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Dogs are increasingly recognized as valuable large animal models for understanding 
human intestinal diseases, as they naturally develop conditions similar to those 
in humans, such as Enterohemorrhagic E. coli, Clostridium difficile infection, 
inflammatory bowel disease, and ulcerative colitis. Given the similarity in gut flora 
between dogs and humans, canine in vitro intestinal models are ideal for translational 
research. However, conventional extracellular matrix-embedded organoids present 
challenges in accessing the lumen, which is critical for gut function. This study 
aimed to investigate the feasibility of inducing polarity reversal and differentiation 
in canine apical-out colonic organoids (colonoids), evaluate their barrier integrity, 
and visualize host-pathogen interactions. Our results demonstrated successful 
polarity reversal and differentiation induction while maintaining barrier integrity. 
Polarity reversal allowed for enhanced observation of host-pathogen interactions, 
facilitating visual assessments and membrane integrity evaluations using both 
pathogenic and nonpathogenic E. coli. This process led to the downregulation 
of stem cell marker LGR5 and upregulation of intestinal epithelial cell marker 
ALPI, indicating differentiation. Further differentiation was observed with the 
use of a differentiation culture medium, resulting in significant upregulation of 
ALPI and goblet cell marker MUC2. The findings suggest that apical-out canine 
colonoids can serve as physiologic and valuable models for studying the pathogenic 
mechanisms and clinical significance of intestinal diseases in dogs. This model 
has the potential to advance both canine and human gastrointestinal research, 
enhancing our understanding of gastrointestinal physiology and pathology and 
aiding in the development of novel therapeutics.
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1 Introduction

Dogs are recognized as important large animal models for understanding human intestinal 
disease processes, as dogs naturally develop similar chronic intestinal diseases as humans, such 
as Enterohemorrhagic E. coli (EHEC) (1, 2), Clostridium difficile infection (3, 4), inflammatory 
bowel disease (IBD) and ulcerative colitis (5).

Organoids are promising in vitro models that can be established from isolated stem cells of 
the intestinal tissue biopsies and have been shown to consist of variable populations similar to 
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intestines in vivo (6). The one flaw for conventional extracellular 
matrix-embedded organoids is the difficulty in accessing their lumen, 
which plays a vital role in gut function. Polarity reversal is one technique 
enabling access to the apical border (7). The possibility of establishment 
and application of these apical-out enteroids are investigated in various 
animals, such as cattle (8), porcine (9, 10), and dogs (11). However, 
there is contradicting evidence on their characteristics, which might 
be attributed to the differences in species, protocol, and culture medium 
composition. A previous study that induced polarity reversal in canine 
intestinal organoids failed to show gene expression differentiation (11). 
In extracellular matrix-embedded intestinal organoids, multi-lineage 
differentiation was observed using a differentiation culture medium 
(DM) (12, 13). Therefore, the use of the differentiation culture medium 
in polarity-reversed intestinal organoids possibly induces multi-lineage 
differentiation as well. Moreover, as barrier integrity is essential for 
maintaining a healthy gut environment (14), the effect of the apical-out 
procedure should be  investigated. Furthermore, the exposure of its 
apical border will enable more physiological replication of host-
pathogen interactions, leading to further application to understand the 
gastrointestinal disease process.

Therefore, this study aims to investigate the feasibility of 
differentiation induction in canine apical-out colonic organoids 
(colonoids), evaluate their barrier integrity, and visualize the host-
pathogen interaction with infectious agents.

