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Hemangiosarcoma is a highly malignant tumor commonly a�ecting canines,

originating from endothelial cells that line blood vessels, underscoring the

importance of early detection. This canine cancer is analogous to human

angiosarcoma, and the development of liquid biopsies leveraging cell-free DNA

(cfDNA) represents a promising step forward in early cancer diagnosis. In this

study, we utilized Whole Genome Sequencing (WGS) to analyze fragment sizes

and copy number alterations (CNAs) in cfDNA from 21 hemangiosarcoma-

a�ected and 36 healthy dogs, aiming to enhance early cancer detection accuracy

through machine learning models. Our findings reveal that similar to trends in

human oncology, hemangiosarcoma samples exhibited shorter DNA fragment

sizes compared to healthy controls, with a notable leftward shift in the primary

peak. Interestingly, canine hemangiosarcoma DNA fragment sizes demonstrated

eight distinct periodic patterns diverging from those typically observed in human

angiosarcoma. Additionally, we identified seven novel genomic gains and nine

losses in the hemangiosarcoma samples. Applying machine learning to the

cfDNA fragment size distribution, we achieved an impressive average Area Under

the Curve (AUC) of 0.93 in 10-fold cross-validation, underscoring the potential

of this approach for precise early-stage cancer classification. This study confirms

distinctive cfDNA fragment size and CNA patterns in hemangiosarcoma-a�ected

vs. healthy dogs and demonstrates the promise of these biomarkers in canine

cancer screening, early detection, and monitoring via liquid biopsies. These

findings establish a foundation for broader research on cfDNA analysis in various

canine cancers, integrating methodologies from human oncology to enhance

early detection and diagnostic precision in veterinary medicine.

KEYWORDS

canine, cell-free DNA, copy number alteration, fragment, hemangiosarcoma, liquid
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1 Introduction

Canines are inherently susceptible to a diverse array of tumors, which pose a significant

mortality threat. Tumor diagnosis in dogs is traditionally confirmed via tissue biopsy, with

subsequent treatment often involving surgical excision of the tumor and pharmacological

therapy (1). Among the numerous types of canine tumors, hemangiosarcoma is
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particularly malignant, originating from the endothelial cells that

line the vasculature and manifesting in multiple organs, including

the liver, spleen, and skin (2, 3). Its human analog, angiosarcoma,

mirrors hemangiosarcoma in histological structure, molecular

pathogenesis, and clinical presentation, thereby facilitating

comparative oncological studies between species. Recent advances

in the study of cell-free DNA (cfDNA) have highlighted its

potential for non-invasive, early detection and monitoring of

human cancers (4–10).

As a byproduct of cancer tissue degradation, cfDNA circulates

in the bloodstream, with its baseline levels detectable in

healthy individuals. Alterations in plasma cell-free DNA (cfDNA)

concentrations, modifications in cfDNA methylation patterns,

mutations originating from cancer cells, and the phenomenon of

loss of heterozygosity emerge as promising biomarkers for the

diagnosis of cancer (11, 12).

Incorporating machine learning with cfDNA analysis has paved

a new approach for advanced cancer diagnosis (13–16), leveraging

genomic insights from Whole Genome Sequencing (WGS) data,

such as copy number alterations (CNA), fragment size distribution,

and genomic breakpoints. While the exploration of cfDNA liquid

biopsies in canines is less developed compared to human studies,

emerging research hints at its potential.

Notably, investigations by Favaro et al. have delineated

the enhanced detection of circulating tumor DNA (ctDNA) in

malignant vs. benign lesions in canine splenic hemangiosarcoma,

highlighting its utility in the diagnosis, monitoring, and detection

of this specific tumor type. A pioneering aspect of cancer screening

is the analysis of cfDNA fragment patterns. Sequencing data reveal

discernible discrepancies in fragment size distribution between

normal and cancerous samples, characterized by an enrichment of

both longer and shorter fragments in cancer specimens (14, 17–20).

