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Heat stress poses a substantial challenge to poultry production worldwide, highlighting 
the urgent need for effective management strategies. This study investigated the 
efficacy of probiotics (Saccharomyces cerevisiae) and ascorbic acid as antistress 
agents using cloacal and body surface temperatures (CT and BST) as heat stress 
biomarkers in broiler chickens. A total of 56 broiler chicks were used for the 
experiment and were divided into four distinct groups: control, probiotics (1  g/
kg of feed), ascorbic acid (200  mg/kg of feed) and the combination of probiotics 
and ascorbic acid (1  g/kg and 200  mg/kg of feed, respectively). The study lasted 
35  days; measurements were taken for ambient temperature (AT), CT, and BST. 
The ambient temperature in the pens consistently exceeded the thermoneutral 
zone (TNZ) established for broiler chickens. The CT values for broiler chickens in 
the probiotic group were significantly lower (p  <  0.05) compared to the control 
group. Additionally, the BST values in the probiotic and probiotic  +  ascorbic acid 
groups were significantly lower (p  <  0.05) than those in the control group. The 
findings suggest that incorporating probiotics, with or without ascorbic acid, 
can effectively reduce CT and BST values in broiler chickens thereby, enhancing 
thermoregulation when compared to the control group. This implies that using 
probiotics in poultry diets may enhance health and growth performance, potentially 
leading to better feed efficiency and reduced reliance on antibiotics. Implementing 
these dietary strategies could improve the productivity and welfare of broiler 
chickens in commercial settings.
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1 Introduction

Agricultural systems around the globe are increasingly facing negative consequences 
due to climate change. This is manifested in rising global temperatures and changing 
weather patterns (1). According to Sundstrom et  al. (2), heightened temperatures, 
unpredictable rainfall, prolonged droughts, and more frequent extreme weather events 
pose significant threats to food production and security. These alterations disrupt the 
delicate balance of ecosystems, affecting the growth, development, and productivity of 
crops and livestock (3). In particular, high ambient temperatures during the summer 
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months often lead to heat stress in broiler chickens (4, 5). This issue 
has intensified due to both geographical factors and the wider 
impacts of global warming, making it a critical concern in poultry 
production (6, 7). The thermoneutral zone (TNZ) refers to the 
range of environmental temperatures in which broilers can 
maintain a balance between evaporative heat loss and metabolic 
heat production, ensuring their comfort and health (8). When 
temperatures exceed this zone, the welfare of broilers can deteriorate 
significantly. In tropical and subtropical regions, the combination 
of high relative humidity and elevated temperatures creates 
substantial challenges for effective broiler management (3). 
Increased temperatures and humidity can lead to heat stress, 
adversely affecting the growth performance and overall efficiency 
of broiler chickens (9, 43).

Although broilers in temperate climates typically thrive in 
intensive farming systems with controlled microclimatic conditions, 
this is not always true in less developed regions, where broiler farming 
depends on natural ventilation and open-sided housing (10). These 
conditions make broilers more susceptible to heat stress (11). Cloacal 
temperature (CT) is a valuable physiological marker for assessing heat 
stress, reflecting the core body temperature of the birds (12). 
Meanwhile, body surface temperature (BST) provides insight into how 
effectively broilers manage heat dissipation through mechanisms like 
vasodilation, which helps to release heat through the body’s surface 
(13). To combat the detrimental effects of thermal stress, dietary 
interventions can play a critical role (8, 14). Supplements with anti-
stress and antioxidant properties, such as probiotics and ascorbic acid, 
have shown promise in enhancing broiler productivity and resilience 
(6, 15, 16).

