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Introduction: Antimicrobial resistance (AMR) is a growing threat to the efficacy 
of antimicrobials in humans and animals, including those used to control bovine 
respiratory disease (BRD) in high-risk calves entering western Canadian feedlots. 
Successful mitigation strategies require an improved understanding of the 
epidemiology of AMR. Specifically, the relative contributions of antimicrobial use 
(AMU) and contagious transmission to AMR emergence in animal populations 
are unknown.

Materials and methods: A stochastic, continuous-time agent-based model 
(ABM) was developed to explore the dynamics of population-level AMR in 
Mannheimia haemolytica in pens of high-risk cattle on a typical western Canadian 
feedlot. The model was directly informed and parameterized with proprietary 
data from partner veterinary practices and AMU/AMR surveillance data where 
possible. Hypotheses about how AMR emerges in the feedlot environment were 
represented by model configurations in which detectable AMR was impacted 
by (1) only selection arising from AMU; (2) only transmission between animals in 
the same pen; and (3) both AMU-linked selection and transmission. Automated 
calibration experiments were used to estimate unknown parameters of interest 
for select antimicrobial classes. Calibrated parameter values were used in a 
series of Monte Carlo experiments to generate simulated outputs at both the 
pen and feedlot levels. Key model outputs included the prevalence of AMR by 
class at multiple time points across the feeding period. This study compared 
the relative performances of these model configurations with respect to 
reproducing empirical AMR data.

Results: Across all antimicrobial classes of interest, model configurations which 
included the potential for contagious acquisition of AMR offered stronger fits 
to the empirical data. Notably, sensitivity analyses demonstrated that model 
outputs were more robust to changes in the assumptions underscoring AMU 
than to those affecting the likelihood of transmission.

Discussion: This study establishes a feedlot simulation tool that can be used to 
explore questions related to antimicrobial stewardship in the context of BRD 
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management. The ABM stands out for its unique hierarchical depiction of AMR 
in a commercial feedlot and its grounding in robust epidemiological data. Future 
experiments will allow for both AMU-linked selection and transmission of AMR 
and can accommodate parameter modifications as required.

KEYWORDS

agent-based model (ABM), simulation model, antimicrobial resistance (AMR), bovine 
respiratory disease (BRD), antimicrobial use (AMU)

Introduction

The Food and Agriculture Organization of the United Nations 
(FAO) describes the development of antimicrobial resistance (AMR) 
as a significant threat of global concern (1), a problem exacerbated by 
the misuse of antimicrobials in both human healthcare and 
agricultural settings. Antimicrobials are used in food–animals to 
control and treat common bacterial diseases; the intensification of 
livestock production may facilitate the rapid dissemination of 
infectious agents and is associated with increased antimicrobial use 
(AMU) (2, 3). Antimicrobial use favours the selection of resistant 
bacterial pathogens, and international guidelines on prudent AMU in 
food–animals recommend therapeutic alternatives to antimicrobials 
(e.g., vaccines) and improvements to animal husbandry that limit the 
spread of disease (4, 5). The FAO maintains that successful mitigation 
strategies will crucially depend on ‘an improved understanding of the 
epidemiology of AMR emergence and spread in animal 
production’ (3).

A study of over 2.6 million cattle in western Canadian feedlots 
reported that 97 and 73% of all animals were administered in-feed and 
individually dosed antimicrobials, respectively (6). The Canadian 
Feedlot AMU/AMR Surveillance Program (CFAASP) subdivides 
AMU for bovine respiratory disease (BRD), liver abscesses, and 
lameness (7, 8). These and other production-limiting diseases are 
associated with economic costs related to drug and labour expenses, 
decreases in cattle performance and feed conversion, reduced carcass 
values, and increased mortalities. BRD is often described as the most 
common and costly disease affecting North American beef cattle and 
accounts for 65–80% of mortality in some feedlots (9). The majority 
(>90%) of individually dosed AMU in the study by Brault et al. (6) was 
administered to prevent or treat BRD, a finding mirrored in more 
recent data (2019–2022) published by CFAASP (8). Taken together, 
these figures underscore the importance of BRD as a determinant of 
AMU in finishing feedlots.

