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Sperm cryopreservation is an approach to preserve sperm cells in liquid nitrogen 
or other cryogenic media for future use in assisted reproductive technologies, 
such as in vitro fertilization or artificial insemination. Sperm cryopreservation has 
been extensively used in the dairy industry and has attained excellent results after 
artificial insemination. However, for small ruminants the application of sperm 
cryopreservation is limited, due to the poor quality of frozen semen and special 
characteristics of the reproductive female tract. In order to improve post-thaw semen 
quality various cryoprotectants are used. Currently, many types of cryoprotectants, 
such as permeable organic solvents, sugars, antioxidants, and natural or synthetic 
ice blockers, have been tested on small ruminants’ sperm cryopreservation. Among 
them, trehalose; has shown potential acting as an excellent cryoprotectant for 
semen freezing. While, the exact roles and action mechanisms of trehalose during 
cryopreservation remain unclear. In this review, we systematically summarized 
the present usage status, potential action mechanisms, and future application 
prospects of trehalose in small-ruminant sperm cryopreservation.
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1 Introduction

Small ruminants, primarily sheep and goats, significantly contribute to the modern 
livestock industry and can provide meat, wool, skin, or milk to our society. However, with the 
fast development of modern intensified agriculture, the genetic diversity of farm animal 
species is rapidly being reduced in many regions worldwide (1). Semen cryopreservation has 
been successfully applied to various mammalian species, including humans, domestic animals, 
and endangered wildlife species. Semen cryopreservation offers multiple advantages to the 
small ruminant livestock industry through the worldwide distribution of excellent genetic 
materials through artificial insemination (AI) (2, 3). It is important to take into account that 
the freezing and thawing process can have a harmful impact on sperm (4, 5). According to 
current reports, cryopreservation can lead to ice formation, cold shock, chemical effects caused 
by cryoprotectants, osmotic injury, oxidative injury, and apoptosis (6–8). These factors 
ultimately damage the structure and physiological function of sperm. Furthermore, these 
stresses primarily damage the plasma membrane of sperm, resulting in a significant decrease 
in the viability and fertility of post-thaw sperm (9, 10). In addition, the cryopreservation 
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process causes sublethal cryoinjuries that result in approximately 50% 
of post-thawed sperm thus losing their viability during cervical 
artificial insemination with frozen–thawed semen (11).

In sheep, it has been reported that after thawing, 40 to 60% of 
sperm are still motile, but only 20 to 30% are biologically functional 
(12, 13). The use of frozen/thawed semen in conventional insemination 
yields poor fertility in sheep. This may be due to different factors but 
one of the most important restrictive reasons is considered to be the 
anatomical structure of the cervix (14–19). Currently, frozen–thawed 
semen generally attained a better results by intrauterine insemination 
(19–23). However, this technique needs specific equipment and well-
trained technicians. Therefore, to elucidate cryoinjury mechanisms 
and improve the quality of frozen–thawed ram sperm still remains a 
great challenge until now.

The success of mammalian sperm cryopreservation is influenced 
by the species and individual factors (24). In addition, research and 
advancements in semen cryopreservation techniques continue to 
focus on enhancing the efficiency and success rates of sperm freezing 
including the optimization of the cryoprotectant solutions used, 
development of better freezing and thawing protocols, and application 
of new approaches to enhance sperm post-thaw survival and 
functionality (3, 25–28). Among these measures, selecting 
cryoprotectants is important. Cryoprotectants are substances that help 
protect sperm cells from damage during the freezing and thawing 
process (29, 30). Glycerol has been shown to have excellent 
cryoprotective effects on livestock semen and is now an essential 
component in the semen freezing extenders (31–33). Furthermore, 
other cryoprotectants, such as sugars (34–36), antioxidants (37–39), 
antifreeze proteins (40–42) and synthetic ice blockers (43, 44) have 
been used for semen cryopreservation. Moreover, among the sugars 
used in semen cryopreservation is tehalose. Previous investigations 
have proven that trehalose has beneficial effects on sperm during 
cryopreservation (45–49). Trehalose has been used for mammalian 
sperm cryopreservation, and previous studies have shown that it can 
increase sperm’s tolerance to cryoinjuries (47, 50, 51). Moreover, 
trehalose may have better cryoprotective effects on small ruminant 
sperm than other oligosaccharides, such as sucrose (48, 52, 53). 
However, there are still some disagreements (54, 55). More precisely, 
the ability of trehalose to preserve the motility of frozen sheep sperm 
is similar to that of sucrose (54). In another study, the effects of 
trehalose on frozen goat sperm are not superior to those of other 
oligosaccharides, including sucrose, maltose, and lactose (35). Also, it 
should be pointed out that trehalose, unlike glucose and fructose, is 
unable to pass through the plasma membrane. So, the primary 
function of trehalose is to protect against extracellular cryodamage (56).