Probiotics are microorganisms that have the ability to fight certain 
pathogens within the gastrointestinal tract of chicken (17–19, 41). 
They are generally given as feed additives in sufficient amounts and 
highly beneficial effects have been noticed in the field (20). Certain 
bacterial and fungal species have presented promising results as 
efficient probiotics in both animals and chicken (21, 22). Yeasts like 
Saccharomyces cerevisiae are highly beneficial in stabilizing the gut 
microbiota along with reducing the risk of disease occurrence (23, 24). 
Probiotics, such as Saccharomyces cerevisiae play a crucial role in 
alleviating heat stress in broiler chickens through several mechanisms 
(25). Ascorbic acid, widely recognized as vitamin C, is a powerful 
antioxidant that plays a crucial role in protecting cells from oxidative 
stress caused by free radicals. Its potential benefits in managing heat 
stress, particularly in livestock and poultry, are well-documented (26). 
While probiotics and ascorbic acid offer distinct benefits, their 
effectiveness as anti-stress agents may vary based on dosage, 
administration method, and the specific conditions of the poultry 
environment (27–30). Their impact on the hypothalamic–pituitary–
adrenal axis has made them an effective agent for combating stress, 
leading to improved resilience and overall well-being by modulating 
the body’s stress response mechanisms. This study examined the 
effectiveness of probiotics (Saccharomyces cerevisiae) and ascorbic acid 
as agents to alleviate stress in broiler chickens. It utilized CT and BST 
as biomarkers for heat stress to assess their impact. To our knowledge, 
no research has evaluated the combined effects of the probiotic 
Saccharomyces cerevisiae and ascorbic acid in mitigating heat stress 
impacts on broiler chickens at the time this study was conducted. The 
objective of this study was to assess the anti-stress effects of both the 

probiotic and ascorbic acid in broiler chickens during the challenging 
summer months, using CT and BST as biomarkers for heat stress.

2 Materials and methods

2.1 Environmental conditions in the 
experimental sites

After the brooding period, the chickens were exposed to the 
challenging thermal conditions typical of the hot summer season in 
Pretoria, South Africa. These conditions were characterized by high 
relative humidity, exceeding 65–70%, and elevated ambient 
temperatures exceeding 18–26°C, which induced heat stress in 
chickens raised in tropical climates (6).

2.2 Experimental animals and management

Ceramic heaters set to 34°C were employed to provide the 
necessary warmth during the brooding period for the broiler chicks, 
which lasted 14 days. To maintain biosecurity, footbaths containing 
F10 Super Concentrate (Health and Hygiene (Pty) Ltd., Roodepoort, 
South Africa) at a dilution of 1:500 were provided. Additionally, all 
personnel were required to use designated footwear and clothing. 
Fifty-six chickens were used in this study and divided into four groups 
of 14. Group I served as the control, Group II received the probiotic, 
Group III was given ascorbic acid, and Group IV received both the 
probiotic and ascorbic acid. Probiotics and ascorbic acid were 
incorporated into the chickens’ feed from D1 to D35. They were 
administered at a dose of 1 g/kg of feed (31) and 200 mg/kg of feed 
(15), respectively both singly and in combination. Each broiler chicken 
was individually marked with color-coded markings and wing tags to 
ensure precise record-keeping.

2.3 Experimental measurements

2.3.1 Thermal environmental parameters
An electronic sensor (Hobo) was installed in the poultry pen to 

continuously monitor ambient temperature (AT) and relative 
humidity (RH). The chickens were brooded for 2 weeks at 34°C as 
earlier mentioned, after which they were exposed to the naturally 
occurring ambient conditions. On D21, D28, and D35 of the 
experiment, AT and RH measurements were recorded twice daily to 
capture the diurnal variations. The temperature-humidity index (THI) 
was calculated using the following formula:

THI = (1.8 × AT + 32) – (0.55–0.55 × RH) × [(1.8 × AT + 32)–58]
where THI = temperature-humidity index, AT = Ambient 

temperature (°C) and RH = Relative humidity (%) (6).

2.3.2 Cloacal and body surface temperature 
measurements

A digital clinical thermometer (Zhengzhou AiQURA Intelligent 
Technology Co., Ltd., China) was used to record CT on D21, D28 
and D35 of the study. These CT measurements were taken 
concurrently with recordings of AT and RH. For BST measurements, 
seven broiler chickens from each group were randomly selected on 
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D21, D28 and D35 of the study. Body surface temperature was 
assessed using an infrared thermometer (Rutland Industries, 
South Africa).