BRD is a multifactorial disease characterized by the complex 
interactions between bacterial and viral pathogens, the host’s immune 
response, and the management and environmental conditions at 
different phases of the production chain (10). In a recent review, Smith 
(11) details the ‘accumulation of stress events’ that increase the risk of 
BRD in post-weaned calves, including the potentially 
immunosuppressive impacts of repeated handling, long-distance 
transport, commingling, and processing at feedlot entry (10–12). The 
FAO notes that ‘times of stress’ (1) are linked to increasing AMU in 
animal production; similarly, the World Organization for Animal 
Health (WOAH) emphasizes the role of husbandry practices that 
reduce stress in farmed animals as central to preserving the efficacy of 
antimicrobials (13). Owing to the many known risk factors 
predisposing cattle to acute respiratory disease (11), alternative 

measures to control BRD are considered complex and costly (14). 
Consequently, the feedlot industry relies on the continued accessibility 
and effectiveness of antimicrobials for metaphylaxis, defined here as 
the mass medication of an entire group of at-risk cattle to control 
expected outbreaks of BRD (15).

The bacterial pathogens associated with BRD are typically 
described as commensal in clinically healthy calves (16) and include 
Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, 
and Mycoplasma bovis. The risk of stress-induced susceptibility to 
opportunistic infection of the respiratory tract with these bacteria 
varies by type of feeder cattle (10, 11). An assessment of BRD risk 
informs the selection of on-arrival metaphylaxis (6). It includes factors 
related to animal age, origin, weather and transport conditions, 
clinical appearance, and previous vaccination and management 
history (if known). Younger, lighter and recently weaned calves, and 
those that are mixed/commingled during procurement (i.e., via the 
auction market) are generally considered higher risk than their older, 
heavier, and ranch-direct counterparts (17). In a census of 36 feedlots 
(6), high-risk cattle were 1.6 times more likely to receive metaphylaxis 
for BRD than low-risk cattle, and over 100 times more likely to receive 
a macrolide. The development of resistance to macrolides and other 
antimicrobial classes of importance to human medicine (18) is of 
particular concern, given that commensal and environmental bacteria 
can carry AMR determinants across species. The CFAASP has been 
monitoring trends in AMR in both bovine respiratory pathogens and 
enteric bacteria in Canadian feedlot cattle since 2019 (19).

Over the last several decades, little has changed in how the feedlot 
industry manages BRD in high-risk calves (20), and antimicrobials 
continue to be efficient tools for disease control (21). In reviewing 
priority actions to prevent suboptimal AMU in food–animal 
production, Lhermie et al. (21) advocates that research is needed to 
assess the impact of alternative strategies using fewer antimicrobials. 
Gröhn wrote about the complexity of food–animal systems and 
characterized the relationships between their component parts as 
interdependent and multidirectional (22). He  advocates for using 
systems science approaches that ‘integrate modelling and mathematics 
with biological studies’ to build effective policy responses (22). Indeed, 
mathematical or dynamic models are well suited to represent and 
study AMR and similarly complex systems characterized by 
non-linearities, feedback loops, and time-varying variables (23). A 
review of compartmental and individual or agent-based (ABM) 
models which investigate the problem of AMR in relation to AMU in 
human and animal populations was published in 2018 (24); the review 
noted that models which examined AMR in food–animal settings 
were critically underrepresented in their dataset.

This work aimed to develop and utilize an ABM to explore the 
dynamics of population-level AMR emergence in high-risk cattle in a 
western Canadian feedlot. In particular, this study endeavours to 
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determine the importance of contagious transmission for AMR 
emergence at the population level relative to AMU-linked selection 
pressure (3). Careful consideration was given to the clarity and 
transparency with which the model’s structure, assumptions, and 
inputs were reported, consistent with best practices (24–26). 
Furthermore, the model was grounded in robust epidemiological data 
wherever possible. This study demonstrates the model’s value as a tool 
for experimenting with strategies that support prudent AMU and 
limit AMR in the feedlot setting.

Materials and methods

Model description

A complete model description is available as a Supplementary file 
and follows the Overview, Design concepts, and Details (ODD) 
protocol for detailing agent-based models (ABMs) (27, 28). Key 
features of the model are briefly described in this section. While the 
initial model calibrations and subsequent experiments reported here 
were performed with exclusively higher risk steers entering a small to 
mid-sized feedlot (6,000–10,000 head, respectively), the following 
description will note where model parameters can be modified with a 
user-friendly spreadsheet to customize the output for specific feedlot 
and cattle characteristics.