Furthermore, the periodicity of peaks and troughs at 10 bp

intervals offers additional discriminative features for distinguishing

between malignant and benign samples (14). Our methodology

proposes a novel screening paradigm by analyzing cfDNA

fragment size distribution in conjunction with machine learning

techniques. We employ an array of machine learning algorithms to

classify hemangiosarcoma from normal samples, focusing on the

distribution of fragment sizes within specific ranges and delving

into the realm of copy number alterations (CNA), thus contributing

to the expanding frontier of veterinary oncological research.

2 Materials and methods

2.1 Overview and data

This study unfolds as illustrated in Figure 1, commencing

with the alignment of Whole Genome Sequencing (WGS) data

to the canFam3.1 (21) reference genome via Bwa-mem version

0.7.17 (22), followed by the elimination of PCR duplicates with

Picard version 1.81. Utilizing Samtools version 1.7 (23), we sorted

the aligned data and computed the average sequencing depth.

To maintain uniformity, samples exhibiting an average depth

exceeding 2X were downscaled to a maximum depth of 2X. This

subsampled dataset was then employed to enumerate fragment

sizes using Samtools, laying the groundwork for feature selection

to discern significant fragment dimensions. Subsequently, machine

learning algorithms were engaged to distinguish hemangiosarcoma

from non-cancerous samples. The dataset encompasses 20 diverse

dog breeds, incorporating 21 hemangiosarcoma-afflicted dogs and

9 healthy controls from the PRJNA823593 Bio Project, in addition

to 27 normal samples collated by our team. Of the 57 samples

(Supplementary Tables 1, 2), 30 were analyzed using WGS data

from Favaro et al. [(17), PRJNA823593], and WGS was performed

on 27 samples confirmed as normal through CRP, serum chemistry,

and CBC tests.

2.2 NGS protocol for cfDNA extraction

Normal group blood samples were obtained from professional

breeders in South Korea, utilizing Roche CE-IVD cell-free DNA

collection tubes (#07785666001) for blood collection. A two-stage

centrifugation process was executed to isolate plasma, which was

then preserved at−80◦C for subsequent cfDNA extraction.

The MagMAX cell-free DNA Isolation Kit by Thermo Fisher

Scientific Inc. was employed for plasma cfDNA extraction,

adhering to the manufacturer’s guidelines. The NEBNext Ultra

II DNA Library Prep Kit for Illumina facilitated NGS library

construction from the extracted cfDNA, with sequencing indices

procured from NEBNext Multiplex Oligos for Illumina (Dual

Index). An initial cfDNA input of 2ng was specified, with the

full amount used for samples below this threshold. The library

was prepared without physical or enzymatic fragmentation,

following a size selection-free protocol per the manufacturer’s

directions. The QubitTM dsDNA HS Assay Kit and the QubitTM

4 Fluorometer were utilized for quantitative assessments,

with the Agilent Cell-free DNA ScreenTape & reagents and

DNA ScreenTape & reagents alongside the Tapestation 4150

deployed for quality evaluations. Sequencing was conducted

on the Illumina NovaSeq 6000, adopting a 150PE approach

for WGS.

2.3 Fragment size distribution analysis

The analysis of fragment size distribution employed samtools

on aligned BAM files to tally fragment sizes ranging between

74 and 439 bp across all samples, subsequently calculating the

distribution. For fragment size counting, samtools was configured

with flag 66 and quality 30. Considering sample depth variability,

scaling adjustments were made so the aggregate fragment size

count equaled 1 for each sample. This normalized distribution

was illustrated in Figure 2, utilizing Python version 3.6.13 and

Matplotlib version 3.3.4.

2.4 Copy number alteration

We applied ichorCNA version 0.3.2 and WisecondorX

(available at https://github.com/CenterForMedicalGeneticsGhent/

WisecondorX.git) (24, 25) for CNA assessment, utilizing a 500 kb

bin size for CNA computations. A normative panel for ichorCNA
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FIGURE 1

Analysis and processing procedures of WGS from liquid specimens of the normal and hemangiosarcoma groups. 2× depth (mean coverage) means

that approximately twice as much data as the canine genome (genome size ≈ 2.4 Gb) is produced and analyzed. We used 70% of the data for the

training set and 30% for the test set and applied seven classification models.