2.3.3 Calculation of convective and conductive 
heat loss

Sensible heat loss by convection and conduction to the 
environment in broiler chickens was calculated using a modified 
formula (32):

Qc = As × h (Ts − Tat)
Where:
Qc is conductive and convective heat loss;
As is the surface area of the bird (m2) (As = 3.86 × MC0.74);
MC is the body mass of the broiler chicken (kg);
hc is the heat transfer coefficient (hc = 0.336 × 4.184 × (1.46 + 

 √VAR × 100));
VAR is air velocity (VAR = 0);
Ts is the average surface temperature of birds (°C) and
Tat is the ambient temperature (°C).

2.4 Statistical analysis

The data were log transformed to achieve a normal distribution, 
which is essential for the validity of subsequent analyses. After the data 
were normalized, they underwent repeated measures analysis of 
variance (ANOVA), to determine differences between the means of 
the control and treatment groups. Tukey’s HSD test was employed, 
with significance set at 0.05. The analysis was performed using SPSS 
Statistics for Windows, Version 27 (Armonk, NY: IBM Corp).

3 Results

3.1 Ambient temperature and cloacal 
temperature responses

On D21, D28, and D35 of the study period, AT values exceeded 
the thermoneutral zone recommended for chickens (Table 1). On 
D21, the CT in the probiotic group was significantly lower 
(40.84 ± 0.05; p < 0.05) at 19:00 h which was the last reading for the day 
when compared to the control group (41.69 ± 0.18). Additionally, at 
7:00 h (which was the start of the procedure) of D35, the CT values 
recorded in the probiotic, ascorbic acid and the co-administered 
groups were significantly lower (40.36 ± 0.18; 40.97 ± 0.15 and 
41.01 ± 0.16, respectively; p < 0.05) than those for the control group 
(Table 2).

3.2 Body surface temperature (BST)

On D21, D28 and D35, broiler chickens in the probiotic, ascorbic 
acid and the co-administered groups exhibited significantly higher 
(p < 0.05) temperatures in the comb and wing due to heat dissipation 
to the surrounding. There was a significantly lower (p < 0.05) 
temperature in the foot, back and head of the broiler chickens in the 
treatment group in comparison with the control during the study 
(Table 3).

3.3 Convective and conductive heat loss

On D35 heat loss recorded in the treatment groups was 
significantly higher (p < 0.05) compared to the control group. During 
the morning period of the study, the THI remained within the 
thermoneutral zone (TNZ) (Figure 1). However, at noon and in the 
evening, although the THI exceeded the TNZ, there was a significant 
difference (p < 0.05) in heat loss between the probiotic group and the 
control group (Figures 2, 3). On D21, all recorded heat loss values 
were within the TNZ, indicated by the yellow zone, for broiler 
chickens. However, on days 28 and 35 of the study, the heat loss values 
exceeded the TNZ, falling into the red zone (Figure 4).

4 Discussion

The elevated CT values observed in the control group suggest that 
these birds experienced a decreased ability to cope with thermal stress 
as they aged. The lack of any intervention in this group likely 
contributed to the higher CT, especially noticeable during the 
afternoon and evening hours. This observation is consistent with 
Egbuniwe et al. (26), who reported increased CT in chickens deprived 
of betaine and ascorbic acid, indicating that such deficiencies impair 
the birds’ thermal regulation. In contrast, the probiotic-treated group 
exhibited significantly lower CT values, which can be attributed to the 
anti-stress properties of probiotic through its influence on the HPA 
axis. Yeast probiotics (Saccharomyces cerevisiae) have been shown to 
be effective anti-stress agents, improving broiler performance and heat 
tolerance when administered in appropriate doses during periods of 
thermal stress (6, 25). This finding supports Sugiharto et al. (33), who 
demonstrated that probiotics could modulate the adverse effects of 
increased metabolic heat production associated with higher body 
weight gains, thus enhancing heat dissipation in broilers. The lack of 
an additive effect on CT in the group receiving both probiotics and 

TABLE 1 Temperature and humidity indices on days 21, 28, and 35 of the 
study.