The research protocols and procedures for animal data collected 
for this study at the University of Saskatchewan were approved by the 
University of Saskatchewan Animal Care Committee (AUP 20190069).

Purpose

A stochastic, continuous-time ABM was constructed with 
AnyLogic® 8 simulation software (version 8.8.6) using Java-based 
code to develop an evidence-based tool that can be used to explore 
questions related to antimicrobial stewardship in the management of 
BRD. Model variations in this baseline effort represent hypotheses 
about how AMR emerges and spreads in the feedlot environment; 
structural modifications distinguish between (1) a model in which 
only selection arising from AMU impacts detectable AMR, (2) a 
model in which only the transmission of resistant bacteria between 
animals impacts detectable AMR, and (3) a model in which both 
AMU-linked selection and transmission impacts detectable AMR. A 
comparison of the relative performance of these models concerning 
reproducing empirical trends in AMR is a key component of this study.

Key assumptions underscoring model 
conceptualization

Representations of this type require that researchers share and 
scrutinize their assumptions about how the system of interest works 
(24). The simplifying assumptions defining this model’s scope are first 
highlighted here and explored in greater detail in the ‘Agents and State 
Charts’ section. The model is initially described with specific 
parameter assumptions to facilitate the structural comparisons 
regarding how AMR emerges in the feedlot. In recognizing the 
potential for variation in cattle population and management, the 

model was constructed to readily accommodate these complexities by 
varying the parameter settings at start-up. These features are explored 
in sensitivity analyses in the present study, and the ability to modify 
assumptions via parameter settings is equally available for 
future experimentation.

Feedlot size and population
The particular configuration for this model represented a 

typical, mid-sized western Canadian feedlot populated by auction-
sourced beef steer calves arriving in the fall. The 500–600-pound 
calves in this model were assumed to represent a moderately high 
risk of AMR selection and dissemination in the feedlot setting, given 
the potential for infectious disease spread and exposure to 
antimicrobials (29). In feedlot research, arrival weight is used as a 
proxy for BRD risk when other risk factor data are unavailable (29, 
30). With the availability of appropriate data, future experiments 
with the model could incorporate very lightweight calves (i.e., 
300–450 pounds) at the highest risk for treatment and 
morbidity outcomes.

The model simulated the arrival by truck of lightweight steers at 
random intervals starting 1 October. The cattle deliveries increased 
in frequency from the start of the ‘fall run’ in October and peaked in 
November before slowing again until the feedlot reached full 
capacity in December. To optimize computational efficiency for 
model construction and calibration, the feedlot consisted of 28 
‘home’ pens of fixed dimensions, one pen for chronically sick 
animals, and one hospital pen arranged in rows (n = 30 total pens); 
the home pens were filled successively from left to right with 200 
calves each. The necessary infrastructure and data are present to 
incorporate heavier weight and/or heifer calves in different numbers 
of pens of various sizes in future experiments with the model (31, 
32). The default model setting fills individual home pens with calves 
of the same sex and weight (i.e., BRD risk) category. Pen-level 
variation in other risk factors, including origin (auction or ranch-
direct) or breed (beef or dairy), could similarly be integrated as data 
becomes available.

Calf health and exposure to antimicrobials
Calves were assumed to be healthy at feedlot arrival and were 

assigned at entry a rate of average daily gain (ADG) drawn from a 
normal distribution (32, 33). The model simulated the development 
and management of select syndromes most frequently associated with 
injectable AMU in the western Canadian feedlot setting, including 
BRD, bacterial arthritis, and infectious pododermatitis (i.e., foot rot) 
(6, 8). M. haemolytica is one of several bacterial pathogens implicated 
in the clinical presentation of BRD, particularly in high-risk calves 
following feedlot arrival (34, 35). For this model, it was assumed that 
(1) every calf has a population of M. haemolytica existing as 
nasopharyngeal commensals (acknowledging that this organism is not 
consistently culturable from all calves) (36); and (2) M. haemolytica 
was the causative agent involved in the progression to clinical 
BRD (37).

