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Ruminant animals naturally emit methane gas owing to anaerobic microbial 
fermentation in the rumen, and these gases are considered major contributors to 
global warming. Scientists worldwide are attempting to minimize methane emissions 
from ruminant animals. Some of these attempts include the manipulation of rumen 
microbes using antibiotics, synthetic chemicals, dietary interventions, probiotics, 
propionate enhancers, stimulation of acetogens, manipulation of rumination time, 
vaccination, and genetic selection of animals that produce low methane (CH4). 
The majority of synthetic additives are harmful to both beneficial rumen microbes 
and the host or only temporarily affect methanogenesis. Phytogenic feed additives 
(PFAs) have recently emerged as the best alternatives to antibiotics and synthetic 
chemicals because of growing public concerns regarding drug resistance and the 
negative impacts of antibiotics and synthetic chemicals on humans, livestock, and 
the environment. These additives reduce methane production and improve the 
volatile fatty acid profile. In this review, we provide an overview of PFA sources 
and how their bioactive components affect the rumen microbiome to reduce 
methane emissions. Additionally, we highlight the mechanisms of action of PFAs 
as a whole, as well as some of their bioactive components. We also review some 
selected trees, herbs, shrubs, and forages and their roles in reducing methane 
emissions.
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1 Introduction

The world’s human population is anticipated to reach almost 10 
billion people by the year 2050; therefore, an increase in ruminant 
animal production is necessary to meet the demand for animal protein 
needs of humans by supplying daily meat and dairy products 
worldwide (1). This has resulted in the intensification of agriculture, 
especially livestock production, and consequently inflated the global 
index of methane (CH4) produced by livestock by almost 2.5-fold (2). 
Methane accounts for 16% of the global greenhouse gas emissions. It 
is estimated that ruminant animals contribute to 33% of the global 
methane emissions index (3). Approximately 81 million tons of enteric 
methane is produced annually by livestock worldwide. It is primarily 
emitted from the rumen and lower digestive tract when carbohydrates 
are fermented by microbes (4). These animals are among the largest 
producers of enteric methane, and they contribute to global warming 
by adding greenhouse gases to the ozone layer. This process is gaining 
attention worldwide for identifying rumen microbes that are 
important for methane production to develop the best methane 
mitigation strategy (5). Rumen fermentation produces a variety of 
beneficial products, including methane. Cattle alone contribute 
15–20% of the global methane production every year (6). Methane is 
the most abundant hydrogen sink synthesized by methanogens in the 
rumen. In addition to contributing to global warming, enteric 
methane emissions contribute 8–9% of the total energy lost by 

ruminants, which, if not lost, can be used by animals for growth, meat, 
and milk production (7).

Most work done to reduce methane emissions in the 1950s 
focused on reducing feed energy loss, whereas recent efforts have 
focused on both energy savings and their effects on climate change. 
Despite the success of manipulating rumen fermentation using 
antibiotics and ionophores, their use has been limited by 
environmental and human health concerns (8). Because phytogenic 
feed additives (PFAs; additives derived from plants) contain many 
bioactive compounds, unlike antibiotics and ionophores, the global 
scenario has shifted toward the use of phytogenic feed additives rather 
than antibiotics or ionophores. This compound is capable of 
manipulating the microbiota in the rumen through more potent 
mechanisms of action, including inhibition of the activities of 
protozoa, methanogenic archaea, and some fiber degraders through 
its antimicrobial potential and decreasing hydrogen availability (9). 
PFAs have been reported to manipulate ruminal fermentation and to 
successfully reduce methane emissions from ruminants (10).

PFAs are increasingly being used in animal nutrition because of 
the negative effects of antibiotics and synthetic chemicals (11). These 
additives have sparked interest because of their potential to improve 
nutrient utilization and promote health (12, 13). PFA comprises 
various phytochemicals that are biologically active during 
fermentation. Various metabolic pathways are believed to mediate 
their antimicrobial, metabolic, immune, and antioxidant effects (14). 
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PFAs have been tested in various ruminant models to manipulate 
enteric fermentation (15). The use of plant bioactive compounds 
(PBC) such as tannins, saponins, and essential oils for methane 
mitigation has been reviewed; however, most studies have focused on 
PBC rather than providing insight into the sources of these 
compounds. However, given the current trend and importance of 
research on climate change and global warming, more research and 
review are required. In this review, we explore the impact of PFAs on 
reducing methane emissions, with an emphasis on their effects on 
rumen ecology as well as the possible underlying mechanisms and 
factors affecting these effects.