Time (h) DBT (°C) RH (%) THI

7:00 27.67 ± 0.33 

(27–28)

83.33 ± 2.19 

(79–86)

27.33 ± 0.32 

(26.7–27.7)

9:00 28.33 ± 0.33 

(28–29)

74.67 ± 2.19 

(72–73)

27.80 ± 0.31 

(27.4–28.4)

11:00 28.67 ± 0.33 

(28–29)

79.00 ± 0.00 (79) 28.27 ± 0.33 

(27.6–28.6)

13:00 33.33 ± 1.67 

(30–35)

81.67 ± 4.33 

(73–86)

32.80 ± 1.70 

(29.4–34.6)

15:00 34.00 ± 1.00 

(33–36)

84.00 ± 2.00 

(80–86)

33.40 ± 1.00 

(32.4–35.4)

17:00 31.33 ± 0.67 

(30–32)

80.00 ± 0.00 (80) 30.87 ± 0.64 

(29.6–31.6)

19:00 28.33 ± 0.33 

(28–29)

77.00 ± 2.00 

(73–79)

27.87 ± 0.27 

(27.6–28.4)

Overall 

mean ± SEM

30.24 ± 0.60 

(27–36)

79.95 ± 1.00 

(72–86)

29.76 ± 0.59 

(26.7–35.4)

RH, Relative humidity; DBT, Dry-bulb temperature; THI, Temperature-humidity index.
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ascorbic acid may suggest that the mechanisms through which these 
two treatments operate are overlapping or synergistic in a way that 
does not result in enhanced benefits when combined during this study. 
Additionally, the physiological responses of the chickens to heat stress 
might have reached a maximum threshold, preventing any additional 
effects from the combined treatment. Despite ascorbic acid’s role in 
reducing corticosterone levels through a negative feedback mechanism 
(15, 34), it did not demonstrate superior efficacy compared to the 
probiotic alone in mitigating thermal stress. This outcome suggests 
that while ascorbic acid can contribute to stress reduction, its impact 
may be  limited by factors such as the specific dose used, the 
bioavailability of the antioxidant, or the inherent variability in the 
susceptibility of broiler chickens to these treatments. Additionally, it 
is worth considering that the efficacy of antioxidants can be influenced 
by their interaction with other components of the diet and 
environmental conditions (35). The varying responses observed in this 
study highlight the need for further research to optimize the use of 
these agents and understand their mechanisms in managing 
heat stress.

The lower temperatures recorded in the head, back, and feet of the 
treatment groups suggest that the probiotic and ascorbic acid played 
a significant role in enhancing the birds’ ability to manage heat stress. 
During periods of heat stress, broiler chickens typically increase their 
oxygen intake to support thermoregulatory mechanisms such as 
evaporative cooling through panting (8, 36). This heightened oxygen 
consumption can lead to the accumulation of reactive oxygen species 

(ROS), which are byproducts of oxygen metabolism. When 
endogenous antioxidants are insufficient to counteract these ROS, 
oxidative stress can occur. The inclusion of exogenous antioxidants, 
such as Saccharomyces cerevisiae and ascorbic acid, may help 
neutralize these ROS, thereby reducing oxidative stress and supporting 
better thermal regulation (6, 15). The increased BST observed in the 
control group likely reflects the chickens’ impaired ability to regulate 
heat, as indicated by their elevated CT. This supports the findings of 
Kim et al. (37), who noted that BST is a sensitive indicator of heat 
stress levels, with higher environmental temperatures leading to its 
increase. Although the study focused on laying hens, the relationship 
between environmental temperature, heat stress, and BST is also 
applicable to broiler chickens. The findings indicated that while the 
probiotic may help alleviate stress, combining it with ascorbic acid did 
not yield an additive effect on core temperature. This underscores the 
need for targeted approaches in broiler management. To optimize 
poultry welfare and performance during warmer months, practical 
recommendations for broiler producers are essential. These include 
incorporating probiotics into feeding regimens, monitoring 
environmental conditions, ensuring proper hydration, and adjusting 
brooding practices. By implementing these strategies, producers can 
enhance the resilience of their flocks and improve overall production 
outcomes in the face of climate-related challenges.