Given that the data available to calibrate the model were derived 
mainly from studies of moderate- to high-risk calves administered 
macrolides at feedlot entry [e.g., (38, 39)], all animals in the baseline 
scenarios received metaphylactic tulathromycin by default. However, 
the choice of metaphylactic antimicrobial (if any) can 
be probabilistically selected at model initialization (see Pen agent).
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Phenotypic resistance of a representative 
respiratory pathogen

For each calf in every pen, the resistance status of M. haemolytica 
to select antimicrobial classes (i.e., the presence or absence of 
detectable AMR in the population of M. haemolytica) was monitored 
throughout the feeding period. The resistance status of M. haemolytica 
was broadly assumed to be  representative of the most clinically 
relevant AMR in the nasopharyngeal microbiome, except M. bovis. 
The selection of M. haemolytica as the sentinel pathogen in this study 
reflects the availability and reliability of temporal resistance prevalence 
data for this organism. Population-level AMR could evolve due to 
selection pressure associated with the preventative and therapeutic use 
of antimicrobials in the model and/or transmission of resistant 
bacteria among calves.

The probability that the population of M. haemolytica in each calf 
had detectable resistance to each antimicrobial class at feedlot arrival 
was derived from empirical data in the published literature (38–44). 
Antimicrobial drugs from the same class (e.g., tetracyclines) or 
subclass (e.g., 15-membered ring macrolides) were assumed to 
be equally vulnerable to the relevant resistance mechanism. The model 
thus simulated the co-selection, co-waning, and co-transmission of 
detectable resistance for drugs in the same class, with few exceptions. 
In-feed tylosin use was assumed not to co-select for resistance to 
injectable 16-membered ring macrolides in its subclass, consistent 
with the finding in Zaheer et al. (45) that subtherapeutic tylosin did 
not affect the prevalence of resistant M. haemolytica.

Simulation time and the timing of events
The convenience time unit of the continuous calendar-time model 

was days. The model was run for 1 year from the entry of the first 
animals into the feedlot to allow for all pens of cattle to reach finishing 
weight and to subsequently empty within each cycle. Events in the 
model occurred at either (1) a fixed time, following the occurrence of 
another event (e.g., in-feed AMU exposure after a particular number 
of days on feed [DOF]) or (2) an arbitrary point in time, driven by a 
daily incidence rate or as a consequence of another event (e.g., receipt 
of a ‘transmission’ message from a connected calf). In the baseline 
model, agents were assumed to immediately and perfectly perceive 
transitions in their health and AMR status that triggered 
treatment decisions.

Agents and state charts

The agents in the model were structured hierarchically, with pens 
filled with calves. Each calf harboured a resistance agent representing 
a population of M. haemolytica with or without detectable resistance 
to a set of commonly used antimicrobials. All agents and relevant 
submodels, variable parameters, and data visualizations were 
contained in the ‘main’ agent, the program entry point and top-level 
agent for most AnyLogic® models.

Feedlot agent
The feedlot consisted of individual pens, each with a cohort of 

individual calves; the processes of calf arrival and allocating calves to 
pens were governed at this level. The option to re-sort calves among 
pens later in the feeding period was disabled for this analysis but is 
governed by an adjustable parameter. AMU protocols for disease 

control and treatment were assigned at the feedlot level. They can 
be specified by the user or randomized across a range of common 
alternatives developed in consultation with feedlot practitioners. With 
either option, the selected protocol is applied to the entire feedlot (i.e., 
all home pens and calves) for one realization of the model. Still, it can 
be set to vary across multiple iterations within experiments.

Pen agent and calf management state chart
The pen agents recorded the filling and emptying of pens by calf 

agents, and governed the timing and delivery of antimicrobials for 
disease control (Supplementary Figure S1). Management protocols 
involving antimicrobials—and thus the potential for AMR selection—
included each of (1) on-arrival injectable metaphylaxis for BRD 
management; (2) in-feed prophylaxis for histophilosis and liver 
abscess prevention; and (3) in-feed prophylaxis for outbreak control 
when 10% or more calves in a shared pen were diagnosed with foot 
rot in a single feeding period. The options and likelihoods of available 
metaphylactic and prophylactic protocols in the model are outlined in 
Supplementary Figures S3, S4, respectively.