2 Insight into the role of rumen 
microbial ecology on methanogenesis

Rumen microbes and ruminant animals have a symbiotic 
relationship. These microbes obtain their substrate when ruminant 
animals ingest feed and, in return, ferment the feed and supply valuable 
nutrients to the host, producing methane as a byproduct (Figure 1) 
(16). The microbial community in the rumen is one of the most diverse 
gut ecosystems hitherto described in the animal kingdom. It consists 
of anaerobic bacteria (1010–1011 organisms/mL), archaea (108–109 
organisms/mL), ciliated protozoa (105–106 organisms/mL), anaerobic 
fungi (103–104 organisms/mL), and viral community that is largely 
uncharacterized (17). To date, only a few of these microbes in microbial 
ecologies have been cultured and characterized (18). The use of culture-
based approaches to study ruminal content has decreased in recent 
years. However, the introduction of high-throughput sequencing 
techniques has allowed us to gain a better understanding of the rumen 
microbiome in different diets, species, and geographical locations (19). 
These advancements can provide a deeper understanding of the diverse 

microbial species in the rumen ecosystem. Using metagenomics, it will 
be much easier to determine which rumen microbial community is 
responsible for methane production. This information will enable 
scientists to develop the best methane mitigation strategy, which in 
turn will reduce the negative impacts of ruminant animals on 
the environment.

3 Phytogenic tools for reducing 
methane emissions and their effects 
on ruminal microbial ecology

Since the 18th century, the loss of energy in the rumen as CH4 has 
been well-documented in a journal titled “Zeitschrift für Biologie” 
(Journal of Biology), written by German Scientist Tappeiner in 1884 
(20). Since then, scientists worldwide have been working to reduce 
CH4 emissions without affecting livestock growth and productivity. 
Owing to the greenhouse gas potential of CH4 and the importance of 
ruminant contributions, policymakers worldwide are currently 
seeking effective mitigation strategies. In recent years, numerous 
studies have been conducted to reduce ruminant CH4 emissions (21).

Recently, PFAs have attracted the attention of researchers 
worldwide. These additives have been reported to increase feed 
conversion efficiency; enhance growth, productivity, and animal 
health; and reduce CH4 emissions (22). PFAs have been tested by 
scientists and found to significantly reduce CH4 emissions, manipulate 
rumen microbial ecology, and change the fermentation dynamics of 
ruminants (Figure 2) (23). These additives include; plants, part of 
plants, plant oil extracts, trees, shrubs, grasses, and legumes. These 
PFAs are rich in plant bioactive compounds (PBC) such as saponins, 
tannins, organosulfur compounds, essential oils, flavonoids, propolis, 
terpenes, and glycosides.

FIGURE 1

Process of methane production and role of rumen microbes.
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3.1 Mechanism of action of phytogenic 
feed additives on rumen microbial cells

Compared to antibiotics, PFAs have a greater potential to modify 
the ruminal microbiome and reduce methane emissions by disrupting 
cell membranes, modulating signal transduction and gene expression 
pathways, inhibiting enzyme activity, and inhibiting bacterial 
colonization (24). Generally, PFAs increase the permeability and 
fluidity of cellular membranes, resulting in the efflux of metabolites 
and ions and leading to cell leakage and microbial death (Figure 3). 
Moreover, they can manipulate the rumen metabolism by increasing 
the permeability of a specific group of rumen bacteria (25). There are 
several possible mechanisms of action, including disruption of the 
cytoplasmic membrane, disruption of the proton motive force, 
electron flow, active transport mechanisms, and coagulation of the cell 
composition (26).

3.2 Phytogenic feed additives: sources and 
effects

3.2.1 Trees, shrubs, and forages
Several trees, shrubs, and forages are used for methane mitigation 

because they are rich in bioactive compounds that can suppress 
methanogenic activity. Trees, shrubs, and forages contain many bioactive 
compounds including terpenes, saponins, cyanogenic glycosides, 
flavones, isoflavones, tannins, coumarins, and other phenolics (27). In 
addition to these, trees, shrubs, and forages provide an excellent source 

of protein. Therefore, feeding trees, shrubs, and forage can be beneficial 
protein sources and methane reducers (28). Bioactive compounds in 
these plants can manipulate the rumen microbial ecosystem, thereby 
reducing methane production (29). The mechanism of action of these 
bioactive compounds could have direct effects on methanogens, anti-
protozoal effects (defaunation), or inhibition of fiber digestion, followed 
by a lower H2 supply to the methanogens (Table 1).

3.2.2 Trees and shrubs

3.2.2.1 Gliricidia (Gliricidia sepium)
Gliricidia is a member of the family Fabaceae (legume family), 

subfamily Faboideae (Papilionoideae), and tribe Robinieae. Medium-
sized semi-deciduous trees with broad canopies, native to Central 
America and perhaps northern South America, typically grow to a 
height of 10 m (occasionally 15 m) (30). Gliricidia foliage is rich in 
tannins and saponins, making it useful for mitigating methane 
emissions (31). The effect of long-term supplementation with G. sepium 
foliage reduced CH4 production in heifers, and this response persisted 
over time, without affecting the microbial population and VFA 
concentration and a slight reduction in CPD digestibility (32). Zain 
et al. (33) reported that 30% supplementation with Gliricidia sepium 
decreased methane gas production (from 27.22 mM to 13.13 mM) and 
the number of protozoa (from 6.3 × 105 cell/ml rumen fluid to 4.7 × 
105 cell/mL rumen fluid) while increasing digestibility and rumen 
fermentation parameters. A diet supplemented with 20% Gliricidia 
sepium leaf meal has the potential to modify rumen fermentation, 
resulting in improved post-ruminal nutrient utilization (34).