2 Materials and methods

2.1 Canine biopsy derived colonoid culture

In this study, intestinal biopsies were derived from healthy donors 
anesthetized for dental cleaning procedures. The donor population of 
1- to 12-year-old dogs with no history of chronic diseases affecting the 
gastrointestinal tract, heart, kidney, and liver was recruited. These dogs 
were comprehensively screened with physical and blood examinations 
as pre-anesthetic evaluations and deemed healthy other than dental 
diseases. This study was conducted with the approval of the Washington 
State University Institutional Animal Care and Use Committee (IACUC 
Approval: ASAF#6993). Colonoids were established and maintained as 
previously described (15). Briefly, colonoids were embedded in 30 μL of 
Matrigel (Corning, New  York, USA) on 48-well plates (Corning), 
incubated at 37°C for 10 min, and added with 300 μL of expansion 
medium. The basal medium consisted of Advanced Dulbecco’s Modified 
Eagle Medium (DMEM) /F12, 2 mM of Glutamax-I, 10 mM of 
N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid, 1x Penicillin/
streptomycin. The composition of the expansion medium was as 
follows; basal medium, 1x B27 supplement (provided from Gibco, 
Thermofisher Scientific, Massachusetts, USA), 10% (vol/vol) of Noggin 
Conditioned Medium, 20% (vol/vol) of R-Spondin-1 Conditioned 

Medium (made in the laboratory by culturing HEK293 cells), 100 ng/
mL of Recombinant Murine Wnt-3a, 50 ng/mL of murine Epidermal 
Growth Factor, 100 μg/mL of Primocin (derived from PeproTech, 
Thermofisher Scientific, Massachusetts, USA), 10 nM of gastrin 
I  human, 500 nM of A 83–01, 10 μM of SB202190, 10 mM of 
Nicotinamide (Sigma Aldrich, Missouri, USA), 1 mM of N-Acetyl-L-
Cysteine (MP Biomedicals, Southern California, USA), 1x N2 Max 
Media supplement (R&D Systems, Minnesota, USA). For the first 2 days 
after passaging, 10 μM of Y-27632 and 2.5 μM of CHIR 99021 (Stem 
Cell Technologies, Vancouver, Canada) were added to the medium.

2.2 Polarity reversal and differentiation of 
colonoids

Apical-out canine colonoids were established according to the 
previous reports that established apical-out organoids from the human 
intestine (16). Briefly, the colonoids were harvested 4 days after 
passage, suspended and cultured in 5 mM of 
ethylenediaminetetraacetic acid (EDTA)-phosphate-buffered saline 
(PBS) for an hour on a rotating platform, centrifuged and removed 
EDTA, washed with the basal medium, and resuspended to the 400 μL 
of desired medium to a 24-well ultra-low-attachment plate (Corning, 
New  York, USA). One well of Matrigel-embedded colonoids was 
suspended to three wells of floating colonoids. The number of 
colonoids was counted and confirmed as not exceeding 500 colonoids/
well. Twelve hours after resuspension, floating colonoids were 
dislodged by pipetting to prevent sticking to each other. To clarify the 
effect of the different culture conditions on gene expression, apical-out 
colonoids were cultured either in the expansion medium (EM) or 
differentiation medium (DM) (Figure 1A). According to the previous 
report, DM was prepared as an EM without Wnt-3a, nicotinamide, 
and SB202190 (12). The medium was changed every other day.

2.3 Immunofluorescent staining

Colonoids were fixed with 4% paraformaldehyde (PFA) for 
30 min at room temperature and washed with PBS. The sample was 
permeabilized with 0.3% Triton™ X-100 (Sigma Aldrich, Missouri, 
USA) in PBS for 10 min at room temperature and washed with 
PBS. The sample was incubated with 2% bovine serum albumin (BSA) 
for an hour to prevent unspecific binding of antibodies. When 
indicated, colonoids were incubated with 1:50 anti-chromogranin A 
antibody (ab45179, Abcam, Cambridge, United  Kingdom) for 
enteroendocrine cells and 1:100 Sambucus nigra lectin; SNA (Vector 
Laboratories, California, USA) for mucus overnight at 4°C, washed 
with PBS, and then treated with 1:1000 Alexa Fluor 555-conjugated 
Goat Anti-Rabbit IgG H&L secondary antibody (Abcam) for an hour 
at room temperature, followed by another wash with PBS. Colonoids 
were incubated with 1:400 phalloidin (Alexa Fluor™ 647 Phalloidin) 
for actin filaments and 1:1000 diamidino-2-phenylindole (DAPI) for 
nuclear staining (Invitrogen, Thermo Fisher Scientific, Massachusetts, 
USA) for 30 min at room temperature and washed. Colonoids were 
suspended in ProLong™ Gold Antifade Mountant (Invitrogen) onto 
the Glass Bottom Culture Dishes (Matsunami Glass, Osaka, Japan) 
and imaged using TCS SP8 X White Light Laser Confocal Microscope 
(Leica, Wetzlar, Germany). Images were processed with LAS X 