Calves were assumed to be ready for slaughter when the average 
weight of the animals in a single pen reached the target market weight 
selected randomly from a uniform distribution (31, 32, 46) (Table 1). 
Pens were subsequently depopulated to simulate the shipment of 
finished calves to a processing plant, and pen summary data 
were exported.

Cattle agent
Each cattle agent characterized the health status of a single calf, 

and governed the timing of and response to antimicrobials for disease 
treatment (i.e., injectable AMU for therapeutic indications) 
(Supplementary Figure S2). Healthy calves became sick with BRD, 
bacterial arthritis, or foot rot, as described below; the options and 
likelihoods of available therapeutic protocols in the model are outlined 
in Supplementary Figures S5–S7, respectively. The calf ’s location in 
the feedlot and mortality status were similarly governed at the 
individual animal level (Supplementary Figure S8).

Health status state chart
Calves became sick at a specified rate per day on feed (i.e., a daily 

hazard rate dependent on the number of days since feedlot entry). 
They were immediately administered the prescribed antimicrobial 
regimen upon transitioning to a disease state. The daily hazard rates 
for the first case of each disease were drawn from empirical 
distributions reflecting temporal/seasonal and weight-based changes 
in regional disease risk shared by large private veterinary practices 
(Figure 1). The first-case hazard rate for BRD in high-risk calves was 
specific to animals who received metaphylactic tulathromycin at 
feedlot entry (overall first treatment rate of 10%); the rate can 
be  adjusted for other metaphylactic protocols, including ‘no 
metaphylaxis’ by the risk ratios reported in a recent meta-analysis of 
injectable antimicrobial options for BRD control (47). Historical 
on-arrival AMR data were assumed to be reflected in the first-case 
hazard rate for BRD obtained from feedlot operations and used in the 
calibrations. In subsequent experiments with the model, the first-case 
hazard rate for BRD for an individual calf could default to the 
equivalent of that for ‘no metaphylaxis’ if the population of 
M. haemolytica for that calf was resistant to the antimicrobial used 
for metaphylaxis.
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TABLE 1 Values and sources for parameters in the baseline and calibrations versions of the agent-based feedlot model.

Parameter Condition Value in baseline 
model

Value selected for 
calibration experiments

Source or rationale, if 
applicable

Feedlot and pen parameters

Number of cattle per pen 200, user defined 200 Representation of a moderate-

sized feedlot; optimization of 

computational effort

Number of pens across 10, user defined 10

Number of pens high 5, user defined 3

Cattle parameters

Proportion of high-risk animals 

entering feedlot

0–100%, user defined 100%

Proportion of steers entering 

feedlot

0–100%, user defined 100%

Arrival weight for high-risk 

animals

Applies to recently weaned 

and/or lighter-weight calves

Value selected from uniform 

distribution, range 500–600 

pounds

Value selected from uniform 

distribution, range 500–600 

pounds

(31, 32)

Arrival weight for low-risk 

animals

Applies to backgrounded and/

or heavier-weight yearlings

Value selected from uniform 

distribution, range 800–900 

pounds

N/A

No low-risk, heavyweight animals 

in calibration

(31, 32)

Average daily gain (ADG) for 

healthy steers

Applies to steers with no BRD 

or arthritis history

Value selected from normal 

distribution with μ = 3.46 

and σ = 0.46 pounds per day

Value selected from normal 

distribution with μ = 3.46 and 

σ = 0.46 pounds per day

(32, 33)

Average daily gain (ADG) for 

healthy heifers

Applies to heifers with no BRD 

or arthritis history

Value selected from normal 

distribution with μ = 3.00 

and σ = 0.37 pounds per day

N/A

All animals in calibration are steers

(32, 33)

Average daily gain (ADG) for 

animals of either sex being 

treated in the hospital pen

Applies to animals temporarily 

housed in the hospital pen for 

arthritis treatment

Fixed value of 0.00 pounds 

per day

Fixed value of 0.00 pounds per day Model parsimony; consultation 

with feedlot veterinarians

Percentage change in ADG for 

animals of either sex with the 

first case of BRD

Applies for remainder of 

feeding period to animals with 

single diagnosis (i.e., first case) 

of BRD

−0.64% −0.64% (48)

Percentage change in ADG for 

animals of either sex with first 

or subsequent relapse of BRD

Applies for remainder of 

feeding period to animals with 

more than one diagnosis (i.e., 

one or more relapses) of BRD

−5.77% −5.77% (48)