FIGURE 2

Biochemical pathways of methanogenesis affected by plant bioactive compounds to decrease methane production in the rumen. These bioactive 
compounds inhibit the activity of methanogens and protozoa (1). This bioactive compound decreases the number of protozoa (defaunation) (2). They 
also induce the rechanneling of metabolic hydrogen from CH4 to propionate (3).
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The incorporation of Gliricidia sepium into animal diets reduces 
in vitro methane production and the population of ruminal 
protozoa (35).

3.2.2.2 Calliandra (Calliandra calothyrsus)
Calliandra are shrubs native to the American continent that 

belong to the Mimosoideae family. These shrubs are rich in tannins 
(36). Calliandra calothyrsus is notable for its high tannin content, 
making it a significant candidate for mitigating methane emissions 
(37). Tiemann et al. (38) reported that adding tannin-rich Calliandra 
plants reduced methane emissions by 24% per day as well as per unit 
of feed and energy intake. They believed that the mechanism of this 
reduction was a reduction in the available H2 required for methane 
production by donating electrons to H2 to form a stable radical. In 
vitro, supplementation with C. calothyrsus reduces methane 
production without any negative effects on rumen fermentation 
parameters (37). According to Ridwan et  al. (39), 50% silage 
containing C. calothyrsus decreased enteric CH4 production by 
reducing the total number of methanogens and goats supplemented 
Methanobacteriales but decreased bacterial diversity and organic 
matter digestibility. PE dairy with C. calothyrsus had reduced enteric 
methane emissions and improved milk production (40). Mwangi et al. 
(41) reported that replacing 40% of a protein-deficient basal diet with 
Calliandra calothyrsus reduces enteric methane emissions in both 
absolute terms and intensity. Calliandra calothyrsus, when used as a 
two-thirds replacement for protein in lamb diets, partially reduces 

methane emissions due to associated reductions in N and energy 
retention (38).

3.2.2.3 Mulberry (Morus alba)
Mulberry is a fast-growing deciduous tree of the Moraceae 

family that is native to India and China’s Himalayan foothills (42). 
The leaves of mulberry trees are widely used as livestock feed 
because of their high crude protein content and metabolizable 
energy. In addition, they are rich in flavonoids, a plant bioactive 
compound known to reduce enteric methane emissions (43). Morus 
alba is significant in reducing rumen methanogenesis because it 
contains long-chain unsaturated fatty acids that can effectively 
decrease methane production in the rumen (44). The in vitro 
supplementation of mulberry leaf flavonoids at a concentration of 
15 mg/100 g decreased methane emission, improved dry matter 
digestibility, and improved the Total Volatile Fatty Acids (TVFA) 
profile of sheep (45). Adding 300 g of Morus alba to a dairy cow’s 
diet changed the microbial community and fermentation process in 
the rumen, which increased propionate production and reduced 
methane emissions (46). Morus alba is a promising candidate for 
reducing enteric methane emissions while providing an optimal 
level of nitrogen when used as a supplement to low-quality forages 
(47). Considering its potential, further research is needed to test its 
effect on reducing methane emissions while improving the TVFA 
profile of ruminants.

FIGURE 3

Mechanism of action of the bioactive compounds of phytogenic feed additives (PFAs) on rumen microbial cells. The bioactive compounds of 
phytogenic feed additives have a greater potential to modulate the ruminal microbiome and reduce CH4 emissions, as indicated in figure: (1) disruption 
of cell membranes; (2) inhibition of gene transcription, translation, and protein synthesis; (3) inhibition of enzyme activity; (4) inhibition of cell wall 
formation; (5) increasing permeability and fluidity of cellular membranes; (6) resulting in an influx of metabolites and ions, leading to cell leakage; and 
(7) microbial death.
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3.2.2.4 Italian plumeless thistle (Carduus pycnocephalus)
This plant belongs to the Astraceae family and genus Carduus 

(48). This plant is also popularly used in Traditional Chinese 
Medicine to treat various human diseases, such as colds, 
rheumatism, and stomachache (49). Carduus contains numerous 
classes of phytochemicals, including lignans, flavonoids, alkaloids, 
sterols, triterpenes, coumarins, essential oils, hexadecanoic acid, 
sterols, and triterpenes (50). The leaves of C. pycnocephalus 
contain tannins and saponins (51, 52). C. pycnocephalus decreases 
methane production in a hay-based diet while improving 
microbial protein synthesis in dairy cattle (51, 52). An in vitro 
screening of 450 plants for their potential anti-methanogenic 
effects concluded that C. pycnocephalus was the first among the 
six selected species, and had the potential to reduce methane 
emissions by more than 25% without adverse effects on 
digestibility, total volatile fatty acids, and gas and production (53). 
Owing to the antimicrobial properties of C. pycnocephalus, its 
mode of action in reducing methanogenesis may be its effect in 
reducing the number of rumen methanogens.

