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Harnessing the gut microbiome: a 
potential biomarker for wild 
animal welfare
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The welfare of wild animal populations is critically important to conservation, with 
profound implications for ecosystem health, biodiversity, and zoonotic disease 
transmission. Animal welfare is typically defined as the accumulated affective 
mental state of an animal over a particular time period. However, the assessment 
of animal welfare in the wild poses unique challenges, primarily due to the lack of 
universally applicable biomarkers. This perspective explores the potential role of 
the gut microbiome, a dynamic and non-invasive biomarker, as a novel avenue for 
evaluating animal welfare in wild animals. The gut microbiome, through interactions 
with the host’s physiology, behavior, and cognition, offers a promising opportunity 
to gain insights into the well-being of animals. In this synthesis, we discuss the 
distinction between fitness and welfare, the complexities of assessing welfare 
in wild populations, and the linkages between the gut microbiome and aspects 
of animal welfare such as behavior and cognition. We lastly elucidate how the 
gut microbiome could serve as a valuable tool for wildlife managers, with the 
potential to serve as a non-invasive yet informative window into the welfare of 
wild animals. As this nascent field evolves, it presents unique opportunities to 
enhance our understanding of the well-being of wild animals and to contribute 
to the preservation of ecosystems, biodiversity, and human health.
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Introduction

Animal welfare is of paramount global importance, as it directly impacts biodiversity, 
ecosystem health, and the ethical treatment of animals (1). Though the concept originated 
largely in captive and domestic contexts, researchers have recently noted that it is critical to 
consider the welfare of wild populations (2). Measuring wild animal welfare, both of 
individuals and of populations, may give managers new insights into optimizing ecosystem 
function. Despite its significance, there remains a notable lack of reliable physiological 
biomarkers for accurately assessing animal welfare, particularly in wild populations (3). 
Emerging research highlights the gut microbiome as a promising tool in this regard, given its 
profound influence on host physiology and behavior (4–7).

In this perspective, we explore the intersection of the gut microbiome and animal welfare, 
first discussing animal welfare and its relationship to fitness. Then, examining current welfare 
assessment methods, the role of stress and behavior, and the potential of the gut microbiome 
to serve as a novel biomarker. Through a brief review of existing evidence, we aim to outline 
the potential of the gut microbiome as an important indicator of wild animal welfare, with the 
overarching goal of advancing our understanding of how this novel biomarker can 
be harnessed to promote the welfare and conservation of wild species. Additionally, we will 
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confront the challenges and limitations inherent in this endeavor and 
propose directions for future research in this burgeoning field.

Animal welfare

Animal welfare is as challenging to define as human welfare, 
because it ultimately hinges on the definition of subjective internal 
states. Nonetheless, there have been many rigorous attempts to make 
welfare a measurable empirical outcome. Animal welfare can 
be defined most broadly as a state in which an animal is ‘fit and feeling 
good’ (8). We define welfare here as the affective states experienced by 
an individual over a given time period (3). While this is a highly 
subjective definition fundamentally inaccessible to outside observers, 
there are observable metrics of an animal’s coping capacity measuring 
how an animal responds to perturbations (9) that may help to 
triangulate this internal affective state. More specifically, the five 
domains model of animal welfare proposes that researchers assess 
nutritional, environmental, health, behavioral, and mental states of an 
animal to arrive at what might be  called the welfare state of an 
individual (1). Since its introduction in 1994, the five domains model 
has almost exclusively been applied in agricultural, veterinary, and zoo 
contexts (10). Recently, interest has turned to applying models of 
welfare assessment to non-captive wild populations (11). 
Understanding wild animal welfare may provide predictive insights 
into wild animal fitness, as is the definition of welfare.

Welfare vs. fitness

Ecologists and evolutionary biologists are most often concerned 
with fitness, here referring to an individual’s ability to survive and 
reproduce (12). Yet, understanding individual welfare may provide 
valuable insights into ecological stressors and challenges animals may 
face, which can directly impact their fitness. While fitness and welfare 
have sometimes been conflated, it is important to understand their 
relationship given that at times they may be positively correlated, but 
at others times, may not. For example, chronically elevated predation 
risk has been shown to reduce reproduction (13, 14) and also 
negatively impact animal welfare via physiological (15, 16), nutritional 
(17, 18), behavioral (19, 20), and mental states (21, 22) of wild animals. 
Conversely, there is a wealth of literature demonstrating that aspects 
of reproduction, like gestation and lactation, incur costs to the 
individual (23) and that an increase in reproductive output is often 
correlated with a decrease in individual body condition (24). In many 
cervids, for example, the association between female reproductive 
success and indices of body condition change seasonally, where poor 
body condition is associated with high reproductive output in the 
spring largely due to costs of lactation (25), but is then associated with 
decreased survival through winter (26). In cases of terminal 
investment, reproductive output may increase as a ‘last-ditch’ effort 
near the end of an individual’s life, despite decreases in body condition 
(27). For example, Creighton et  al. (28) reared burying beetles 
(Nicrophorus orbicollis) on small vertebrate carcasses and found that 
older females allocated fewer resources to their own body condition 
and instead produced larger broods compared to younger females. In 
this case, a rough proxy of welfare (body condition) and fitness are 
inversely correlated. Thus, these relationships can be complicated and 