In the morning hours of the study, the THI was within the TNZ 
ideal for optimal broiler production. This favorable THI allowed for 
effective thermoregulation through convective and conductive heat 

TABLE 2 Changes in cloacal temperature of broiler chickens given probiotic and ascorbic acid.

Day Time (h) Group

Control Probiotic Ascorbic acid Probiotic  +  AA

21

07:00 41.21 ± 0.27a 39.98 ± 0.13b 40.78 ± 0.11a 41.04 ± 0.15a

09:00 40.35 ± 0.30a 40.07 ± 0.20a 40.46 ± 0.11a 40.96 ± 0.08b

11:00 40.99 ± 0.25a 40.72 ± 0.62a 40.85 ± 0.09a 41.06 ± 0.09a

13:00 41.00 ± 0.25a 40.45 ± 0.08a 40.80 ± 0.11a 40.83 ± 0.12a

15:00 41.14 ± 0.20a 40.84 ± 0.06a 40.97 ± 0.04a 40.98 ± 0.09a

17:00 41.53 ± 0.15a 40.36 ± 0.10b 41.11 ± 0.12a 41.02 ± 0.08a

19:00 41.69 ± 0.18a 40.84 ± 0.05b 41.36 ± 0.14a 41.20 ± 0.08a

28

07:00 41.63 ± 0.15a 39.80 ± 0.18c 40.63 ± 0.14b 40.52 ± 0.16b

09:00 41.39 ± 0.32a 40.07 ± 0.20b 40.46 ± 0.12b 40.96 ± 0.08a

11:00 41.79 ± 0.22a 40.78 ± 0.22b 41.03 ± 0.22b 41.01 ± 0.13b

13:00 41.69 ± 0.11a 40.68 ± 0.13b 40.78 ± 0.13b 40.75 ± 0.12b

15:00 41.14 ± 0.20a 40.84 ± 0.06a 40.97 ± 0.06a 40.98 ± 0.09a

17:00 41.71 ± 0.14a 40.87 ± 0.16b 41.03 ± 0.16b 40.86 ± 0.14b

19:00 41.69 ± 0.17a 41.10 ± 0.14a 41.23 ± 0.14a 41.07 ± 0.09a

35

07:00 41.53 ± 0.20a 40.36 ± 0.18b 40.97 ± 0.15a 41.01 ± 0.16a

09:00 41.15 ± 0.27a 40.16 ± 0.18b 40.49 ± 0.12b 40.90 ± 0.14a

11:00 41.24 ± 0.24a 40.86 ± 0.12a 40.81 ± 0.11a 41.02 ± 0.13a

13:00 41.47 ± 0.22a 40.59 ± 0.13b 40.89 ± 0.14b 40.73 ± 0.12b

15:00 41.24 ± 0.20a 40.81 ± 0.12a 40.98 ± 0.11a 40.86 ± 0.11a

17:00 41.49 ± 0.16a 40.34 ± 0.12b 41.09 ± 0.12a 40.94 ± 0.11a

19:00 41.66 ± 0.17a 40.94 ± 0.12b 41.27 ± 0.13a 40.98 ± 0.12b

Mean values with different superscript letters along the same row are significantly different at p < 0.05. n = 14.
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TABLE 3 Variations in head, comb, wing, back and foot temperature of broiler chickens given probiotic and ascorbic acid.