Abbreviations: EM, expansion medium; DM, differentiation medium; LGR5, leucine-

rich repeat-containing G protein-coupled receptor 5; ALPI, intestinal alkaline 

phosphatase; MUC2, mucin 2; CHGA, chromogranin A; SNA, Sambucus nigra 

lectin; EHEC, enterohemorrhagic Escherichia coli O157:H7; E. coli, Escherichia 

coli; fluorescein isothiocyanate; FITC, fluorescein isothiocyanate; Apical-DM, 

apical-out colonoids cultured in DM; Apical-EM, apical-out colonoids 

cultured in EM.
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software (Leica). The number of polarity reversed cells was counted 
96 h after the polarity reversal under the confocal microscope and 
considered apical-out if F-actin was aligned outside and mixed if 
F-actin alignment was observed both outside and inside. The 
percentage of staining positive cells was calculated by dividing the 
number of positive cells by the total number of nuclei. This experiment 
was conducted using three biological replicates.

2.4 Reverse transcription-quantitative 
polymerase chain reaction

After 96 h of culture in EM or DM, colonoids were collected and 
washed with PBS. A time point of 96 h was chosen based on previous 
reports (13, 17). Total RNA was isolated using an RNeasy Mini Kit 
(Qiagen, Hilden, Germany). cDNA was synthesized using the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 
Thermo Fisher Scientific, Waltham, Massachusetts, USA) with the 
C1000 Touch Thermal Cycler (Bio-Rad Laboratories, California, 
USA). The quantitative polymerase chain reaction (qPCR) was 
conducted using PowerUp SYBR Green Master Mix (Applied 
Biosystems) with the CFX96 Touch Real-Time PCR Detection System 
(Bio-Rad Laboratories). Gene expression levels of the following 
marker genes were evaluated: leucine-rich repeat-containing G 
protein-coupled receptor 5 (LGR5), intestinal alkaline phosphatase 
(ALPI), mucin 2 (MUC2), and chromogranin A (CHGA). 
Hydroxymethyl-bilane synthase (HMBS) and Succinate 
dehydrogenase complex subunit A (SDHA) were selected as internal 
references (18). The relative quantity of each gene was calculated using 
the standard curve method and normalized with the internal reference 

genes as previously described (19). The primers used in this study are 
listed in Supplementary Table S2 (13, 18, 20, 21). This experiment was 
conducted using three biological replicates and three technological 
replicates, and each sample was examined in duplicate for qPCR, and 
the mean values were used for analysis.

2.5 Dextran diffusion barrier integrity assay

The barrier integrity was assessed in accordance with the previous 
report (16). After 96 h of polarity reversal and subsequent culture in 
DM, colonoids were collected and pelleted at 300 g for 1 min. To make 
the barrier-disrupted model a positive control, apical-out colonoids 
were treated with 2 mM EDTA for 15 min on ice. After treatment, 
colonoids were washed with basal medium and resuspended to 100 μL 
of 2 mg/mL 4 kDa fluorescein isothiocyanate (FITC)-dextran (Sigma-
Aldrich). After 5 min, 90 μL of FITC-dextran supernatant was 
removed, and 10 μL of the remaining bottom FITC-dextran was 
transferred to a well marked using a PAP pen on a glass microscope 
slide. To avoid crushing colonoids when putting the coverslip, grease 
spots were loaded on the slide in a way consistent with the four 
corners of the coverslip. After preparation, confocal images were 
immediately obtained using the EVOS FL Fluorescence Microscope 
(Advanced Microscopy Group, Washington, USA). FITC intensity of 
colonoids was measured by tracing its outline and normalized divided 
by intensity outside in order to reduce background discrepancies and 
enable more accurate comparison of FITC intensities across samples 
[three data points averaged; (22)] using ImageJ version 2.14.0. 
Therefore, the low FITC permeability ratio means low permeability. 
This experiment was conducted using three biological replicates.