The mechanisms that contribute to the cryoprotective effects of 
trehalose on mammalian sperm are still unclear, despite the existence 
of several hypotheses. The purpose of this review is to summarize the 
current research on trehalose for cryopreservation of small ruminant 
semen, which includes its current usage status, potential action 
mechanisms, and future application prospects.

2 The characteristics and potential 
application of trehalose

Trehalose is a typical non-reducing disaccharide composed of two 
glucose molecules linked together. It is naturally produced in various 

organisms, such as plants, fungi, bacteria, and invertebrates (57). 
Trehalose is known for its unique properties, which make it useful in 
a variety of applications. Specifically, it can act as a protective agent 
against stressors, such as desiccation, extreme temperatures, and 
oxidative damage (58). Recently, trehalose has received a lot of 
attention in the food and pharmaceutical industries due to its 
protective properties (59–61). One of the most notable characteristics 
of trehalose is its capacity to form a protective barrier around cells and 
biomolecules (57, 62, 63). Trehalose acts as a stabilizer, helping to 
preserve the structure and function of proteins, enzymes, and other 
biological molecules (61, 64). It is employed in the pharmaceutical and 
biotechnology industries to stabilize and maintain the active 
ingredients in medications, vaccines, and diagnostic kits (65). 
Furthermore, in the food industry, trehalose is used as a sweetener, 
flavor enhancer, and stabilizer for various products. Trehalose is a 
common ingredient in processed foods, baked goods, and beverages 
(66). It has the potential to enhance the texture, taste, and shelf life of 
these products. In addition, trehalose has been examined for its 
potential health benefits. According to some research, trehalose has 
been reported to have antioxidant and anti-inflammatory properties 
(67, 68), and it has the potential to be utilized in the prevention or 
treatment of certain diseases.

Trehalose also has the ability to act as a cryoprotectant, and is able 
to prevent ice crystal formation as well as maintain cell and tissue 
structural integrity during cryopreservation processes (47, 69–71). In 
the context of sperm cryopreservation, trehalose has been investigated 
as a potential cryoprotectant in many studies (72–75). It has been 
demonstrated that trehalose protects semen quality parameters from 
cryodamage (76–78).

Generally, the particularly cryoprotective properties of trehalose 
make it an intriguing substance for various applications, including 
sperm cryopreservation. However, it’s worth noting that other 
cryoprotectants are also commonly used in combination with 
trehalose or as alternatives, and the choice of cryoprotectants depends 
on the specific requirements of the cryopreservation protocol. The 
most effective and standardized protocols for sperm cryopreservation 
using trehalose as an important cryoprotectant are still being 
researched and optimized.

3 The application of trehalose in 
semen cryopreservation of small 
ruminant

The effects of trehalose on sheep (31, 49, 56, 79, 80) and goat sperm 
(81–84) cryopreservation have been evaluated. Most researchers support 
the positive effects of trehalose on sperm during the cryopreservation 
process. For example, the best results were obtained in sheep semen 
using tris, citric acid, fructose, egg yolk, glycerol supplemented with 50 
or 100 mOsm of trehalose, while the post-thaw sperm quality 
significantly decreased with 200 and 400 mOsm of trehalose (76). 
Trehalose confers a greater cryoprotective capacity to the base extender 
when added up to 100 mOsm. Other studies have also reached similar 
conclusions (45, 85). In addition, sperm plasma membrane evaluation 
by ultramicroscopy indicated better cryoprotective effects on sperm 
frozen in an extender containing trehalose, there was a significant 
reduction in the number of damaged membranes (45). In an earlier 
study by our team, it was found that trehalose had superior 
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cryoprotective effects on sheep sperm’s ultrastructure, compared to 
other cryoprotectants, such as natural or synthetic ice blockers (70).