Area Day Time (h) Control Treatment groups

Probiotic Ascorbic acid Probiotic  +  Ascorbic 
acid

Head

21 07:00 37.01 ± 0.53a 36.79 ± 0.17a 35.87 ± 0.15a 33.00 ± 1.38b

13:00 36.03 ± 0.23a 37.06 ± 0.23a 34.00 ± 0.85b 34.57 ± 0.91b

19:00 36.34 ± 0.18a 37.16 ± 0.28a 35.69 ± 0.48b 32.34 ± 0.68c

28 07:00 37.10 ± 0.43a 36.26 ± 0.19a 35.83 ± 0.21a 32.59 ± 1.49b

13:00 35.91 ± 0.25a 36.89 ± 0.25a 35.09 ± 0.23a 35.07 ± 0.73a

19:00 37.89 ± 0.62a 37.00 ± 0.21a 38.20 ± 0.60a 36.06 ± 0.41b

35 07:00 37.17 ± 0.42a 36.67 ± 0.17a 35.93 ± 0.22a 36.16 ± 0.86a

13:00 36.79 ± 0.49a 36.91 ± 0.28a 36.17 ± 0.32a 35.97 ± 0.51a

19:00 37.49 ± 0.41a 35.84 ± 0.50b 35.69 ± 0.65b 35.20 ± 0.29b

Comb

21 07:00 36.63 ± 0.42a 35.97 ± 0.20a 35.51 ± 0.11a 35.21 ± 1.51a

13:00 35.86 ± 0.16a 36.21 ± 0.07a 33.19 ± 0.58b 33.50 ± 0.81b

19:00 36.96 ± 0.25a 36.53 ± 0.10a 37.73 ± 0.44a 36.00 ± 0.69a

28 07:00 36.37 ± 0.36a 36.76 ± 0.48a 35.59 ± 0.18a 36.30 ± 0.17a

13:00 35.74 ± 0.18a 36.24 ± 0.21a 35.19 ± 0.50a 35.64 ± 0.38a

19:00 35.60 ± 0.47a 36.41 ± 0.11a 37.73 ± 0.48b 36.14 ± 0.48a

35 07:00 35.27 ± 0.42a 37.59 ± 0.58b 36.23 ± 0.26a 37.14 ± 0.41b

13:00 34.53 ± 0.49a 36.50 ± 0.33b 35.90 ± 0.23a 36.43 ± 0.41b

19:00 35.93 ± 0.42a 37.96 ± 0.67b 37.53 ± 0.41b 36.57 ± 0.54a

Wing

21 07:00 36.23 ± 0.34a 39.16 ± 0.27b 40.47 ± 0.32c 37.23 ± 0.50a

13:00 39.83 ± 0.20a 39.23 ± 0.46a 39.01 ± 0.50a 38.44 ± 0.33a

19:00 39.83 ± 0.20a 40.07 ± 0.13b 39.90 ± 0.35a 38.30 ± 0.07a

28 07:00 35.76 ± 0.16a 39.07 ± 0.29c 40.09 ± 0.26c 37.39 ± 0.48b

13:00 39.83 ± 0.48a 40.54 ± 0.40a 39.30 ± 0.72a 40.44 ± 0.47a

19:00 37.87 ± 0.84a 40.34 ± 0.26b 40.59 ± 0.34b 39.73 ± 0.68b

35 07:00 35.71 ± 0.36a 39.30 ± 0.30c 40.40 ± 0.28c 37.53 ± 0.43b

13:00 36.81 ± 0.73a 39.14 ± 0.45b 38.90 ± 0.49b 37.87 ± 0.65b

19:00 37.81 ± 1.09a 40.10 ± 0.13b 39.71 ± 0.31b 38.86 ± 0.30b

(Continued)

https://doi.org/10.3389/fvets.2024.1482134
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Su
m

an
u

 et al. 
10

.3
3

8
9

/fvets.2
0

24
.14

8
2

13
4

Fro
n

tie
rs in

 V
e

te
rin

ary Scie
n

ce
0

6
fro

n
tie

rsin
.o

rg

TABLE 3 (Continued)