3.2.2.5 Chinese peony (Paeonia lactiflora)
Chinese peony (Paeonia lactiflora) is commonly known as 

chishao (赤芍) in China. More than 1,200 years ago, P. lactiflora 
root was used in Traditional Chinese Medicine (54). Glucosides of 
Peony, or Total Glucosides of Peony (TGP), are extracted from 
P. lactiflora and contain almost 15 components, including albiflorin, 
benzoyl paeoniflorin, galloylpaeoniflorin, lactoferrin, oxybenzone-
paeoniflorin, oxypaeoniflorin, paeony, phenol, phonolite, 
paeoniflorin, paeoniflorin, paeoniflorin, paeoniflorin, and 
paeoniflorin (55). The structures of most of these extracts are 
monoterpene glucosides, among which paeoniflorin is a water-
soluble compound, the most abundant (>90%) has a molecular 
weight of 480.45 and has the highest pharmacological effects among 
all TGP in both in vitro and in vivo studies (54). P. lactiflora extracts 
have anti-methanogenic effect (56). P. lactiflora reduces methane 
emissions by 8–53% in cattle (57). Methane reduction is caused by 
the inhibition of gram-positive bacteria (58). Considering its 
potential antimicrobial and anti-methanogenic effects, this plant 
requires further investigation.

3.2.2.6 Leucaena (Leucaena leucocephala)
The Leucaena tree belongs to the family Mimosaceae, genus; 

Leucaena and the best-known species is Leucocephala it has many 
common names Worldwide, in China, it is called “Yin ho huan” (59). 
Phytochemical analysis of Leucaena leaves revealed the presence of 
almost 30 compounds including tannins, squalene, phytol, 
phylobatanins, alkaloids, cardiac glycosides, flavonoids, saponins, and 
glycosides (60). Phytochemicals in Leucaena have been shown to 
have several anti-methanogenic effects (60). Leucaena decreased 
methane production in crossbred cows housed in an open-circuit 
respiration chamber (61). However, this treatment did not affect the 
microbial community. Supplementation with Leucaena decreased 
methane emissions by up to 20% in Colombian Lucerna heifers (62). 
Another 20% decrease in methane emissions has been reported in 
grazing cows consuming leucaena pastures in Australia (63). 
Leucaena is a major source of condensed tannins (CT), and in vitro 
studies of CT extracts from Leucaena resulted in 99 and 83% 
reductions in the total number of methanogens and protozoa, 
respectively (64).

3.2.3 Forages

3.2.3.1 Brassica forages
In temperate countries, Brassica is an annual plant that has been 

traditionally used in grazing systems to cover periods of feed deficits 
for ruminants. Brassica forage crops have four main types that are 
usually used worldwide to provide food for ruminant livestock feeds 
during shortage, this includes; kale (Brassica oleracea spp. acephala), 
turnips (Brassica rapa spp. rapa), swedes (Brassica napus spp. 
napobrassica), and forage rape (Brassica napus spp. biennis) (65). 
Brassica leaves, stems, bulbs, and roots are used as phytogenic 
additives (66). They contain bioactive compounds such as S-methyl-
cysteine sulfoxide (SMCO) and glucosinolates (65). Both SMCO and 
glucosinolates reduce the available H2 for methane production 
through hydrogen sulfide scavenging mechanisms (67). Brassica 
forages were reported to reduce CH4 emissions in sheep by 37%; 
however, the experiment did not examine the effect on rumen 
microbial ecology (68). However, dairy cows fed Brassica forage did 
not show any methane mitigation effects, and the protozoal count did 

TABLE 1 Mechanism of actions of some phytogenic feed additives sources on methane emissions.

Sources of PFAs Plant bioactive compounds (PBC) Mechanism of mitigation References

Carduus pycnocephalus Essential oil, Flavonoids, Terpenes Inhibit methanogens Bodas et al. (53)

Paeonia lactiflora Total glucosides of peony Inhibition of Gram-positive bacteria Castillo-González et al. (58)

Leucaena leucocephala Tannins Reduction in the total number of methanogens and 

protozoa

Tan et al. (64)

Brassica Glucosinolates Alter the mean retention time of digestion in the 

rumen

Sun (66)

Rapeseed oil Sterols and tocopherols Decrease protozoal population in the rumen Villar et al. (96).

Camelina sativa oil Unsaturated fatty acids and antioxidant Inhibiting rumen protozoa and methanogens.

Hydrogen sink

Hassan et al. (15)

Garlic oil Organosulfur Reducing the abundance of protozoa Kongmun et al. (108).