Cryopreserving sheep semen in an extender with 100 mM 
trehalose resulted in a decrease in oxidative stress caused by the 
freezing and thawing process due to the antioxidant proprieties of 
trehalose (86). In goats, a tris-based extender supplemented with 
trehalose at 100 mM can improve post-thaw semen characteristics 
(87). According to an additional study, adding 150 mM trehalose to 
the tris-citric acid-egg yolk-fructose diluent resulted in higher 
efficiency for goat sperm cryopreservation due to its improved 
motility, viability, plasma membrane integrity, and acrosome integrity 
(81). Moreover, there are still some disagreements regarding trehalose’s 
cryoprotective properties for sperm (3, 56). Trehalose and sucrose 
have comparable abilities to maintain the motility of frozen sheep 
sperm (54). According to a different study, trehalose does not enhance 
the quality of frozen goat spermatozoa (35). In addition, trehalose was 
found to have detrimental effects on the post-thaw kinetic sperm 
parameters when dimethylacetamide was present (88). Besides, the 
post-thaw motility and morphology were not improved when the 
trehalose content in the freezing extender was 50 mM or 100 mM (89).

In some studies, trehalose and other cryoprotectants were used 
together to enhance the cryoprotective effects of trehalose on frozen 
sperm. The addition of a combination of oleic acid and trehalose 
concentrations to a Tris-based extender can improve the post-thaw 
quality of ram semen (74). Moreover, the combined addition of fetuin 
and trehalose to the tris-based extenders can lower the overall glycerol 
usage concentration to 3%, reducing the harmful effects of glycerol 
and improving the quality of cryopreserved ram sperm (77). Likewise, 
the post-thaw of ram sperm was improved with 60 mM trehalose (79). 
Besides, it was observed that there was a positive synergic impact of 
iodixanol and trehalose on cryosurvival of semen (90). When the 
combination of antipain (10 μM) and trehalose (30 and 60 mM) was 
included, they conferred an extraordinary cryosurvival capacity (91). 
In a previous study, in a soybean lecithin-based extender, a 
combination of 100 mM trehalose and 5% glycerol was the best 
combination to realize a better post-thaw quality of ram sperm (80). 
In goats, supplementation of 200 nM MitoQ alone or along with 
150 mM trehalose to semen extender can improve the quality of 
cryopreserved sperm, which may be related to improved antioxidant 
enzymatic defense and mitochondrial activity and reduced DNA 
fragmentation (78). Another investigation suggests that adding 3 mM 
and 6 mM pentoxifylline or 50 mM and 70 mM trehalose reduces the 
damage caused by cooling and cryopreservation processes (83). 
Furthermore, freezing goat sperm in a trehalose-egg yolk extender 
with a sufficient concentration of sodium dodecyl sulfate greatly 
increased the sperm’s ability to freeze (92). We can summarize that the 
effect of trehalose depends on the concentration, extenders, breed, 
species and cryopreservation protocols. Table 1 summarizes the effects 
of trehalose, alone or combined with other substances, on semen 
cryopreservation in small ruminants.

4 The role of trehalose as an 
antioxidant in semen cryopreservation 
of small ruminant

Trehalose, a non-reducing disaccharide, has gained prominence 
in cryobiology due to its multifaceted protective properties, 

particularly as an antioxidant during semen cryopreservation (93, 94). 
The cryopreservation process induces osmotic stress and causes the 
generation of excessive reactive oxygen species (ROS), leading to 
oxidative stress, which is a major cause of sperm damage (95).