FIGURE 2

Fragment size distribution. The distinct patterns of fragment size distribution for hemangiosarcoma and normal samples, with means and variations

represented by colored lines and areas. Fragment sizes were calculated in 5 bp increments, ranging from 74 to 434 bp. The X-axis represents

fragment size, while the Y-axis indicates the proportion (density) of each size. In the graph, the red line represents the mean fragment size of

hemangiosarcoma samples, with the orange color indicating the standard deviation. Similarly, the black line represents the mean fragment size of

normal samples, and the green color denotes the standard deviation. The fragment pattern of the green-colored composition sample moves as a

cohesive group. In contrast, the fragment pattern group of the orange-colored hemangiosarcoma sample is separated to create a more dramatic

e�ect. Notable di�erences were observed, particularly within the 167 bp range, with the two groups showing the most significant similarity at 124,

137, and 147 bp.

and a reference for WisecondorX were constituted using 27

normal samples. ichorCNA analysis included the generation of

Mappability and GC content (26) for canFam3.1 with a 500 kb

bin size via HMMcopy. The convergence of gain and loss regions

across the ichorCNA and WisecondorX outcomes was facilitated

by bedtools, identifying common regions of gain and loss between

both methodologies.

2.5 Machine learning application

Machine learning was employed for feature selection and

classification within the fragment size distribution dataset,

distinguishing between Normal and Hemangiosarcoma samples

via Python’s scikit-learn version 0.24.2. Feature selection leveraged

the support vector machine (SVM) (27) with recursive feature
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elimination (RFE) (28) executed iteratively 100 times to pinpoint

optimal feature positions. This analysis was paralleled with a

comparative study of oscillation peak and valley positions within

the fragment size distribution against human counterparts.

For classification, the study utilized a cohort of 57 samples, split

into a 70% training set and a 30% test set, with machine learning

models including XGBoost (29), Random Forest (30), SVM, Extra

Trees (ETC) (31), Gradient Boosting (GBC) (32), AdaBoost (33),

and Bagging (BC) (34) from scikit-learn. Performance metrics like

AUC score, accuracy, sensitivity, and specificity were calculated,

iterating the process 10 times to ensure reliability.

3 Results

3.1 Fragment size distribution between
normal and hemangiosarcoma

We analyzed the distribution of fragment sizes for both healthy

samples and those afflicted by hemangiosarcoma. Our analysis

comprised 36 normal samples and 21 hemangiosarcoma samples,

from which we determined the mean fragment sizes and their

standard deviations. These statistics are visually represented in

Figure 2: the hemangiosarcoma samples are depicted with a red

line (mean) and orange shading (variation), whereas the normal

samples are illustrated with a black line (mean) and green shading

(variation). This graphical representation underscores a distinct

divergence in fragment size distribution patterns between the

two groups. Our findings revealed that the principal peak of

fragment size for normal samples is located at 165 bp, while for

hemangiosarcoma samples, it shifts 5 bp to the left, settling at

160 bp. This shift mirrors patterns observed in human cell-free

DNA (cfDNA) studies, suggesting a biological consistency across

species. Notably, hemangiosarcoma samples exhibited a higher

proportion of fragments under 174 bp, whereas normal samples

predominated in fragment sizes above this threshold. Both normal

and hemangiosarcoma samples displayed oscillatory patterns to the

left of the main peak, each with eight oscillation cycles. Table 1 lists

the peak positions within these oscillations for normal samples,

revealing that while most peak positions align between normal and

hemangiosarcoma samples, notable deviations occur in the peaks

and valleys of the 7th and 8th oscillations by∼1 bp.