FIGURE 1

Development and characterization of the canine apical-out colonoids. (A) A schematic for polarity reversal of colonoids. (B) The percentage of apical-
out colonoids (Apical, white box) and colonoids with mixed polarities (Mix, gray box) under confocal microscopy at 96 h (n = 3, each). Data is shown as 
mean ± standard error of the mean (SEM). 40–60 randomly selected organoids in each biological replicate were counted and classified as apical-out, 
basal-out, or mixed polarity. (C) Representative images from the phase-contrast microscope at 24 and 96 h. Scale bar = 25 μm. (D) Confocal 
microscopy images of an apical-out colonoid and Matrigel-embedded colonoid at 96 h with visualization of apical brush borders (F-actin, red) and 
basal nuclei (DAPI, blue). Scale bar = 10 μm.
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2.6 Escherichia coli infection

A wild strain of Enterohemorrhagic Escherichia coli O157:H7 
(EHEC) derived from bovine feces was used as clinical isolates of 
canine were unavailable (23). A nonpathogenic strain of Escherichia 
coli (E. coli) tagged with YFP, MC4100, was used as an E. coli infection 
control, which was generously provided by Dr. Roy Kishony (Harvard 
Medical School, Massachusetts, USA). E.coli were incubated overnight 
in Luria-Bertani broth at 37°C on shaking at 200 rpm, then diluted 
1:10 and subcultured for 1.5 h. Bacteria were harvested, washed with 
PBS, and resuspended to 1.0 × 108 CFU/mL in DM without antibiotics. 
After 96 h of polarity reversal and subsequent culture in DM, 
colonoids were harvested and washed with basal medium without 
antibiotics, resuspended to the bacteria-containing DM, and 
incubated at 37°C for 4 h. Before immunofluorescence staining and 
the FITC-dextran assay, colonoids were washed with PBS once. This 
experiment used three biological replicates.

2.7 Statistical analysis

The gene expression levels between apical-out colonoids and 
Matrigel-embedded basal-out colonoids and within apical-out 
colonoids cultured in different mediums (EM or DM) were compared 
using the Willcoxon rank-sum test, followed by Bonferroni correction. 
Results were shown as mean ± standard error of the mean (SEM). The 
FITC-dextran assay data was also compared using the Willcoxon 
rank-sum test, followed by Bonferroni correction when comparing 
three groups. p < 0.05 were considered statistically significant 
differences. Graphs were produced using Prism (10.2.1) (GraphPad 
Software, San Diego, California, USA), and statistical analysis was 
conducted using R version 4.0.2.

3 Results

3.1 Development and characterization of 
the canine apical-out colonoids

Colonoids cultured in a suspension with an ultra-low-attachment 
plate (Figure 1A) showed morphological changes. The percentage of the 
completely polarity-reversed colonoids was counted 96 h after the 
polarity reversal using the confocal microscope. Over 93% of colonoids 
were counted as apical-out colonoids in both EM and DM (Figure 1B). 
Under phase-contrast microscopy, the cell borders of columnar cells 
were more prominent, and these colonoids lacked an apparent lumen, 
contrary to the Matrigel-embedded colonoids with an obvious central 
lumen. The change started as early as 24 h following the 5 mM EDTA/
PBS treatment (Figure 1C). Immunofluorescence staining demonstrated 
that F-actin was expressed on the outer surface, which confirmed the 
successful polarity-reversal of canine colonoids (Figure 1D).