Palm oil Fatty acids Decrease the number of ciliate protozoa Yilmaz and Kara (111)
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not significantly differ from those fed 250 g/kg DM grains as a control 
diet (69). This may be  due to species variation or the methane 
measurement method used. However, Sun (66) reported that Brassica 
is rich in glucosinolates (GSLs) when ruminants consume Brassica 
forages, which are broken down in the rumen, resulting in absorption 
into the blood, which stimulates the secretion of thyroid hormone 
FT3 in ruminants, and the altered thyroid hormone concentration 
changes rumen physiology. This would alter the mean retention time 
of digestion in the rumen, resulting in a reduction in 
methane emissions.

3.2.3.2 Alfalfa (Medicago sativa L)
Alfalfa (Medicago sativa), also known as lucerne, is a perennial 

flowering legume belonging to the Fabaceae family. It is the most 
important legume forage species in the world (70). Alfalfa is rich in 
saponins, which are known to reduce methane emissions. Kozłowska 
et al. (71) reported that ensiled Verko and Kometa alfalfa varieties 
(rich in saponins) reduced methane production without adversely 
affecting fermentation parameters. Dietary inclusion of alfalfa hay in 
crossbred Simmental cattle feed improves nitrogen utilization 
efficiency and reduces methane emissions (72). Sheep-fed alfalfa hay 
as a substitute for concentrate decreases CH4 emissions, digestibility, 
and urinary N and NH4 + -N outputs (73). A study conducted by 
Hironaka et  al. (74) indicated that cattle fed pelleted alfalfa hay 
produced less methane than those fed chopped alfalfa hay.

3.2.3.3 Clover (Trifolium species)
Clover belongs to the Fabaceae family, genus Trifolium, and has 

approximately 240 species distributed over the temperate and 
subtropical regions of the Mediterranean Basin, western North 
America, and eastern Africa (75). Several flavonoids, saponins, 
chloramines, and phenolic acids have been found in Trifolium plants 
(76). Methane yield (g/kg DM) was significantly lower in cattle-fed red 
clover silage (17.8 ± 3.17) than in those fed grass silage (77). A linear 
increase in dry matter intake (DMI) and reduced methane output per 
kilogram of DM consumed were observed when white clover was 
increased in dairy cattle diets (78). The methane yield per kilogram of 
dry matter and digestible organic matter intake was lower for heifers fed 
red and white clover silage (79). Based on in vitro experiments, white 
clover leaves containing soluble CTs of 1.6–2.4% DM reduced methane 
production by 19% (p ≤ 0.01) and ammonia production by 60% (80). 
Dairy cattle fed white clover pastures produce less CH4 than those fed 
ryegrass pastures in small-scale dairy systems (81). Navarro-Villa et al. 
(82) reported that red clover showed reduced in vitro rumen methane 
output compared to that of perennial ryegrass. In a study using portable 
accumulation chambers, sheep that graze subterranean clover produced 
lower daily CH4 emissions (23.5 g/day) compared with sheep grazing 
lucerne (27.3 g/day) and perennial ryegrass (32.3 g/day) (83).

3.2.3.4 Chinese Lespedeza (Sericea lespedeza)
Lespedeza is a perennial herb in the family Leguminosae 

(Fabaceae), which is native to Japan, the Korean Peninsula, China, the 
Himalayas, Afghanistan, and Malaysia. Lespedeza is rich in condensed 
tannins and other phenolics (84). Regardless of the feeding level, goats 
fed CT-containing Lespedeza forage showed decreased CH4 emissions 
(85). Substituting Eragrostis curvula hay with 60% S. lespedeza on a 
DM basis resulted in the greatest reduction in CH4 yield (21.4%) 
compared to a diet of 100% Eragrostis curvula (86). Dietary inclusion 

of S. lespedeza increases propionate production and reduces CH4 
production in the rumen (87). Liu et al. (88) reported that Alpine 
doelings fed on S. lespedeza forage emit less methane compared to the 
control. A study was conducted to assess nutrient digestibility, volatile 
fatty acid (VFA) concentrations, microbial protein synthesis, bacterial 
nitrogen (N) efficiency, and enteric methane (CH4) production in four 
grass-legume diets rich in condensed tannins (CT) (alfalfa, birdsfoot 
trefoil, crown vetch, and S. lespedeza). The results indicated that the 
lowest total CH4 production was observed in the S. lespedeza diet (89).

3.2.4 Plant oil extracts
Plant oil extracts are high in lipids, making them an excellent 

option for mitigating methane emissions (Table 1). Numerous studies 
have indicated that the addition of oils to ruminant diets reduces 
methane production (90). This supplementation decreases the number 
of protozoa and methanogens in the rumen and bio-hydrogenates 
unsaturated fatty acids, thereby reducing methane production (91). 
The shift from carbohydrates to lipids in ruminant diets modifies gas 
production in the rumen, reducing CH4 emissions (92, 93).