All peak positions have a more significant portion in

hemangiosarcoma than in normal. From the 1st to the 4th

peaks, the average values are 0.0022 for normal and 0.0042

for hemangiosarcoma, showing a near 2-fold increase (0.0020

difference). From the 5th to the 8th peaks, the averages are 0.0069

for normal and 0.0137 for hemangiosarcoma, with a near 2-

fold increase (0.0068 difference). While the difference increases

gradually from the 1st to the 4th peak, it becomesmore pronounced

and more than doubles from the 5th to the 8th peak. Moreover,

the disparity between the peaks and valleys (diff = peaks – valleys)

accentuates this distinction. In normal, the 5th and 6th show more

than a 1.5-fold difference, and in hemangiosarcoma, the 5th, 6th,

and 7th show more than a 1.3-fold difference compared to the

average. Commonly, the 5th and 6th exhibit the largest difference

between peaks and valleys. The greatest difference between the two

groups’ diffs is observed in the 6th, and the least difference is in

the 4th.

Thus, our analysis revealed that hemangiosarcoma samples

exhibit notable disparities in the peaks and valleys within each

oscillation cycle when compared to normal samples. Specifically,

the fragment pattern characteristic of hemangiosarcoma includes

a predominance of shorter fragments and a more pronounced

variance between the peaks and valleys. Furthermore, the principal

peak in hemangiosarcoma samples is discernibly shifted to the

left, relative to that of normal samples, underscoring a unique

fragment distribution pattern that distinguishes hemangiosarcoma

from normal tissue samples. These findings highlight the potential

of fragment size analysis as a biomarker for differentiating between

hemangiosarcoma and healthy states, thereby contributing to the

early detection and diagnosis of this aggressive cancer in canines.

3.2 Copy number alteration analysis

In our study, we analyzed changes in the DNA of 21 dogs with

hemangiosarcoma, focusing on which parts of the DNA had more

(gains) or fewer (losses) copies than usual. We used two special

software tools, ichorCNA and WisecondorX, to do this, setting

both to look at sections of DNA that were 500 kb long. Each dog’s

DNA showed different areas where these gains and losses happened,

and they covered large parts of the chromosomes. To get a clearer

picture of common changes, we only looked at changes that showed

up in more than 6 of the samples. Using ichorCNA, we found

24 areas with gains and 14 areas with losses. WisecondorX found

nine areas with gains and 14 with losses. By comparing the results

from both tools, we identified the chromosomes that commonly

had gains—these were chromosomes 5, 6, 13, 14, 16, 20, 24, and 31.

For losses, the chromosomes were 2, 10, 11, 14, 16, 27, 30, 33, 34,

and 36.We also compared our findings with what other researchers

TABLE 1 Comparison of peak positions: normal vs. hemangiosarcoma samples.

1 (81 bp) 2 (91 bp) 3 (102 bp) 4 (112 bp) 5 (122 bp) 6 (133 bp) 7 (144 bp) 8 (154 bp)

Normal Peak 0.0015 0.0021 0.0023 0.0028 0.0042 0.0065 0.0078 0.0091

Valley 0.0010 0.0014 0.0018 0.0022 0.0029 0.0048 0.0071 0.0086

Diff 0.0005 0.0006 0.0005 0.0006 0.0013 0.0017 0.0007 0.0005

Hemangiosarcoma Peak 0.0029 0.0042 0.0046 0.0054 0.0089 0.0139 0.0164 0.0156

Valley 0.0014 0.0021 0.0031 0.0040 0.0053 0.0091 0.0129 0.0130

Diff 0.0015 0.0020 0.0015 0.0014 0.0036 0.0048 0.0035 0.0026
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TABLE 2 Gains and losses through CNA analysis.

Gain Loss

Our 5, 6, 13, 14, 16, 20, 24, 31 2, 10, 11, 14, 16, 27, 30, 33, 34, 36

Thomas

et al. (35)

13, 24, 31 16

Kennedy

et al. (36)

16, 31

have discovered, which is detailed in Table 2 of our paper, and you

can find the specific areas of the chromosomes that changed in

Supplementary Table 3. This approach helped us understand which

DNA changes are common in dogs with hemangiosarcoma.

Our study’s findings on changes in DNA copy numbers (CNA)

in dogs with hemangiosarcoma support and build upon previous

research. Consistent with the work of Thomas R., we discovered

that certain chromosomes (13, 24, and 31) often exhibited

DNA copy number gains, while chromosome 16 frequently

showed losses. This finding aligns with Kennedy K.’s observations

regarding losses in chromosome 16. However, our study also

identified a gain in chromosome 31, which contrasts with some

earlier studies.