Area Day Time (h) Control Treatment groups

Probiotic Ascorbic acid Probiotic  +  Ascorbic 
acid

Back

21 07:00 37.43 ± 0.59a 36.06 ± 0.23a 36.96 ± 0.38a 31.81 ± 0.84b

13:00 36.36 ± 0.11a 36.61 ± 0.28a 36.69 ± 0.91a 34.89 ± 0.62a

19:00 37.36 ± 0.11a 34.26 ± 0.33c 36.66 ± 0.88b 35.50 ± 0.69b

28 07:00 36.87 ± 0.78a 35.83 ± 0.25a 36.67 ± 0.45a 35.61 ± 0.68a

13:00 36.37 ± 0.13a 36.53 ± 0.18a 37.27 ± 0.85a 35.57 ± 0.36a

19:00 39.96 ± 0.97a 37.16 ± 0.35b 38.69 ± 0.95a 36.07 ± 0.37c

35 07:00 37.36 ± 0.67a 36.01 ± 0.26a 36.89 ± 0.38a 36.39 ± 0.88a

13:00 37.56 ± 0.62a 36.04 ± 0.30b 36.06 ± 0.81b 35.60 ± 0.40b

19:00 38.31 ± 0.13a 36.04 ± 0.36b 37.46 ± 0.82b 35.64 ± 0.21c

Foot

21 07:00 36.74 ± 0.57a 35.94 ± 0.18a 36.34 ± 0.25a 36.06 ± 0.19a

13:00 35.39 ± 0.17a 35.50 ± 0.24a 34.16 ± 1.04a 35.34 ± 1.14a

19:00 38.30 ± 0.16a 37.57 ± 0.36a 37.33 ± 0.19a 35.09 ± 1.60b

28 07:00 36.70 ± 0.51a 35.89 ± 0.18a 36.24 ± 0.24a 35.94 ± 0.22a

13:00 35.50 ± 0.20a 35.47 ± 0.21a 34.01 ± 0.98b 34.36 ± 0.95b

19:00 39.16 ± 1.02a 37.57 ± 0.36b 38.33 ± 0.19a 35.66 ± 1.27c

35 07:00 36.67 ± 0.59a 35.86 ± 0.19b 36.27 ± 0.23a 36.03 ± 0.25a

13:00 35.71 ± 0.22a 35.26 ± 0.29a 34.41 ± 0.83b 36.06 ± 0.80a

19:00 37.50 ± 0.66a 37.29 ± 0.36a 37.59 ± 0.59a 36.46 ± 1.08a

Mean values with different superscript letters along the same row are significantly different at p < 0.05. n = 14.
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loss, which was evident in the treatment groups as THI is the 
descriptive indicator of heat stress [(38); Xinyao et  al., 2022]. 
Throughout the study, broiler chickens accumulated heat from both 
environmental sources and metabolic processes. However, the 
primary focus was on assessing sensible heat loss in the treatment and 
control groups. It is important to acknowledge that while the 
antioxidants contributed to increased heat loss, the overall 
effectiveness of heat dissipation was also influenced by the 
THI. Variations in THI during different periods of the study likely 
impacted the heat loss dynamics. Tao and Xin (39), found that the 
optimal THI for broiler production is around 21, suggesting that 
maintaining THI within this range is crucial for minimizing heat 
stress and ensuring optimal performance. This implies that alongside 
antioxidant supplementation, managing THI effectively is essential for 
enhancing broiler welfare and productivity. During the afternoon and 

evening hours of the study, the THI exceeded the TNZ optimal for 
broiler chickens’ production. Such conditions are expected to reduce 
heat loss through conduction and convection. Despite this, the 
probiotic group demonstrated a higher degree of heat loss compared 
to the control group on D21 and D35. This increased heat loss in the 
probiotic group can be attributed to the antistress effect of this agent. 
These findings align with the research of Sinkalu et  al. (40) and 
Aluwong et  al. (6), who both identified that THI levels above 21 
induce heat stress in broiler chickens. Their studies utilized CT as a 
biomarker to assess heat stress, corroborating the observation that 
high THI contributes to increased heat stress.

The TNZ is the optimal temperature range in which broiler 
chickens can maintain their physiological functions without needing 
to expend extra energy for thermoregulation (8). This zone, also 
known as the comfort zone, is crucial for achieving peak performance 
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FIGURE 1

Convective and conductive heat loss obtained during the morning hours of the study period. The THI was within the TNZ stipulated for broiler 
chickens which influenced the degree of heat loss positively during this period of the study (n  =  7). THI; temperature-humidity index, TNZ; 
thermoneutral zone.
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FIGURE 2