Trehalose’s antioxidant effect stems from its ability to scavenge 
free radicals, thereby preventing ROS accumulation. It stabilizes cell 
membranes by forming a glass-like structure around phospholipid 
bilayers during freezing, which preserves the integrity of the sperm 
membrane against cold shock and osmotic stress (96). Studies have 
demonstrated that trehalose significantly reduces the levels of 
malondialdehyde a marker of lipid peroxidation, thereby maintaining 
the integrity of sperm membrane lipids. Additionally, trehalose 
prevents mitochondrial dysfunction, which is a key source of 
endogenous ROS during cryopreservation, ensuring higher post-thaw 
ATP levels and energy metabolism (78). Furthermore, trehalose has 
been shown to modulate the activity of antioxidant enzymes such as 
superoxide dismutase (SOD) and glutathione peroxidase (GPx) 
during cryopreservation (50). By maintaining these enzymatic 
defenses, trehalose reduces oxidative damage to sperm DNA and 
proteins, resulting in improved sperm chromatin integrity and lower 
levels of DNA fragmentation post-thaw (47). Furthermore, its 
antioxidant properties protect the sperm membrane against the 
attacks enacted by free radical to ROS (86). Recently it has been 
demonstrated that trehalose can protect sperm from oxidative stress 
by enhancing antioxidant capacity (83). Moreover, lower doses of 
trehalose reduce lipid peroxidation and protect the spermatozoa (84).

The inclusion of trehalose in cryopreservation extender has been 
widely reported to enhance antioxidant activity, decrees the oxidative 
stress and improve the sperm motility and membrane integrity during 
sperm storage (45, 97).

5 The proposed mechanisms of action 
of trehalose during cryopreservation 
of semen

Different from monosaccharides including fructose and glucose, 
trehalose, acting as a sugar, cannot permeate the plasma membrane. 
As such, its primary role is that of an extracellular cryoprotectant (98, 
99). The report by Crowe et al. (100) suggested that trehalose needs to 
be present on both sides of the plasma membrane in order to have the 
best protective effects. To address this issue, several technologies have 
been developed, including microinjection of trehalose into cells, 
transfection to express trehalose in mammalian cells and thermotropic 
lipid phase transition (101–104). Research is still needed to determine 
whether these technologies could introduce trehalose into sperm 
cryopreservation. Furthermore, the exact mechanism for the effect of 
trehalose on semen cryopreservation remains unclear.

At present, numerous hypotheses were recommended along with 
the enhancement of extracellular vitrification formation, prohibiting 
intracellular ice formation, stabilization of liquid crystalline within the 
plasma membrane, linkage with phospholipids and reorganization of 
the plasma membrane, enhancement of membrane fluidity, antioxidant 
activity, reduced apoptosis, etc. (Figure 1). At first, an excessive glass 
transition temperature (Tg) is a crucial function of trehalose (105). The 
Tg of trehalose (−30°C) is a considerably higher than that of different 
conventional cryoprotectants, which include ethylene glycol (−8°C) 
and glycerol (−65° C) (106). Therefore, the presence of trehalose in the 
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media may also make contributions to extracellular vitrification 
formation and decrease in ice crystal production. Secondly, trehalose 
can increase extracellular osmotic pressure, cause cell dehydration and 
decrease the formation of lethal intracellular ice (9). Thirdly, trehalose 
might also additionally update the water shell of macromolecules with 
the aid of hydrogen bonding and keep away from cryodamage resulting 
from the freezing and thawing process, in line with the “water 
replacement hypothesis (Figure 2) (57, 58). Crowe et al. (58) believed 
that owing to its ability to replace the water shell of macromolecules, 
trehalose may prevent injury during freezing or drying. As a 
replacement for the water molecule, trehalose can link membranes or 
other macromolecules by hydrogen bonding, which is thought to be a 

necessary condition for reducing the liquid crystalline to gel phase 
transition temperature (107, 108). Many researchers have mentioned 
the stabilization mechanism of trehalose in frozen or lyophilized 
organic cells (109, 110). As a substitute for the water molecule, 
trehalose can hyperlink membranes or different macromolecules 
through hydrogen bonding, which may be a notion to be an important 
circumstance for lowering the liquid crystalline to gel segment 
transition temperature (58, 111). In addition, the supplementation of 
trehalose can enhance plasma membrane fluidity of sperm (97). 
Moreover, trehalose can also link with plasma membrane 
phospholipids, reorganize plasma membrane, and make sperm survive 
through the freezing and thawing process (112, 113). It can 

TABLE 1 Effects of trehalose (alone or in combination) on semen parameters in small ruminants during cryopreservation.