Specifically, we observed a loss in the CDKN2A/B gene on

chromosome 16, a gene previously linked to hemangiosarcoma

in dogs (37). This loss was anticipated based on prior research.

Additionally, genes such as VEGFA on chromosome 12, and KDR

and KIT on chromosome 13, are frequently amplified in these

cancers. Our study corroborated these gains and also identified an

increase in the MYC gene, which is less commonly reported.

3.3 Machine learning for identifying
cancer-specific patterns

To delineate cancer-specific or notably significant genomic

regions, our study leveraged the capabilities of machine learning

through feature selection methodologies. By employing Support

Vector Machine (SVM) models enhanced by Recursive Feature

Elimination (RFE), we conducted a series of 100 iterative

experiments. In these analyses, 70% of our dataset was allocated

as training data, examining DNA fragment sizes spanning 74 base

pairs (bp) to 439 bp. The identification of pivotal features resulted

in their categorization into three distinct regions, as visually

denoted by the blue line in Figure 3.

The inaugural region emerges at the third oscillation peak,

capturing specific loci situated between the primary peaks observed

in hemangiosarcoma and control samples. This delineation displays

a pronounced variance in the distribution of short DNA fragments,

underscoring the discrepancies highlighted in Section 3.1. The

subsequent region, proximate to 174 bp, marks a juncture where

the frequency of fragments begins to escalate in control samples.

Conversely, the terminal region extends from 336 to 395 bp, where

the discrepancy in fragment proportions between the two cohorts

intensifies, only to abate beyond 395 bp.

Within these specified regions, the prevalence of fragments

in control samples markedly surpasses that in hemangiosarcoma

samples by a factor of at least 5–20-fold. This differential

feature selection, facilitated by machine learning, underscores

the utility of analyzing fragment size distributions in

distinguishing between normal and hemangiosarcoma-affected

canine DNA.

Subsequently, our study utilized machine learning algorithms

to ascertain the presence of hemangiosarcoma within the samples.

We employed a suite of seven classification algorithms across 10

repeated trials, with 70% of the data allocated for training purposes.

The discriminative features incorporated into this phase were

derived from the SVM model equipped with Recursive Feature

Elimination (RFE), focusing on the peaks and valleys delineated in

Section 3.1. As depicted in Table 3, the SVM approach consistently

rendered commendable classification outcomes. Notably, the

highest accuracy of 0.95 was achieved when the model utilized

features representing peaks and valleys within human genomic

areas, achieving an Area Under the Curve (AUC) of 0.93.

Sensitivity was 0.89, but Specificity was notably high at 0.98,

and the SVM algorithm showed the highest scores in all

cases (Supplementary Table 4). A close second in performance

was observed when incorporating features from canine-specific

peaks, valleys, and the primary peak, culminating in an AUC

of 0.92.

The analysis utilized 14 positions (comprising seven peaks

and seven valleys) for human-related features and 21 positions

(encompassing 10 peaks and 11 valleys) for canine-related features,

underscoring the efficacy of achieving significant results with a

concise set of features. Additional metrics beyond the AUC are

accessible in Supplementary Table 4, providing a comprehensive

overview of the classification performance.

Our investigation utilized data from the BioProject

PRJNA823593, which comprises both pre-and post-operative

samples from dogs diagnosed with hemangiosarcoma. We

embarked on a classification task to differentiate between normal

samples and those taken before and after surgery from affected

dogs. The performance of these classifications, as quantified by the

Area Under the Curve (AUC), is presented in Table 3. The analysis

revealed a slightly lower AUC when attempting to distinguish

pre-operative hemangiosarcoma samples from normal ones,

compared to other classification tasks, with the most effective

model being the Support Vector Machine (SVM) used for both

feature selection and classification. This model achieved an AUC

of 0.8996.