3.2 Gene expression analysis and 
immunocytochemistry

To investigate the effect of differentiations by polarity reversal, 
gene expression levels of the following marker genes were evaluated 

between Apical-out colonoids (Apical) and basal-out colonoids 
(Basal): LGR5 (stem cells), ALPI (absorptive enterocytes), MUC2 
(goblet cells), and CHGA (enteroendocrine cells) (Figure  2A). In 
Apical, LGR5 was significantly downregulated (p < 0.001 both in EM 
and DM), and ALPI was significantly upregulated (p = 0.002 in EM, 
p < 0.001 in DM).

Furthermore, to clarify the effect of differentiations by the 
medium, these gene expressions were compared between Apical-out 
colonoids cultured in EM (Apical-EM) and Apical-out colonoids 
cultured in DM (Apical-DM). Apical-DM showed further 
downregulation of LGR5 (p = 0.002) and upregulation of ALPI 
(p < 0.001) compared to Apical-EM. In addition, upregulation of 
MUC2 was observed in Apical-DM (p = 0.005). A significant 
difference was not observed in CHGA in either comparison. 
Immunofluorescence of Sambucus nigra lectin (SNA) and CHGA 
revealed the goblet cell and enteroendocrine cell differentiation of 
Apical (Figure  2B). The percentage of CHGA-positive and 
SNA-positive cells were 31.5 ± 6.80 and 33.6 ± 7.64%, respectively 
(Supplementary Figure S1).

3.3 Dextran diffusion barrier integrity assay

A barrier integrity assay was conducted to assess whether 
Apical-DM maintained functional tight junctions. EDTA-treated 
Apical-DM served as a model for disrupted barrier function. 
Untreated Apical-DM (Control) maintained its spherical shape with 
a clear outline, with no fluorescent penetration observed in the 
control group, unlike the EDTA-treated group (Figure 3A). The 
FITC permeability ratio was significantly lower in the control group 
compared to the EDTA-treated Apical-DM (p < 0.001), indicating 
that untreated colonoids maintained their barrier integrity 
(Figure 3B). Immunofluorescence images of the control and EDTA-
treated group are shown in Supplementary Figure S2, and 
disruption of the membrane was observed in the EDTA-
treated group.

3.4 Host–pathogen interaction

The immunofluorescence image demonstrated nonpathogenic 
E. coli attachment to the apical surface (Figure  4A). A barrier 
integrity assay was further conducted to determine whether 
pathogenic EHEC infection for 4 h could cause infection and barrier 
disruption in Apical-DM. Representative images of Apical-DM 
infected with nonpathogenic E.coli or EHEC are shown in 
Figure 4B. EHEC-infected Apical-DM showed a significantly higher 
FITC permeability ratio compared to nonpathogenic E. coli-infected 
Apical-DM (p < 0.001; Figure 4C), demonstrating EHEC-induced 
barrier disruption in Apical-DM as reported previously in other 
models (23, 24). Nonpathogenic E. coli showed a higher FITC 
permeability ratio than the control (p < 0.001). 
Supplementary Figure S3 presents immunofluorescence images of 
control, nonpathogenic E. coli-infected, and EHEC-infected 
Apical-DM. Cell membrane disruption was observed exclusively in 
EHEC-infected samples, with DAPI nuclear staining showing free 
cells detached from the organoid structure (Supplementary Figure S3, 
white arrows).

https://doi.org/10.3389/fvets.2024.1483421
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Yoshida et al. 10.3389/fvets.2024.1483421

Frontiers in Veterinary Science 05 frontiersin.org

4 Discussion

This study demonstrated successful polarity reversal and 
differentiation induction while maintaining barrier integrity. 
Additionally, the polarity reversal facilitated the observation of host-
pathogen interactions, allowing for visual assessments and membrane 
integrity evaluations using both pathogenic and nonpathogenic E. coli.