Trehalose (alone or 
with other 
substances)

Ruminant (sheep or 
goat)

Doses Effect on semen 
cryopreservation

References

Trehalose alone Sheep 50–100 mOsm Improved post-thaw sperm motility, 

viability, and membrane integrity. and 

reduced oxidative stress.

(45, 76, 86)

Trehalose alone Goat 100 mM Improved post-thaw motility, viability, 

and acrosome integrity. Reduced 

oxidative stress and enhanced 

membrane integrity and ultrastructure 

preservation.

(81, 87)

Trehalose alone Goat 150 mM Improved sperm motility, viability, and 

plasma membrane integrity.

(81)

Trehalose + oleic acid Sheep Not specified Improved post-thaw motility and 

overall semen quality.

(74)

Trehalose + fetuin Sheep Not specified Reduced glycerol concentration (to 3%), 

which lessened glycerol’s harmful effects 

while improving sperm motility and 

membrane integrity.

(77)

Trehalose + iodixanol Sheep 60 mM Enhanced sperm cryosurvival. (90)

Trehalose + antipain Sheep 30–60 mM Increased sperm cryosurvival and 

membrane integrity.

(91)

Trehalose + glycerol Sheep 100 mM trehalose +5% 

glycerol

Best post-thaw sperm quality in terms 

of motility, viability, and morphology.

(80)

Trehalose + glycerol Sheep 100 mM trehalose +5% 

glycerol

Best post-thaw sperm quality in terms 

of motility, viability, and morphology.

(80)

Trehalose + glycerol Sheep 100 mM trehalose +5% 

glycerol

Best post-thaw sperm quality in terms 

of motility, viability, and morphology.

(80)

Trehalose + MitoQ Goat 150 mM trehalose 

+200 nM MitoQ

Improved post-thaw motility, viability, 

mitochondrial activity, antioxidant 

defense, and reduced DNA 

fragmentation.

(78)

Trehalose + pentoxifylline Goat 50–70 mM Reduced damage during 

cryopreservation and cooling processes, 

improving sperm motility and 

membrane integrity.

(83)

Trehalose + sodium dodecyl 

sulfate

Goat Not specified Enhanced sperm’s ability to withstand 

freezing, improving motility and 

membrane integrity.

(92)

Trehalose (compared with other 

sugars)

Sheep 100 mM Comparable motility preservation to 

sucrose.

(54)
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be integrated into the plasma membrane and prohibit the excessive 
dehydration of sperm during the cryopreservation process, 
consequently reducing the physical damage caused by abnormal 
variations of cell volume (114). In addition, the cryoprotective roles of 
trehalose can also be related to its antioxidant activity. Finally, in ram, 
trehalose suppresses lysophosphatidylcholine-precipitated acrosome 
response in sperm, therefore enhancing cryosurvival of sperm (115).

As of now, the omics innovations technologies have been utilized 
within the inquiry about small ruminants’ sperm. In understanding with 

the show reports, the cryopreservation process can modify the abundance 
of transcripts (116–122), proteins (6, 123–127), metabolites (128–130) 
and lipids (131). In a few scattered thoughts, about, analysts endeavored 
to investigate the cryoprotective components of trehalose on little 
ruminant sperm amid the cryopreservation handle from the viewpoint of 
transcripts, proteins, and metabolites. In a previous study, the group used 
electrophoresis technology to assess the relationship between the presence 
of protein in ram plasma and the quality of semen frozen with 5% glycerol 
or 100 mM trehalose (132). A total of 26 bands were identified in ram’s 

FIGURE 1

The present cryoprotective hypotheses of trehalose during cryopreservation of mammalian sperm.