Percentage change in ADG for 

arthritis-affected animals of 

either sex before 60 DOF

Applies for remainder of 

feeding period to animals with 

first or subsequent arthritis 

diagnoses before 60 DOF and 

following treatment in hospital 

pen

−0.69% −0.69% (49)

Percentage change in ADG for 

arthritis-affected animals of 

either sex after 60 DOF

Applies for remainder of 

feeding period to animals with 

first or subsequent arthritis 

diagnoses after 60 DOF and 

following treatment in hospital 

pen

−1.38% −1.38% (49)

Target market weight for 

slaughter at federal facility, 

healthy animals

Applies to healthy animals in 

regular pens; pen is shipped as 

unit when average weight of 

animals reaches selected target

Value selected from uniform 

distribution, range 1,325–

1,500 pounds

Value selected from uniform 

distribution, range 1,325–1,500 

pounds

(31, 32, 46)

(Continued)
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TABLE 1 (Continued)

Parameter Condition Value in baseline 
model

Value selected for 
calibration experiments

Source or rationale, if 
applicable

High target finishing weight for 

slaughter, chronic pen animals

Fixed value of 1,200 pounds Fixed value of 1,200 pounds Consultation with feedlot 

veterinarians

Low target finishing weight for 

slaughter, chronic pen animals

Fixed value of 900 pounds Fixed value of 900 pounds Consultation with feedlot 

veterinarians

Disease parameters

Probability of first BRD relapse 

in high-risk animals

Conditional on having had a 

first case of BRD

21.64% 21.64%

All animals in calibration are 

high-risk

Empirical data from 

approximately 55,000 high-risk 

calves with first cases of BRD 

after tulathromycin 

metaphylaxis (2012–2016)

Probability of second or third 

BRD relapse in high-risk 

animals

Conditional on having had a 

first or second relapse of BRD, 

respectively

35.80% 35.80%

All animals in calibration are 

high-risk

Empirical data from 

approximately 12,000 high-risk 

calves with first relapses of BRD 

after tulathromycin 

metaphylaxis (2012–2016)

Probability of first BRD relapse 

in low-risk animals

Conditional on having had a 

first case of BRD

26.19% N/A

No low-risk animals in calibration

Empirical data from 

approximately 5,600 low-risk 

calves with first cases of BRD 

after oxytetracycline 

metaphylaxis (2012–2016)

Probability of second or third 

BRD relapse in low-risk animals

Conditional on having had a 

first or second relapse of BRD, 

respectively

40.45% N/A

No low-risk animals in calibration

Empirical data from 

approximately 1,450 low-risk 

calves with first relapses of BRD 

after oxytetracycline 

metaphylaxis (2012–2016)

Probability of first arthritis 

relapse

Conditional on having had a 

first case of arthritis

11.58% 11.58% Empirical data from 

approximately 6,000 fall-placed 

calves with first cases of 

arthritis (2007–2020)

Probability of second arthritis 

relapse

Conditional on having had a 

first relapse of arthritis

20.46% 20.46% Empirical data from 

approximately 700 fall-placed 

calves with first relapses of 

arthritis (2007–2020)

Probability of third arthritis 

relapse

Conditional on having had a 

second relapse of arthritis

19.58% 19.58% Empirical data from 

approximately 145 fall-placed 

calves with second relapses of 

arthritis (2007–2020)

Cumulative percentage of 

footrot-affected animals 

triggering pen-level ‘outbreak 

protocol’

Applies when threshold 

percentage of animals in shared 

pen are diagnosed with footrot 

in single feeding period

10% 10% Consultation with feedlot 

veterinarians

Chronic pen parameters

Percentage of animals assigned 

to ‘high target finishing weight’ 

group at chronic pen entry

33.3% 33.3% Model parsimony

Percentage of animals assigned 

to ‘low target finishing weight’ 