Leveragingmachine learning techniques, we discovered specific

genomic locations that exhibit significant differences between

cancerous and non-cancerous states, including distinctive patterns

in the DNA fragment size distribution, particularly in the peaks

and valleys discussed in Section 3.1. The focal areas of interest

spanned from the 5th to the 8th oscillation cycles, where notable

discrepancies, including the principal peak, were observed. The

positional patterns of peaks and valleys in both canine and human

samples showed substantial alignment, with 11 identical positions

noted. This congruency emphasizes the relevance and utility

of a relatively small subset of features in achieving meaningful

classification results.

Consequently, our findings underscore the efficacy of utilizing

cell-free DNA (cfDNA) fragment size distribution as a potent

marker for screening and diagnosing hemangiosarcoma in dogs.
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FIGURE 3

Selected featured based on SVM. We identified three key DNA regions from 100 iterative experiments using SVM. The blue lines indicate the

important feature regions extracted using SVM. Fragment sizes were calculated in 5 bp increments, ranging from 74 to 434 bp. The X-axis represents

fragment size, while the Y-axis indicates the proportion (density) of each size. In the graph, the red line represents the mean fragment size of

hemangiosarcoma samples, with the orange color indicating the standard deviation. Similarly, the black line represents the mean fragment size of

normal samples, and the green color denotes the standard deviation. We used the SVM feature selection method to extract the areas that showed

the most distinct di�erences between the normal and cancer groups.

TABLE 3 Classification performance of hemangiosarcoma detection using machine learning algorithms and feature selection.

Pre-operative sample Pre- and post-operative samples

SVM FS Peaks, valleys and
main peak of dog

Peaks and valleys of
human (14)

SVM FS Peaks, valleys and
main peak of dog

Peaks and valleys of
human

ABC 0.9010 0.8667 0.8963 0.8516 0.8080 0.7821

BC 0.9123 0.8574 0.8929 0.8757 0.8240 0.8015

ETC 0.9070 0.9071 0.9025 0.8679 0.8386 0.8149

GBC 0.9082 0.8769 0.8577 0.8500 0.8260 0.7817

RF 0.9195 0.8714 0.8943 0.8836 0.8231 0.8205

SVM 0.8927 0.9204 0.9345 0.8996 0.8840 0.8820

XGBoost 0.8772 0.8571 0.8880 0.8759 0.8075 0.8017

The table values represent AUC, and Accuracy, Sensitivity, and Specificity are provided in Supplementary Table 4. FS, feature selection; ABC, AdaBoost Classifier; BC, Bagging Classifier; ETC,

Extra Trees Classifier; GBC, Gradient Boosting Classifier; RF, Random Forest; SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting.

This demonstrates the method’s potential applicability and

precision in a clinical setting.

4 Discussion

Cancer remains a leading cause of mortality among canines,

with hemangiosarcoma standing out as a notably aggressive form

that predominantly affects organs like the liver, spleen, and heart.

Often, by the time of its diagnosis through traditional tissue biopsy,

the cancer has advanced significantly, underscoring the urgent need

for earlier detection methods. In human oncology, considerable

efforts are underway to identify reliable tumor markers for early

diagnosis and prognosis, with cell-free DNA (cfDNA) emerging as

a promising non-invasive diagnostic tool. This approach allows for

cancer detection and monitoring through simple blood samples,

circumventing the discomfort and risk associated with surgical

biopsies. Drawing inspiration from human medical research, our

study probes the utility of cfDNA as a potential tumor marker

for canine cancer diagnostics. By analyzing the size distribution

of cfDNA fragments through Whole Genome Sequencing (WGS)

data, we aimed to discern distinct patterns between healthy and

hemangiosarcoma-afflicted dogs.

Our investigation sought to determine if cell-free DNA

(cfDNA) could be utilized as a biomarker for diagnosing,

screening, and monitoring cancer in dogs, analogous to its

application in human oncology. We conducted a pattern analysis

focused on quantifying fragment sizes within cfDNA WGS data

to achieve this. This analysis aimed to discern the variances

in the distribution of fragment sizes between healthy canine

samples and those afflicted with hemangiosarcoma, as depicted

in Figure 2. Through this comparative approach, we aimed

to identify distinct patterns that could potentially serve as

indicators for the presence of hemangiosarcoma, thereby evaluating

the feasibility of cfDNA as a non-invasive diagnostic tool in

veterinary medicine.