FIGURE 2

The diagram of water replacement hypothesis. The upper figure represents the changing in sperm plasma membrane from normal liquid crystalline 
phase to gel phase during freezing in the absence of trehalose. The below figure represents the maintenance of liquid crystalline phase in sperm 
plasma membrane after freezing in the presence of trehalose.
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seminal plasma. In another study, a total of 1,269 proteins were identified 
using the isobaric tag for relative and absolute quantification (iTRAQ) 
strategy combined with parallel reaction monitoring (PRM) Among 
them, 21 differentially expressed proteins were identified. These proteins 
were involved in oxidoreductase activity, stress response, and catabolic 
processes, which may be associated with the cryoprotective effects of 
trehalose (56). Regarding changes in sperm metabolites after freezing in 
the presence of trehalose, a research group used GC–MS-based 
metabolomics to investigate the effects of trehalose on goat sperm (85). 
48 different metabolites were found. L-isoleucine, L-leucine, L-threonine, 
and dihydroxyacetone are synthesized through this pathway, including 
valine, leucine, and isoleucine biosynthesis, glycerolipid metabolism, and 
aminoacylRNA biosynthesis (85). For this reason, they thought that 
trehalose played an important role in changing the amino acid and 
glycerol metabolism processes in sperm (35). Recently, the use of the RNA 
sequencing (RNA-Seq) approach to investigate the consequences of the 
cryopreservation procedure on mammalian sperm transcript profiles 
became a hot spot (133–135). To the best of our knowledge there are no 
published reports to elucidate the effects of trehalose on the post-thaw 
small ruminant sperm based on the changes of sperm-derived RNAs. 
According to our unpublished research, storage conditions significantly 
alter the transcription profiles of sheep sperm. However, no mRNA had 
different expression levels between the control group and the trehalose 
group. Therefore, we initially hypothesized that the inhibitory effect of 
trehalose might be unrelated to transcriptomic changes of sperm during 
storage. However, this result requires further investigation.

6 The future application prospects of 
trehalose in semen cryopreservation

Although there are still ongoing debates, most studies support the 
positive effect of trehalose on small ruminant spermatozoa during storage 
(45, 47, 79). It should be noted that the cryoprotective effect of trehalose 
may depend on certain factors such as the species, breed, and composition 
of the extenders used (3). Moreover, the mechanism underlying this 
protective function is not yet fully clear. According to current studies, the 
use of omics technologies, including genomics, transcriptomics, 
proteomics and metabolomics, may be the best solution to investigate the 
mechanism of trehalose utilization. In particular, changes in the structure 
of RNA molecules such as mRNA, lncRNA, circRNA and microRNA may 
be an important mechanism explaining the functional role of trehalose 
(133, 136–139). Semen quality may also be associated with sperm fertility 
(102, 140, 141) and may give us some clues about the role of trehalose. 
However, the limitations of this study are related to how we can obtain 
useful information from already published studies, since most of the 
current studies on spermatozoa research include basic bioinformatic 
analysis. Nevertheless, some results are completely speculative and do not 
stand up to scrutiny. However, according to the “water exchange 
hypothesis” theory, most of the major trehalose must enter the cell to 
be effective in the inhibition process (57, 58). Finally, the mechanism of 
trehalose loading in yeast is complex. The actual effect of trehalose on 
sperm quality remains to be confirmed.

7 Conclusion

Trehalose has demonstrated beneficial effects during 
cryopreservation of small ruminant sperm according to the most 

current investigations. However, some disputes about the effects of 
trehalose on sperm characteristics after the cryopreservation process 
still exist. Currently, some hypotheses, such as the water replacement 
hypothesis, enhancement of membrane fluidity, and prevention of ice 
formation, have been proposed to explain the possible functional roles 
of trehalose during semen cryopreservation. However, the real 
cryoprotective mechanism of trehalose still needs to be determined.

At present, the rapid development of omics technologies including 
transcriptomics, proteomics, and metabolomics may provide new 
opportunities for elucidating the cryoprotective roles of trehalose. In 
addition, according to the “water replacement hypothesis,” trehalose 
should be present in cells to ensure its optimally protective effects on 
frozen cells. However, how to load trehalose into sperm is a difficult 
task that may influence the actual action effects of trehalose. Finally, 
the cryoprotective function of trehalose on sperm still needs 
verification by artificial insemination in the field.
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