depend upon the timing of measurements. While at times there may 
be a disconnect between animal welfare and fitness, in understanding 
the relationship between the two an individual’s welfare may provide 
a powerful predictive tool for wildlife biologists and managers 
enabling proactive management strategies.

Current assessment of welfare

Assessing animal welfare is a multidimensional and challenging 
task, further compounded by the dynamic complexity of wild 
populations (29). It relates to the extent to which the animals’ needs 
and preferences are met, ensuring that they are free from unnecessary 
suffering and capable of expressing natural behaviors (30). In the wild, 
assessing animal welfare presents unique challenges due to the 
stochastic nature of natural environments and the dynamic responses 
animals have to these challenges. Nonetheless, understanding and 
prioritizing animal welfare in wild populations is of paramount 
importance, as it not only relates to the ethical treatment of individual 
animals but also has broad-reaching consequences for biodiversity, 
ecosystem health, and the potential transmission of zoonotic diseases 
to humans (31). The lack of consensus on objective welfare assessment 
methods for captive animals (29) has long been a point of contention 
within the communities of both science and philosophy and this is 
even further exacerbated when evaluating animals in their more 
complex natural habitats (32). Biologists concerned with wild animal 
welfare often turn to more simple behavioral and physiological 
biomarkers, such as stress hormones and their downstream 
metabolites, whose ease of sampling and interpretation are alluring in 
the face of such complexity (33, 34).

Behavior and welfare

Observing and interpreting the behavior of animals is a commonly 
employed method in welfare assessment, and is the 4th of the 5 
domains of animal welfare conceptualized by Mellor et  al. (1). 
Behavioral indicators, such as activity levels, vocalizations, and 
aggression, can provide insights into the emotional and physical state 
of animals. However, these indicators are often context-dependent and 
may not be universally applicable to all species and situations (35). 
Traditional methods of behavior assessment have been developed and 
refined in controlled environments, such as veterinary clinics, 
laboratories, zoos, and agricultural production (10). These settings 
often employ well-established protocols for assessing behavior 
through observations, observer questionnaires, or structured 
experiments (8). Commonly used metrics include activity levels, 
social interactions, vocalizations, and stereotypic behaviors (36). In 
recent years, novel techniques have been developed to assess animal 
welfare through the observation of facial expressions, body postures, 
and other non-invasive indicators. The Grimace Scale, for example, is 
a standardized tool for evaluating pain and distress in mammals based 
on facial expressions (37). While these approaches provide valuable 
insights into animal behavior in captivity, translating them to the wild 
can be challenging, as they may not encompass the full spectrum of 
behaviors exhibited in natural settings (11).

Behavior assessment techniques tailored for wild animals are 
emerging as vital tools for welfare assessment. These include the use 
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of personality tests, such as measuring boldness and exploration 
behaviors, which can offer insights into individual variation and stress 
responses in natural environments (38). Behavioral ecology studies, 
involving the observation of foraging, mating, and predator avoidance 
behaviors, may also contribute to our understanding of the well-being 
of wild animals (39). For example, Mell et  al. (40) found that 
personality was correlated with both metabolic expenditure and 
glucocorticoid stress response in common lizards. Researchers are also 
exploring ways to monitor behavior non-invasively through remote 
sensing technologies, including camera traps, acoustic recorders, and 
GPS tracking (41, 42). These innovative tools enable the observation 
of animal behavior while minimizing human interference, making 
them particularly valuable for assessing welfare non-invasively and in 
remote or sensitive ecosystems. While promising, behavioral metrics 
will still require validation through other welfare-related metrics, such 
as stress physiology. Despite these potential advances, behavior 
remains only one aspect of the totality of an individual’s welfare state, 
and linking external changes in behavior to internal changes in an 
animal’s physiology is critical.