3.2.4.1 Rapeseed oil
Rapeseed is the third most popular vegetable oil in the world 

and is extracted from rape (canola) brassica forage. Rapeseed oil is 
low in erucic acid and glucosinolates (94). The inclusion of 
rapeseed oil in the diet of dairy cows decreased enteric CH4 
emissions and modified the microbial community structure 
without affecting the total counts of bacteria, archaea, or ciliate 
protozoa (95). Cattle supplemented with canola oil (rapeseed oil) 
and nitrate reduce enteric methane emissions and protozoal 
populations in the rumen (96). Supplementation of nursing dairy 
cows with 5% rapeseed oil to nursing dairy cows reduced 23% of 
CH4 emissions with no effect on archaea and bacterial abundance 
(97). Dietary supplementation of rapeseed (41 g oil/kg DM) 
decreased daily CH4 emissions from lactating dairy cows by up to 
22.5%, which increased the relative abundance of Methanosphaera 
and Succinivibrionaceae in the rumen and decreased the abundance 
of Bifidobacteriaceae (98). An in vitro experiment reported a 
decrease in the population of Thermoplasmata archaea (a 
methylotrophic methanogen) in the rumen after adding rapeseed 
oil to silage (99). Growing cattle supplemented with a diet 
containing 46 g of rapeseed oil/kg of diet DM decreased CH4 
emissions, but reduced feed intake (100).

3.2.4.2 Camelina sativa oil
Camelina sativa oil is a rich source of unsaturated fatty acids, 

particularly linoleic, linolenic, and oleic acids (101). The rich 
unsaturated fatty acid profile of Camelina sativa oil makes it a very 
good supplement for ruminants because it has high-quality fat (102). 
In addition to being rich in unsaturated fatty acids, it also has a rich 
antioxidant profile (102). Researchers have established that oilseeds 
are generally one of the most effective ways to reduce enteric CH4 
production from ruminants, as they can mitigate CH4 emissions by 
directly inhibiting rumen protozoa and methanogens while 
increasing the bio-hydrogenation of polyunsaturated fatty acids to 
serve as a sink for hydrogen produced by rumen microbes. 
Supplementation with C. sativa oil at different levels in an in vitro 
study significantly decreased CH4 production (15). Camelina oil at all 
levels significantly affected ammonia nitrogen and microbial protein 
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TABLE 2 The effects of plant bioactive compounds (PBCs) on rumen ecology and potential mechanisms.

Plant bioactive compound Effect on rumen ecology Potential mechanism References

Tannin Bacteriostatic in rumen Inhibit the activities of rumen microbes McSweeney et al. (118); Jayanegara et al. 

(119)

Reduce fiber digestion in the rumen. Reduce methanogenesis by decreasing 

the level of available H2 needed for the 

production of methane

Patra (120); Bodas et al. (24)

Increase in the abundance of butyrate-

producing bacteria and other probiotic 

bacteria, such as Bifidobacterium and 

Lactobacillusamino

Decreased the production of short-chain 

fatty acids like acetate and reduced 

methane production

Buccioni et al. (121); Correa et al. (122)

Suppressing the archaea communities 

and increasing total rumen bacteria 

populations

Lower methane production Fagundes et al. (123)

Suppressing the growth of methanogens 

directly

Reduce CH4 production Aboagye and Beauchemin (124)

Decreased organic matter digestion in 

the rumen

Reduce methanogenesis Grainger et al. (125)

Decreased the relative abundance of 

protozoa, methanogens, and 

Ruminococcus albus

Reduce methanogenesis by inhibiting 

methanogen and protozoal growth

Yang et al. (126); Volpe et al. (127); 

Witzig et al. (128)

Saponins Inhibition of protozoal ecology in rumen 

and other methanogens associated with 

protozoa

Reduce protozoal population by 

interaction with sterol moiety present in 

the protozoa membrane thereby 

reducing methanogenesis

Patra and Saxena (129); Bodas and 

Prieto (24); Jayanegara et al. (130); 

Ramírez-Restrepo et al. (131); Guyader 

et al. (132); Liu et al. (133); Tan et al. 

(134)

Essential oil Alteration of rumen microbial ecology. 

Inhibit the growth of methanogenic 

Archaea in the rumen

Inhibit the HMG-CoA reductase, which 

will lead to membrane instability and 

ultimately, death of methanogenic 

archaea cells. Reduce methanogenesis

Patra and Yu (135); Ye et al. (136); Lei 

et al. (137); Belanche et al. (138)

Inhibition activity of gram-positive 

(+ve) and gram-negative (−ve) bacteria

Antimicrobial capabilities are mainly 

due to their interface with the cell 

membrane of rumen microbes by 

disrupting membrane stability of lips 

bilayers of bacterial cells. This inhibition 

in the rumen may lead to an increase in 

propionate levels in the rumen, thereby 

reducing the rate of methane production

Zengin and Baysal (139); Cobellis et al. 

(140); Schären et al. (141); Poudel et al. 

(142)

Increased the abundance of Succinivibrio 

species, Bacteroides species, and 

Succinivibrio species in rumen.