Following the pattern analysis, we identified specific fragment

sizes that exhibited notable differences between the control

Frontiers in Veterinary Science 06 frontiersin.org

https://doi.org/10.3389/fvets.2024.1489402
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ko et al. 10.3389/fvets.2024.1489402

group and hemangiosarcoma-afflicted samples. Leveraging these

distinct sizes, we employed machine learning techniques—

specifically, Support Vector Machine (SVM)—to classify

hemangiosarcoma. This approach was not limited to canine

data; we also incorporated fragment sizes identified in human

studies to enhance our classification model, thereby exploring the

cross-species applicability of cfDNA fragment sizes as biomarkers

for cancer detection. In addition to fragment size analysis, our

study delved into detecting copy number alterations (CNAs)

associated with hemangiosarcoma. To accomplish this, we utilized

modified versions of the ichorCNA and WisecondorX algorithms

tailored to our specific research needs. This comprehensive

approach allowed us to identify and analyze CNAs that occur

in hemangiosarcoma, contributing further to our understanding

of the genetic underpinnings of this aggressive cancer in dogs.

By integrating machine learning for fragment size classification

and CNA analysis, our study aims to advance the diagnostic

capabilities for hemangiosarcoma, potentially paving the way for

early detection and more effective treatment strategies.

Our research aligns with existing studies on human cfDNA,

demonstrating that the primary peak in healthy individuals

typically measures around 167 base pairs (bp), contrasting with

the shorter peak of ∼163 bp observed in cancer patients. Similarly,

our findings in canine subjects revealed a similar pattern: healthy

dogs exhibited a main peak at 165 bp, whereas dogs with

hemangiosarcoma showed a reduced peak length at 160 bp. This

suggests a conservedmechanism influencing cfDNA fragmentation

in both species in the context of cancer. Leveraging machine

learning for data analysis, particularly employing the Support

Vector Machine (SVM) model to focus on these significant peaks

and valleys, yielded notable diagnostic accuracy. The model’s

performance was particularly effective when applying the SVM

to the specific peaks and valleys characteristic of human cfDNA,

achieving an AUC of 0.93, with sensitivity and specificity rates of

0.88 and 0.98, respectively. Utilizing canine-specific peaks, valleys,

and main peak positions for classification also produced promising

results, albeit slightly lower, with an AUC of 0.92, and sensitivity

and specificity of 0.87 and 0.96.

Interestingly, including post-operative samples in our machine

learning analysis diminished performance metrics, potentially

reflecting a post-surgical reduction in disease burden rather than an

improvement in the dogs’ prognoses. This observation underscores

the need for additional research incorporating a more extensive

set of samples for monitoring purposes to interpret these findings

more accurately. Reflecting on the broader implications of our

study, the successful application of fragment size distribution

and machine learning in the screening of hemangiosarcoma in

dogs opens the door to the potential use of this methodology

in other canine cancers. Given the ongoing research into cfDNA

for cancer screening in humans, our results advocate for further

exploration into the application of this non-invasive diagnostic

tool across various cancer types in dogs, highlighting the value

of cross-species insights in advancing cancer detection and

treatment strategies.

In our exploration of the genetic landscape of canine

hemangiosarcoma, we focused on identifying copy number

alterations (CNAs) within genes previously associated with the

disease, including CDKN2A/B, VEGFA, KDR, SKI, MYC, and

KIT. A comprehensive CNA analysis identified genomic alteration

patterns, revealing gains in 12 chromosomes and losses in

13 chromosomes. Notably, chromosomes 14 and 16 displayed

both gains and losses, indicating significant overlapping events.

However, further research is required to determine if these gains

and losses are spatially separated within the same chromosome.