In this study, polarity reversal resulted in the downregulation of 
stem cell markers LGR5 and the upregulation of intestinal epithelial 
cell marker ALPI. This finding aligns with a previous report on porcine 
organoids, which showed significant downregulation of LGR5 and 
upregulation of ALPI following polarity reversal (10). However, this 
trend was not observed in another study involving canine intestinal 
organoids (11). Similar to findings with basal-out intestinal organoids 
(25, 26), optimizing media conditions for apical-out organoids could 
effectively promote differentiation into specific intestinal epithelial cell 
lineages of interest. Compared to the previous study using canine 
apical-out intestinal organoids (11), the composition of the culture 
medium may have influenced the outcomes (Supplementary Table S3).
Moreover, further successful cell differentiation with our 
differentiation medium was observed, marked by significant 
upregulation of ALPI and the goblet cell marker MUC2. As noted, the 
composition of the culture medium significantly impacts organoid 
differentiation (12). Our differentiation medium, formulated based on 
these findings, effectively induced enterocyte and goblet cell 
differentiation. Furthermore, the percentages of enteroendocrine cells 
(27) and goblet cells (28) were similar to previous publications in 

human and dog colons, which indicates that Apical-DM reproduces 
the in vivo cell populations. Our protocol for inducing further 
differentiation of apical-out colonoids will help us better mimic the 
physiological intestine, enhancing its role as an in vitro model (13, 29).

As shown in Figure 4A, the current study successfully visualized 
the attachment of E.coli to the apical surface of canine colonoids. The 
critical feature of bacterial infection is host-pathogen interaction with 
the intestinal epithelium, especially interaction with host actin, which 
has been proven using enteropathogenic and enterohemorrhagic 
E. coli (30). Reversing polarity to expose the apical surface enables 
more physiological replication of host-pathogen interactions, 
providing a model that better mimics natural infection processes. This 
approach can significantly enhance our understanding of the 
pathogenic mechanisms underlying infectious diseases.

We demonstrated that apical-out colonoids maintained their 
essential barrier function, which is characteristic of a healthy intestine. 
This barrier integrity was shown to be disrupted by the infection of a 
pathogenic strain of E.coli, which is consistent with the previous 
reports (31, 32). Notably, the FITC permeability ratio was higher in 
Apical-DM infected with nonpathogenic E. coli compared to the 
control group, indicating that nonpathogenic E. coli also induced 
barrier disruption, although its effect was less significant than that of 
EHEC. Similar findings were observed in a previous study with 
human intestinal organoids, where infection with a commensal strain 
of nonpathogenic E. coli resulted in reduced barrier function and 
reactive oxygen species production, albeit to a lesser extent than 
EHEC infection (33).

FIGURE 2

Characterization of apical-out colonoids. (A) Comparison of relative gene expression levels of the following markers: LGR5 (stem cells), ALPI (Intestinal 
epithelial cells), MUC2 (goblet cells), and CHGA (enteroendocrine cells) of apical-out colonoids in EM (white box) versus DM (gray box). Data is shown 
as mean ± SEM. p < 0.05 was considered statistically significant using the Willcoxon rank-sum test, followed by Bonferroni correction. *p < 0.05; 
**p < 0.01, ***p < 0.001. (B) Confocal microscopy images of apical-out colonoids at 96 h in DM with visualization of apical brush borders (F-actin, red) 
and basal nuclei (DAPI, blue), chromogranin A (CHGA, yellow), and Sambucus nigra lectin (SNA, green). Scale bar = 10 μm.
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Dogs can naturally develop IBD, which is different from other 
potential model animals like pigs and mice (34). IBD is a complex 
disorder, and susceptibility genes, epithelial barrier function, 
immune responses, and commensal bacteria and pathogens seem to 
play roles in the development of IBD (35). Some pathogenic 
processes, such as having genetic variants of Nucleotide 
Oligomerization Domain Two (36, 37), single nucleotide 
polymorphism in major histocompatibility complex (38, 39), 
upregulation of Toll-like receptors 2 and 4 (40, 41) were observed in 
both human and canine IBD patients. Also, dog gut microbiome is 
closer to human gut microbiome than pigs and mice (42), and these 
microbiomes are also considered important in the development of 
IBD both in humans and dogs. These features make dogs a 
substantial, large animal model for translational research.

