (soft palate) or

overlapping (larynx) with the CM-P biomarker morphologies.

Since SM is secondary to CM this strengthens the argument that,

however surprising, these areas may be significant for the disorder

either as para—phenomenon or disease pathogenesis for example

affecting Valsalva maneuver mimics.

The region of the rostral cerebellum is more easily explained,

as in CM this region is typically displaced caudally and deformed

by the occipital lobe which is displaced caudally by the craniofacial

hypoplasia and rostral neuroparenchymal overcrowding (2). In SM

the tentorium cerebelli is typically reduced or more horizontal

(4). Likewise, the brainstem is typically deformed and displaced

caudally and is often “kinked” immediately caudal to the region

of interest. The region of interest is directly ventral to the 4th

ventricle which is typically dilated in SM-S and so it is possible the

morphological changes reflect these phenomena.

There is significant confidence in these finding given the

strong performance during the initial training and testing,

as well as the bootstrapped CM-P testing, giving a much

larger dataset to understand how the information learned can

generalize across the wider population. The fifty-one dogs in

the CM-P dataset are classified with a specificity of 76%,

approaching the initial specificity of 80%, indicating the machine is

classifying effectively.

4.3 Limitations of study

The support vector-based machine learning framework (20)

was used due to being well-suited for comparatively smaller

datasets through use of techniques derived from linear algebra, as

compared to other deep learning-based approaches which require

an order of magnitude larger dataset (which was unavailable

for this work). An initial rigid-body registration was needed

for approximate alignment prior to Demons (non-linear image)

registration; this may potentially obscure the morphologies of

larger biological structures. Additionally, the registration process

depended on a reference dog that is representative of the dataset

at large; however, the reference dog used may, or may not, be a

true representation across a much larger population. Therefore, to

increase ecological validity, further data would be needed in the

future, and this may reveal a reference subject subtly different to

that used here.

In this study the imaging was obtained by the same team of

experienced qualified radiographers, using a single high field MRI

machine and with optimal positioning of the dog. However, much

imaging in veterinary medicine is not performed to such a high

standard and is limited by suboptimal positioning, low field MRI

and obtained by operators with noMRI specialist qualifications and

minimal training. Any machine learning technology solutions for

analysis of large datasets will need to overcome these challenges.

In addition, the current CMSM health scheme (25) does not

require imaging that includes the entire brain which limits

the use of historical images, and such dogs would have to be

accurately phenotyped.

4.4 Future work

Future research would benefit from a larger dataset for

enhanced generalizability of the ML predictions which could result

in an application that could be used for pre-breeding health

screening and as a tool for diagnosis of CM-P. However, such

a tool would have to be adaptable to variations in imaging

quality. CM-SM is a consequence of a three-dimensional change in

morphology however assessment is currently made from a single

two-dimensional midsagittal image. This failure to account for

three-dimensional changes is a major limitation and so the next

steps in the Canine Chiari Group Head Space Project will be to

extend this approach to three-dimensional morphologies.

Although this work was focused on CM-P and SM, the

same methodology might also be developed for application

to other brachycephalic breeds and prediction of other

associated conditions such as Brachycephalic Obstructive

Airways Syndrome (BOAS).

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2024.1492259
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Cumber et al. 10.3389/fvets.2024.1492259

5 Conclusions

The results suggest the proposedmethodological pipeline could

successfully analyze morphological changes experienced as a result

of developmental disorders, in a way that was entirely machine-

led and presumed no prior biological knowledge, using an entirely

data-driven approach and attaining strong performance during

the training and testing. The internal morphologies of the CKCS,

subject to CM-P and SM-S, are now better understood not just

with neuroanatomical regions of interest, but also the behaviors

associated to their respective deformations. This study also allowed

the distinction of morphologies that are indicative of normal

neuroanatomical deformations, which are not linked to disease.

Although these may be para-phenomenon it may be useful as a

means to screen for CM-P/SM-S tendency.

This work serves as a proof of concept for the morphological

examination of diagnostic medical imaging in the detection of CM-

P and SM-S. These results represent state of the art performance

in using machine learning architecture as a diagnostic tool for

morphological assessment of neuroanatomical disorders.
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