Stress physiology and welfare

Stress, in particular the pathological results of being exposed to 
chronic stressors, is an essential component of welfare assessment, 
given its direct connection with the overall well-being of animals (43). 
Stressors can manifest in various forms, including environmental 
changes, predation pressures, food scarcity, and interactions with 
conspecifics or other species. However, the duration and intensity of 
the stressor is critical to consider when potentially extrapolating stress 
metrics to welfare states. The stress response of vertebrates is highly 
conserved, and functions broadly to aid the organism in maintaining 
homeostasis in the face of a wide array of ecological challenges (44). 
The hypothalamic pituitary adrenal (HPA) axis serves to regulate the 
secretion of key adrenal hormones, namely glucocorticoids, involved 
in maintaining this homeostasis. Due to the pleiotropic nature of 
HPA-associated hormones (45) and their relative ease of sampling, 
they have been widely studied (46). The most common glucocorticoid 
in mammals, cortisol, is a critical mediator of energy balance and has 
downstream effects on numerous cell types and physiological systems 
(34). However, interpretations of stress hormone concentrations in the 
context of animal welfare are not always straightforward. Romero and 
Wikelski (47), for example, found that marine iguanas (Amblyrynchus 
cristatus) exposed to tourism had lower glucocorticoid concentrations 
than more isolated animals. In the context of animal welfare, these 
results are difficult to interpret. It is equally possible that tourist-
exposed iguanas are habituated, and are therefore in a more positive 
welfare state relative to undisturbed animals, or that tourist-exposed 
iguanas are displaying a degraded HPA response, and a more negative 
welfare state. It is also important to note that the glucocorticoid 
response is a non-specific response, triggered by a broad array of 
internal and external perturbations (48). Thus, a clear understanding 
of the stressors involved and an individual’s response to each is 
necessary for the appropriate use of stress hormones as an indicator 
of individual welfare. Beyond glucocorticoids, stress is commonly 
measured using a variety of peripheral downstream markers such as 
free fatty acids, glucose, neutrophil to lymphocyte ratio (15), oxidative 
status (49), and leucocyte coping capacity (50). While many of these 

metrics involve invasive sampling methods (capturing the animal and 
drawing blood), some metabolites may be sampled non-invasively 
(e.g., from feces, hair, or saliva) (34). However, while non-invasive 
sampling methods are beneficial from a cost and welfare perspective, 
they may be more difficult to interpret given the increased variability 
due to individual differences in metabolism, differing rates of 
degradation, and uncertainty of the temporal scale of integration (51).
Thus, validation is critical. Similar to behavioral assessments of 
welfare, linking changes in stress-related metrics to other physiological 
changes, such as the gut microbiome, may provide a more holistic 
understanding of an individual’s welfare.

The gut microbiome

The microbiome refers collectively to the assemblage of 
microorganisms (bacteria, archaea, virus, fungi, protozoans, etc.) that 
colonizes various regions of an organism (52), and whose cells may 
outnumber host cells by an order of magnitude (53). Usage of the term 
microbiome is also commonly extended to include the broad array of 
metabolites and structural molecules (proteins, lipids, etc.) produced 
by microbial communities, many of which have direct effects on the 
host, such as impacts on the immune system (54), digestion (55), 
development (56, 57) and even behavior (58). These phenotypic 
changes in the host may then feedback to have an effect on the 
microbiome (59). While “microbiome” and “microbiota” are 
frequently used interchangeably, only “microbiota” refers to the 
community of microorganisms (independent of the host environment 
and genetic or metabolic biproducts). However, for the purpose of this 
article, we will follow convention, and simply use “microbiome” when 
referring to the microbial community.

The microbiome represents a highly dynamic system, associated 
with host physiology and behavior, and is critical to understanding 
changes in host fitness (60). Recent literature has focused primarily on 
the gut microbiome, as this region has perhaps the most direct 
interface with the host (61). Typically, the microbiome is characterized 
by taking a genetic inventory through extracting microbial genetic 
material from fecal samples or gut biopsies, and amplifying and 
sequencing a taxonomic marker gene. Typically, the 16 s RNA gene is 
used for bacteria and archaea. Bioinformatic methods can then 
be applied to infer the relative abundances of operational taxonomic 
units (OTUs) within the complex microbial community. Absolute 
abundances of microbial groups (‘microbial load’), however, can vary 
markedly across individuals (52). An approach known as quantitative 
microbiome profiling (QMP) accounts for the potential variation in 
individual microbial load and may yield different answers than the 
standard proportional approach (62). Lastly, additional functional 
analyses such as metagenome sequencing (63) and metabolomic 
analysis (64) have the potential to provide direct mechanistic insight 
into the broad array of metabolites which may modulate host 
physiology and behavior.