Among the genes historically linked to hemangiosarcoma,

alterations in CDKN2A/B, KDR, MYC, and KIT were prominently

identified in our study, underscoring their potential roles in the

pathogenesis of this cancer in dogs. The detection of KDR gains

is particularly intriguing, given its documented involvement in

human angiosarcoma, suggesting a possible conserved oncogenic

pathway between species. However, our analysis also encountered

limitations due to the sequencing depth, which hindered the

accurate identification of specific mutations beyond CNAs that are

known to be associated with hemangiosarcoma. This limitation

highlights the necessity for further research employing more

extensive WGS data. Notably, the work of Megquier et al.

(37) illustrates the importance of such detailed genetic analysis,

revealing significant CNA variations on chromosome 31 influenced

by the presence or absence of PIK3CA mutations. This finding

adds another layer of complexity to the genetic underpinnings

of hemangiosarcoma. Our findings emphasize the need for more

profound, more comprehensive genomic studies to fully elucidate

the array of genetic mutations and CNAs driving hemangiosarcoma

in dogs. Such research will enhance our understanding of the

disease’s molecular basis and pave the way for developing more

effective diagnostic tools and therapeutic strategies, potentially

benefiting both veterinary and comparative oncology.

Our study reveals that the patterns observed in canine cell-

free DNA (cfDNA) closely mirror those seen in humans, marking

a significant stride in the quest for reliable cancer biomarkers.

Specifically, we identified discernible differences in the distribution

of cfDNA fragment sizes between healthy dogs and those afflicted

with hemangiosarcoma. These variances, illuminated through the

lens of machine learning analysis, underscore the potential of

cfDNA fragment size distribution as a viable tumor marker for

screening and ongoing cancer monitoring in canines. In this study,

significant discrepancies in sample sizes across stages, along with

the limited overall sample size, prevented us from conducting an

analysis on the impact and efficacy of the method at different

stages of the disease. Because biomarkers can be increased with

many states of disease and not only with cancer, the lack of

comparison with inflammatory or non-neoplastic disease as a

separate study group is an important limitation of this study.

Increases in test results in these cases will decrease the specificity

of this test. A future aim is to evaluate this test in the context

of infectious, inflammatory, and other disease states as well as in

other cancers. Additionally, although the CRP values for the normal

samples were all within the normal range, indicating a very low

likelihood of tumors or inflammatory conditions, further data or

experiments beyond physical examination, serum chemistry, and

CBC testing are needed to more rigorously validate the criteria

for normal samples. This parallel between canine and human

cfDNA patterns enhances our understanding of cancer’s molecular

underpinnings across species and solidifies the role of cfDNA

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2024.1489402
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ko et al. 10.3389/fvets.2024.1489402

analysis as a promising tool in the oncological arsenal. Given the

burgeoning interest in cfDNA as a non-invasive diagnostic medium

for various human cancers, our findings advocate for a broader

application of this approach within veterinary medicine. There is

a compelling need to extend cfDNA research to encompass a more

comprehensive array of canine cancers, thereby harnessing its full

potential for early detection, diagnosis, and monitoring, advancing

both human and veterinary oncology.

In conclusion, this study demonstrates the potential of cell-

free DNA (cfDNA) analysis as a non-invasive biomarker for the

early detection and monitoring of canine hemangiosarcoma. By

leveraging cfDNA fragment size distribution and copy number

alteration (CNA) patterns, combined with machine learning

models, we achieved high diagnostic accuracy, with an average

Area Under the Curve (AUC) of 0.93. These findings align

with similar patterns observed in human oncology, underscoring

a possible cross-species conservation of cfDNA fragmentation

in cancer. Furthermore, our CNA analysis identified significant

genomic regions linked to hemangiosarcoma pathogenesis, such as

alterations in CDKN2A/B, VEGFA, KDR, MYC, and KIT. Despite

these promising results, the study has limitations, including the

small sample size and the lack of a comprehensive assessment

across different cancer stages. Future research should expand

the sample size, investigate cfDNA patterns in other canine

cancers, and refine machine learning models for broader clinical

applicability. Overall, this study paves the way for integrating

cfDNA-based liquid biopsy techniques into veterinary oncology,

offering a minimally invasive and effective diagnostic tool for

early cancer detection and personalized treatment strategies

in dogs.
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