In this study, E. coli MC4100 was used as a nonpathogenic strain. 
MC4100 was constructed by transposing the lacZ genes to the E. coli 
K-12 strain (43). Originally isolated from a human convalescent 
diphtheria patient in 1922 (44), E. coli K-12 is a well-established 
benign laboratory strain devoid of known virulence factors (45, 46) 
and has been used across various species, including humans, mice, 
cattle, and birds (47–50). In canine colonoids, MC4100 showed 
distinct effects on barrier integrity compared to pathogenic EHEC 
(51) (Figure  4). While MC4100 has undergone genetic deletions 
compared to other K-12 derivatives (52, 53), no acquisition of 
virulence factors has been reported. Therefore, it was used to serve as 
a nonpathogenic control in this study.

EHEC has been shown to cause acute diarrhea in dogs, with 
watery or mucoid stools and vomiting, and can result in fatal 

FIGURE 3

The evaluation of barrier integrity using FITC-dextran assay at 96 h. (A) Representative image of untreated Apical-DM and EDTA-treated Apical-DM. 
Scale bar = 50 μm. (B) FITC permeability ratio of untreated (Control, white dots) and EDTA-treated Apical-DM (black dots). The median is shown as a 
horizontal line. For image acquisition, randomly selected 6–15 fields were used in each biological replicate. p < 0.05 was considered statistically 
significant using the Willcoxon rank-sum test. ***p < 0.001.

FIGURE 4

Host-pathogen interaction. (A) A representative confocal microscopy image of apical-DM infected with nonpathogenic E. coli (YFP-tagged, green) 
with visualization of apical brush borders (F-actin, red) and basal nuclei (DAPI, blue). Scale bar = 10 μm. (B) In barrier integrity assay, representative 
images of apical-out colonoids infected with nonpathogenic E. coli or EHEC. Scale bar = 50 μm. (C) FITC permeability ratio of untreated (Control, 
white dots), apical-out colonoids infected with nonpathogenic E. coli (gray dots), or EHEC (black dots). The median is shown as a horizontal line. For 
image acquisition, randomly selected 6–12 fields were used in each biological replicate. p < 0.05 was considered statistically significant using the 
Willcoxon rank-sum test. ***p < 0.001.
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hemorrhagic diarrhea in critically ill patients (2, 54). The clinical 
similarities between EHEC infections in humans and dogs (55) 
highlight the relevance of studying EHEC pathogenicity in canine 
models. In this study, we  used a cattle-sourced EHEC isolate, 
recognizing that canine-derived isolates might produce different 
results. However, as cattle are the primary reservoirs of EHEC, bovine 
isolates have been implicated in canine outbreaks, particularly in dogs 
consuming raw meat. This route of transmission mirrors human 
infections, often linked to contaminated dairy or meat products 
(1, 56). Thus, we considered a bovine isolate to be a reasonable choice 
for modeling natural EHEC transmission in dogs.

Although EHEC is considered to be an important pathogen in 
dogs, epidemiological data indicated that Enteropathogenic E. coli 
(EPEC) is more commonly found in dogs than EHEC. For instance, a 
study showed the prevalence rate of EPEC was 41% in dogs with 
diarrhea and 6% in healthy household dogs, while EHEC probe-
positive isolates were not found in this study (57). Also, cases of acute 
gastroenteritis of EPEC infection have been reported in dogs (58). 
This prompts the question of whether host-specific factors influence 
susceptibility to EHEC infection. Comparing gene expression 
responses in human and canine colonoids following EHEC infection 
could help elucidate why humans are generally more susceptible to 
EHEC, whereas dogs are more frequently affected by EPEC.