The microbiome as a possible tool for 
welfare assessment in the wild

In recent years, there has been a burgeoning interest in 
investigating the gut microbiome’s potential as a novel biomarker for 
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assessing the welfare of animals (7). Aspects of the gut microbiome 
and its interaction with the host may serve as a reflection of an 
animal’s health, stress levels, and emotional states (65). For example, 
Kraimi et al. (66) showed that germ-free Japanese quails (Coturnix 
japonica) displayed decreased emotional reactivity across a range of 
tests including tonic immobility and novel-object recognition. 
Applied to wild populations, the intersection of the gut microbiome 
with animal welfare opens the door to a promising avenue of research 
with implications for conservation, wildlife management, and the 
broader field of ecology. In addition to its profound effects on the 
physiology and behavior of its host, the gut microbiome is a primary 
candidate to measure animal welfare given its ability to be sampled via 
fecal collection. One of the major challenges in measuring welfare in 
wild animals is to ensure the measurements themselves do not reduce 
welfare, and as such, the use of a non-invasive method is preferred. 
Thus, the gut microbiome has the potential to serve as a non-invasive 
yet informative window into the welfare of wild animals (67, 68).

The gut microbiome and individual 
physiology and behavior

The gut microbiome holds promise as an estimator of individual 
welfare given it is in constant dialogue with many aspects of host 
physiology, including energy metabolism (69), thermal regulation (70), 
fat deposition (71), immune function (72), and endocrine regulation 
[reviewed in Williams et al. (73)], and its influence on host behavior 
(74, 75). A primary pathway through which behavior is affected, both 
directly and indirectly, is via the central nervous system of vertebrates 
in what has become known as the ‘gut-brain axis’ (4). For example, in 
a landmark study Sudo et al. (76) demonstrated the importance of the 
gut microbiome in the development of a functional stress response in 
lab mice. They found that germ-free mice exhibited hyper-sensitive 
stress responses, elevated levels of corticotropin-releasing factor (CRF) 
mRNA in the hypothalamus, and decreased expression of brain-derived 
neurotrophic factor (BDNF) in the cortex and hypothalamus. These 
effects were reversed when mice were re-colonized with a fecal 
transplant from a normal donor. In another welfare-related study, adult 
zebrafish supplemented with Lactobacillus plantarum displayed 
attenuated anxiety-related behaviors and altered serotonergic and 
GABAnergic signaling pathways in the brain. Given that many 
behaviors influenced by the microbiome in laboratory systems are 
critical for the well-being and adaptive success of wild populations (59, 
77), the microbiome is likely to play a significant role in wild animal 
welfare. Despite its centrality to the physiology of welfare states, there 
have been few ecological studies specifically investigating the gut-brain 
axis in relation to the welfare of wild animals. Taken together, the gut 
microbiome has clear associations with the physiology and behavior of 
the individual, making it a potential bridge between environmental 
stressors, the physiological and behavioral responses of the individual, 
and the expression of welfare-related states. It is critical, however, to 
validate the links between welfare states and aspects of the gut 
microbiome before using it as a metric to assess the welfare of wild 
animals or populations (78). An important caveat when considering the 
usage of the gut microbiome as a welfare biomarker is that the 
relationship between the microbiome and welfare states is bidirectional, 
with microbiome changes potentially both influencing and reflecting 
welfare states. The directionality of this relationship is likely to 

be  dependent on the time over which aggregate welfare is being 
measured, and the specific changes in microbial composition. This 
complexity underscores the need for further research into the dynamics 
of state-behavior feedback loops (79) as they relate to gut 
microbial communities.

Implications for the management of 
populations

Assessment of the gut microbiome holds significant promise for 
wildlife managers who are tasked with monitoring and conserving 
biodiversity, given its relationship with individual welfare and links to 
reproductive success. For example, stressor-induced alterations in the gut 
microbiome (80, 81) can reduce an animal’s reproductive success (82). 
Conversely, it has been shown that the administration of a probiotic can 
increase ovarian function and oocyte maturation (56). In addition to its 
role in physiological and behavioral changes, the gut microbiome’s role 
in modulating immunity and health can also have implications for the 
reproductive success of individuals (73). Thus, by monitoring the gut 
microbiome, wildlife managers can gain valuable insights into the overall 
health and stress levels of animals, and potential for reproductive fitness. 
This information can inform conservation strategies, allowing for the 
timely identification of populations at risk and the implementation of 
targeted interventions to mitigate threats (83). While current research 
on the microbiome is insufficient to support its immediate 
implementation as a management tool, ongoing studies may illuminate 
its potential. Wildlife managers could eventually employ non-invasive 
microbiome assessments to monitor health and stress in populations, 
helping to identify at-risk populations and guide conservation strategies.