Shift in rumen fermentation pattern, 

favoring propionate production over 

acetate. This may reduce methane 

production

Evans and Martin (143); Lei et al. (137)

Flavonoids Antimicrobial properties Their interaction with rumen microbes 

can decrease the population of 

methanogenic archaea

Purba et al. (144)

Increase the abundance of Fibrobacter 

succinogenes diversity and decrease 

Ruminoccocus albus and Ruminoccocus 

flavefaciens population

Create a competition for hydrogen 

between rumen microbes and other 

methanogens for VFA production and 

methanogenesis.

Kim et al. (145)

Reduce ciliate protozoa and 

hydrogenotrophic methanogens 

population

Inhibit methanogenesis Oskoueian et al. (146); Seradj et al. (147)

Propolis Reduce the population of methanogenic 

Archaea

Inhibit methanogenesis Morsy et al. (148)
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TABLE 3 Results from recent research on the effect of plant bioactive compounds (PBC) on methane emission in the rumen.

Sources of PBC Type of experiment Dosage Diet Methane 
emission

References

Tannins

Acacia mimosa Extracts 

– CT

In vivo (6 Cannulated 

Nellore cattle)

1.25 and 2.25% Grazing 28% Fagundes et al. (123)

Extracts of Lipid 

encapsulated-

Acacia Tannin

In vivo (4 rumen-cannulated 

Merino withers)

50 g/kg feed Eragrotis

Lucerne hay

19% Adejoro et al. (149)

Extracts of Crude-Acacia 

Tannin

In vivo (4 rumen-cannulated 

Merino withers)

40 g/kg feed Eragrotis

Lucerne hay

30% Adejoro et al. (149)

Extracts of Acacia 

nilotica Leaves and Pods

In vitro (Sheep rumen fluid) Leaves (187 g/kg DM 

HT)

Pods (350 g/kg/DM HT)

Acacia nilotica

Leaves and Pods

64% Rira et al. (150)

Tannin-containing – 

Birdsfoot trefoil, 

Sainfoin, and Small 

burnet

In vitro (Heifer) 2.5% CT

4.5% HT

Hay 21–34% Stewart et al. (151)

Tannic acid In vivo (Beef Cattle) 6.5, 13.0, or 26.0 g/kg 

DM

Corn silage and 

concentrate mixture

11.1, 14.7 and 33.6% Yang et al. (126)

Purified hydrolyzable 

(chestnut and sumach) 

and Condensed tannins 

(mimosa and quebracho)

In vitro (Cattle) 0.5, 0.75 and 1.0 mg/mL 70% Hay

30% Concentrate

22–37% Jayanegara et al. (119)

Saponins

Tea saponin In vivo (Sheep) 2.0 g/Day Basal diet 8.8% Liu et al. (133)

Tea saponin In vitro (Bovine) 0.50 g/L 54% Corn silage

6% Hay

40% Concentrate

29% Guyader et al. (132)

Extracts of Yucca 

schidigera

In vivo (Sheep) 170 mg per day 75% Hay

35% Concentrate

16% Wang et al. (152)

Extracts of Knautia 

arvensis leaves

In vitro (Holstein Cow) 10.2 and 20.4 g/kg 50% Hay

50% Concentrate

5.5 and 6.4% Goel et al. (51, 52)

Leaves of Sesbania sesban In vitro (Holstein Cow) 174 g/kg 32% Hay:

68% Concentrate

12% Goel et al. (51, 52)

Seeds of Trigonella 

foenum-graecum

In vitro (Holstein Cow) 30.4 g/kg 50% Hay

50% Concentrate

2% Goel et al. (51, 52)

Essential oil

Essential oil blend In vivo (Dairy cow) 1 g/d/cow Total Mixed Ration 8.8% Belanche et al. (138)

Essential oil blend 

(Coriander, geranyl 

acetate, and eugenol)

In vivo (Dairy cow) 1 g/d/cow Total Mixed Ration 6% Hart et al. (153)

Anise oil In vivo (Sheep) 0, 50, 100, 200, 400 mg/L 40% Hay

60% corn-based 

concentrate

47% Wang et al. (154)

Garlic oil

Eucalyptus oil

Origanum oil

Clove oil

Peppermint oil

In vitro (Lactating Jersey 

Cow)

0.25, 0.50 and 1.0 g/L 

Fermentation medium

Ground alfalfa hay and 

concentrate 50% each

22–42%

17–26%

12–86%

11–34%

8–16%

Patra and Yu (135)

CT, Condense Tannins; HT, Hydrolysable Tannins; DM, Dry Matter Intake.
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in all rations because it altered the proportions of individual ruminal 
volatile fatty acids and decreased CH4 production by altering the total 
number of bacteria, protozoa, and methanogens (103). Dietary 
supplements of camelina oil in Finnish Ayrshire cows in vivo 
decreased ruminal CH4 and CO2 production, but there was no change 
in the total number of bacteria, methanogens, protozoa, and fungi in 
the rumen (104).