Convective and conductive heat loss obtained during the afternoon hours of the study period. The THI exceeded the TNZ for broiler chickens which 
influenced the degree of heat loss negatively during this period of the study (n  =  7). THI, temperature-humidity index; TNZ, thermoneutral zone.
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and welfare in broiler chickens (13). Within this range, known as the 
zone of comfort (yellow zone), the broilers can effectively manage 
their body temperature and perform optimally. However, when 
ambient temperatures exceed this range, entering the zone of 
discomfort (red zone), the chickens experience increased stress and 
reduced performance (39). During the study, THI values recorded on 
D21 and in the morning hours of D28 and D35 remained within the 
TNZ. These favorable conditions facilitated effective thermoregulation 
in the broiler chickens, as evidenced by efficient heat loss through 
convection and conduction. The ability to maintain normal 
physiological functions and comfort levels was thus supported. In 
contrast, the THI values recorded during the afternoon and evening 
hours of D28 and D35 were above the TNZ, which significantly 
impaired the chickens’ ability to regulate their body temperature. This 
was reflected in the reduced effectiveness of heat dissipation 
mechanisms, leading to compromised welfare and performance (26). 
The elevated temperatures in these periods resulted in increased 
physiological stress and diminished comfort for the broilers. Our 

study indicates that higher AT beyond the TNZ negatively affects the 
thermoregulatory processes in broiler chickens, particularly when no 
anti-stress interventions are applied. The data suggest that as AT 
increased and exceeded the TNZ, the capacity for effective 
thermoregulation diminishes, highlighting the critical need for 
environmental management and stress mitigation strategies. This 
reinforces the importance of maintaining environmental conditions 
within the TNZ to optimize broiler health and productivity (10, 44). 
Additionally, the findings underscore the potential benefits of 
implementing anti-stress measures, such as dietary supplements like 
probiotics (Saccharomyces cerevisiae) and ascorbic acid to support 
broiler welfare during periods of thermal stress. Further research 
should explore the interaction between various antioxidant types and 
environmental conditions to develop comprehensive strategies for 
managing heat stress in broiler production. This could include 
optimizing antioxidant dosages and combining them with 
environmental controls to achieve the best outcomes for broiler health 
and performance. Understanding how fluctuations in THI influence 
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FIGURE 3

Convective and conductive heat loss obtained during the evening hours of the study period. The probiotic and ascorbic acid groups had a significantly 
higher (p  <  0.05) value of heat loss when compared with the control group on D21 and D35. The THI was outside the TNZ stipulated for broiler 
chickens which negatively influenced the degree of heat loss during this period of the study (n  =  7). THI, temperature-humidity index; TNZ, 
thermoneutral zone.

FIGURE 4

Convective and conductive heat loss within (yellow zone) and outside (red zone) the TNZ in broiler chickens treated with probiotic and ascorbic acid. 
At D21, heat loss values obtained were within the TNZ, while those recorded on D28 and D35 surpassed the TNZ stipulated for broiler chickens during 
the afternoon and evening periods of the study (n  =  7).
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heat stress and performance at different growth phases can inform 
more targeted management practices. Also, the effects of different 
combinations and dosages of antioxidants, including probiotics and 
ascorbic acid should be  studied, to determine their synergistic 
potential in mitigating heat stress.

5 Conclusion

The study highlights the importance of maintaining ambient 
temperatures within the TNZ to optimize the welfare and performance 
of broiler chickens. It found that when THI values are within the TNZ, 
chickens effectively regulate their body temperature, but exceedance 
leads to impaired thermoregulation, elevated CT, and increased heat 
stress. Practical recommendations for producers include 
supplementing feed with probiotics, which have been effective in 
reducing heat stress effects, as opposed to ascorbic acid, which has a 
less pronounced impact during this study. Producers should, therefore, 
integrate probiotics into their feeding strategies, especially during 
warmer months. Future research should aim to optimize dosages and 
combinations of probiotics and ascorbic acid, explore their specific 
mechanisms, and assess long-term effects on health and productivity. 
Overall, maintaining temperatures within the TNZ and implementing 
these anti-stress interventions can enhance broiler resilience and 
improve production outcomes.
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