Conclusion and future directions
While the potential role of the gut microbiome as an indicator of 

animal welfare in wild populations presents exciting prospects, it also 
underscores the need for further research and exploration into the 
complex relationships between aspects of welfare and changes to host 
microbial communities in wild animals. Here, we outline several key 
avenues for future research:

 1 Species-Specific Considerations: The gut microbiome is highly 
variable across different animal species (6, 84, 85). Future 
research should focus on characterizing the gut microbiomes 
of a wide range of wild species and explore how species-specific 
differences in microbiota composition and function relate to 
their welfare. Such research could unveil unique biomarkers for 
various taxa and ecosystems.

 2 Ecological Context: Wild animals exist within complex 
ecosystems, and their well-being is intricately linked to the 
health of these systems. Future research should consider how 
environmental factors, including habitat quality, food 
availability, and predation pressure, interact with the gut 
microbiome and impact animal welfare. Understanding these 
ecological dynamics is critical for effective conservation efforts.

 3 Temporal Dynamics: Long-term studies are essential to uncover 
the temporal dynamics of the gut microbiome and its 
associations with animal welfare (86). Investigating how 
microbiota composition and function change over seasons, 
years, or across different life stages can provide valuable insights 
into the flexibility and adaptability of this biomarker (87).
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 4 Integration of Multi-Omics Approaches: The gut microbiome 
is just one piece of the puzzle. Combining metagenomic, 
metatranscriptomic, and metabolomic approaches can provide 
a holistic view of the gut microbiome’s functional capacity and 
its interactions with the host (88). This integrative approach 
can offer a more comprehensive understanding of how the gut 
microbiome influences animal welfare.

 5 Non-Invasive Monitoring Techniques and Validation: Developing 
and refining non-invasive techniques for monitoring the gut 
microbiome in the wild is crucial. Remote sampling methods like 
fecal collection should be optimized and validated for use across 
diverse ecosystems and species, ensuring minimal disturbance to 
the animals. To establish the gut microbiome as a reliable welfare 
indicator, its associations with stress, behavior, and health must 
be rigorously validated in various wild species. These associations 
should be quantified and tested across different contexts and 
environmental conditions. Additionally, researchers should take 
into account rates of sample degradation that may depend on age 
of sample, weather conditions, and temperature.

 6 Comparative Studies: Comparative studies between captive and 
wild populations can provide insights into the impact of captivity 
on the gut microbiome and welfare. Understanding how captive 
and wild environments influence the gut microbiome and related 
welfare indicators is essential for managing captive populations 
and for assessing the welfare of released animals. Additionally, 
“healthy” microbiomes are likely to be  context specific. An 
enterotype correlated to positive welfare states in the lab may not 
correspond to positive welfare states in wild environments.

 7 Conservation Applications: The translation of gut microbiome 
research into practical conservation applications is an important 
frontier. Identifying early warning signs of population decline 
or health threats using the gut microbiome can facilitate timely 
intervention and targeted conservation efforts.

The well-being of animals in their natural habitats bears 
substantial significance, extending beyond individual animals to 
encompass broader consequences for ecosystem health, 
biodiversity, and the potential transmission of zoonotic diseases 
to humans. However, assessing animal welfare in the wild is a 
challenge marked by the lack of universally applicable biomarkers, 
emphasizing the need for innovative approaches. The gut 
microbiome, with its dynamic role in mediating stress, behavior, 
and health, and its relationship to fitness has emerged as a 
promising candidate for addressing this gap. By providing insights 
into the physiology and behavior of animals without invasive 
sampling, it offers a window into their physical and emotional 
states. In light of the multifaceted relationships between the gut 
microbiome, stress, and behavior, the potential to employ this 
biomarker for the welfare assessment of wild populations holds 

vast promise. Moreover, conservation biology is undergoing a 
paradigm shift towards wildlife management that proactively 
prevents chronic stress and mitigates welfare-related issues (89). 
In this holistic perspective, the gut microbiome becomes a 
valuable tool for advancing our understanding of animal welfare 
in the wild and enhancing wildlife management strategies. As the 
field continues to evolve, both conservation and animal welfare 
scientists should collaborate to facilitate a more rigorous 
understanding of what constitutes a healthy ecosystem.
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