3.2.4.3 Garlic oil
Garlic oil was produced from ground garlic cloves and collected 

as a distillate from the vapor when the cloves were heated at a 
temperature of 100°C. Garlic oil is a mixture of various bioactive 
organosulfur compounds; including diallyl disulfide (C6H10S2), diallyl 
sulfide (C6H10S), allicin (C6H10S2O), and allyl mercaptan (C3H6S) and 
others (105). This metabolic profile makes it difficult to determine the 
exact mechanism of fermentation in the rumen. Both gram-positive 
and gram-negative bacteria are sensitive to the antibacterial effects of 
garlic oil (106). In an in vitro experiment, garlic oil was reported to 
decrease methane emissions by 74%, increase propionate and butyrate 
proportions, and decrease acetate and branch-chain VFA proportions 
(107). Garlic oils and their components have been found to modify 
fermentation parameters in the rumen and inhibit methane 
production by reducing the abundance of protozoa (108).

3.2.4.4 Palm oil
Palm oil is an edible vegetable oil extracted from the fruit of 

palm oil trees by squeezing or crushing fleshy fruits or kernels. It 
contains saturated fatty acids (palmitate, 44.3%; stearate, 4.6%; 
myristate, 1%), monounsaturated fatty acids (oleic acid, 38.7%), 
and polyunsaturated fatty acids (linoleic acid, α-linoleic acid 10.5%, 
and others 0.9%) (109). Recent research on supplementation of 
three levels of palm oil (20, 40, and 60 g/kg) to heifers fed 
low-quality grass on enteric CH4 emissions were reported, the 
results show that total daily CH4 production decreased by 4% for 
every 10 g/kg palm oil added while feed conversion efficiency, 
apparent digestibility, intake of nutrients were not affected by the 
inclusion (110). It has also been reported that the addition of 4% 
palm oil decreases in vitro methane production and the number of 
ciliate protozoa (111).

3.3 Mechanism of actions of plant bioactive 
compounds (PBC) and their role in 
reducing methane emissions

PBCs are bioactive compounds that have various effects on plants 
and other living organisms. Many PBCs exhibit anti-methanogenic, 
antioxidant, antimicrobial, anti-inflammatory, anti-helminthic, 
anticoagulant, antidiabetic, and lipid-lowering properties (112). They 
are biologically active metabolites that can exert beneficial effects on 
methane emission, feed digestion, rumen fermentation productivity, 
and the health of livestock animals (113).

These compounds were extracted from the plants. These include 
tannins, saponins, and essential oils that affect methanogenesis by 
inhibiting the growth, development, and activities of the methanogen 
population, both directly and indirectly, by reducing the number of 
protozoa associated with methanogens (Table 2). They may also result 

in a shift toward propionate production, which reduces hydrogen 
competition, thereby affecting methanogenesis (23). PBC additives 
can be  used instead of antibiotics in ruminants owing to their 
antibacterial properties against ruminal bacteria, protozoa, and 
methanogens (114). These metabolites are believed to have beneficial 
effects on livestock end products by altering fermentation in the 
rumen without causing microbial resistance (115).

These phytochemicals can modify the rumen microbiome to alter 
its physiology because of their excellent antimicrobial activity (116). 
Numerous experiments on the potential effects of these 
phytochemicals on fermentation have been conducted both in vitro 
and in vivo, and have been found to significantly improve feed 
digestibility and decrease methanogenesis in the rumen (21). Despite 
various strategies to modify the microbiome of the rumen, PBC has 
significant potential to replace antibiotics in modifying rumen ecology 
and decreasing methane production through various mechanisms 
used by antimicrobial compounds (117). Some of the recognized 
mechanisms of action include disruption of proton motive force, 
disruption of cytoplasmic membranes, active transport mechanisms, 
coagulation of cell composition, and electron flow (26). PBC also 
significantly affects rumen microflora, resulting in the modification of 
fermentation and improved productivity of livestock (117).

Several PBCs, including tannins, saponins, essential oils (EO), 
flavonoids, and propolis have been found to have a significant impact 
on methanogens, protozoal population, feed conversion efficiency, 
absorption, and fermentation parameters as well as reducing CH4 
emissions from animals (15) (see Table 3).

4 Conclusion

This review highlights various phytogenic feed additives 
capable of changing the rumen microbial ecology and reducing 
methane production. Trees, shrubs, and legumes are the most 
effective sources of phytogenic substances that reduce methane 
while improving the volatile fatty acid profile of ruminants 
because they contain numerous bioactive compounds. Most of the 
results in this review are from in vitro experiments; however, to 
understand the efficiency of phytogenic substances and their 
effects on methanogenesis, animal performance, animal health 
and welfare, rumen ecology, safety of phytogenic substances, 
environmental influence, quantity and quality of animal products, 
and applicability of phytogenic additives, in vivo studies over a 
longer period and across various parts of the world are needed. 
These are paramount to providing livestock farmers, 
policymakers, and climate change agencies with reliable 
information on the precise effect of phytogenic feed additives in 
reducing methane emissions while improving animal  
production.
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