Segment-specific organoids are powerful tools for studying GI 
pathogens like EPEC and EHEC, as they replicate unique cellular and 
physiological traits of each intestinal region (59). For example, small 
intestinal organoids (enteroids) allow precise modeling of EPEC’s 
disruption of tight junctions and nutrient, water, and solute 
absorption, which leads to osmotic diarrhea (60). Conversely, large 
intestinal organoids (colonoids) enable studies of EHEC’s toxin-
mediated damage to colonic epithelium and vasculature, leading to 
hemorrhagic colitis (61). This segmentation in organoid technology 
enables pathogen studies that closely mimic disease processes in 
specific gastrointestinal regions. Canine small intestinal (duodenal, 
jejunal, ileal) organoids have already been established (6) and are also 
stably utilized in our laboratory. Additionally, a previous study 
established jejunal apical-out enteroids (11), although gene multi-
lineage differentiation was not observed. In human basal-out 
enteroids, differentiation medium without Wnt3a, nicotinamide, and 
SB202190 also led to multi-lineage differentiation (62), similar to 
colonoids (12). Using the same methodology in the current study, 
canine apical-out enteroids with multi-lineage differentiation could 
be established, accelerating the understanding of the segment-specific 
pathophysiology of pathogens and distinct host-pathogen interactions 
that are specific or similar between hosts and species.

This study did not include gene expression analysis following E. coli 
infection. Different species and pathogens exhibit unique molecular 
mechanisms of pathogenicity (63, 64). In human intestinal organoids, 
gene expression analysis has shown pathogen-specific inflammatory 
responses. For example, EHEC-infected colonoids show upregulated 
inflammatory genes, including IL-8, compared to non-pathogenic 
E. coli-infected organoids (33). Conversely, Salmonella strains induce 
distinct responses: S. typhi downregulates pro-inflammatory signaling, 
S. typhimurium suppresses cell cycle and metabolic pathways, while 
S. enteritidis upregulates them (65). We anticipate that future studies 
with canine apical-out organoids will similarly demonstrate pathogen- 
and species-specific host-pathogen interactions. This study established 
apical-out colonoids with multi-lineage differentiation. These apical-out 

intestinal organoids are excellent models for infectious diseases and 
subsequent gene expression analysis, and they would have laid the 
foundation for future studies to accelerate our understanding of the 
molecular mechanism in infectious diseases.

Another culture method to address the limitation of conventional 
basal-out organoids is organoid-derived monolayer culture. This 
method has several advantages. It enables the access and manipulation 
of both apical and basal surfaces and a better assessment of epithelial 
barrier function and permeability (66). However, developing a 
monolayer is labor-intensive; it requires multiple steps and time to 
establish, dissociating organoids to single cells and seeding onto 
culture inserts. It requires several days for maturation. Therefore, 
apical-out organoids are considered less complex, alternative methods 
to access the apical side.

One limitation of this study is that intestinal membrane integrity 
was assessed indirectly using the FITC-dextran assay. The FITC 
permeability ratio quantified permeability changes, confirming barrier 
integrity in non-treated apical-out colonoids compared to EDTA-
treated ones, but it did not directly verify fully intact tight junctions. 
In future studies, membrane integrity could be more directly evaluated 
in monolayer cultures, where the flat, single-cell layer structure 
enables more precise assessment of tight junctions and barrier 
function (67).

This study stably obtained apical-out canine colonoids and 
observed significant gene expression differentiation using a 
differentiation medium. Furthermore, these colonoids maintained 
their barrier integrity and could replicate host-pathogen interaction. 
Differentiated apical-out canine colonoids will accelerate both canine 
and human gastrointestinal research, enhancing our understanding of 
gastrointestinal physiology and pathology and helping the 
development of novel therapeutics.
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