group at chronic pen entry

33.3% 33.3% Model parsimony

Percentage of animals assigned 

to ‘euthanasia’ group at chronic 

pen entry

33.3% 33.3% Model parsimony
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BRD and arthritis-affected calves could experience one or more 
relapses, requiring additional individually dosed treatments after the 
first case of either disease (Supplementary Figure S2). Calves who 
received treatment for a first case experienced a first relapse with a 
fixed probability; second and third relapse probabilities were similarly 
conditional on the calf having experienced a first and second relapse, 
respectively. This was possible because the model tracks the individual 
treatment history of each calf. The probabilities of subsequent relapses 
for each disease were calculated from the same empirical data used to 
derive first-case hazard rates (see Table 1). First relapse probabilities 
were calculated by dividing the cumulative number of first relapses by 
the cumulative number of first cases over the feeding period (Table 1); 
subsequent relapse probabilities were calculated the same way. Calves 
that transitioned to a ‘disease’ state due to BRD or arthritis were 
assigned a reduced rate of ADG (i.e., gained weight more slowly) for 
the duration of their time in the feedlot (48, 49); the reductions in 
ADG were additive for calves affected by both diseases over the 
feeding period.

To best match empirical data available for model calibration, 
relapses were characterized as the failure of a previous therapy to 
adequately treat the underlying infection, prompting the continuation 
of symptomatic disease (50). It was assumed that relapses due to 
AMR-linked treatment failure were reflected in the total number of 
relapses in the historical data used for the calibrations. In subsequent 
experiments with the model, additional BRD relapses will be possible 
if the current pen-level prevalence of resistance to the administered 
drug exceeds the baseline probability of treatment failure (see BRD 
treatment failure loop, Supplementary Figure S2). While not all 
treatment failures will be  due to AMR, the exact probability is 
unknown; the assumption that AMR above the baseline will result in 

additional treatment failure, therefore, represents a worst-case 
scenario. Calves with baseline or resistance-linked treatment failure 
remain in the ‘disease’ state following the therapeutic interval (see 
Table 2) and receive the next antimicrobial in the treatment/relapse 
protocol (Supplementary Figure S5).

Calves treated for foot rot in the empirical data available for model 
parameterization were assumed to have uncomplicated cases of 
infectious pododermatitis that responded to therapy. However, some 
of these calves would have been retreated if they were misdiagnosed, 
treated too late, or if the disease appeared in another foot. The model 
accounted for this possibility as calves re-entered the total population 
at risk of infection after receiving individually dosed treatment (i.e., 
calves returned to a ‘healthy’ state by default after the therapeutic 
interval had elapsed for the administered antimicrobial, see Table 2). 
Long-term ADG was not substantially affected in calves with foot rot 
in a previous report (51); thus, the growth rate did not change for 
these animals.

Location and life state charts
All animals in the same home pen were connected via a 

transmission network or ‘spatial neighborhood’ configured at model 
initialization. The user can reconfigure networks in future 
experiments to include distance-based connections and/or 
connections between animals in adjacent pens. Calves being treated 
for first or subsequent cases of arthritis were moved to a specialty 
pen for acutely sick animals requiring multiday therapeutic 
regimens, designated the ‘hospital pen’ (see Supplementary  
Figure S6); the calf ’s connections were reconfigured to include their 
temporary pen-mates during their hospital stay. These animals 
returned to their home pen or chronic pen after their final doses 

FIGURE 1

Daily hazard rates for first cases of BRD, foot rot and arthritis over the feeding period. Epidemiological curves are derived from empirical data from 
large, private veterinary practices in western Canada. The data for BRD represent approximately 590,000 high-risk, fall-placed animals at feedlot entry 
over 5 years (2012–2016). The first-case hazard rate for BRD used in the calibration experiments was specific to high-risk calves that received 
metaphylactic tulathromycin at feedlot arrival; in future experiments, the rate can be adjusted for other metaphylaxis protocols by the risk ratios 
calculated in O’Connor et al. (47). The data for foot rot and arthritis represent approximately 600,000 fall-placed animals over 13 years (2007–2020) 
provided as anonymized summaries.
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were administered. They were the only potential vectors for the 
interpen spread of resistance in the baseline model where both cattle 
re-sorting and connections between pens are disabled. Calves did 
not gain weight while housed in the hospital pen and were 
temporarily assigned an ADG equal to zero (i.e., their weights 
remained constant); once they returned to their home pens, the 
animals resumed weight gain at the reduced rate as described in 
Table 1. If the animal’s home pen had been depopulated (i.e., sent 
for slaughter) before the calf returned, the animal was instead 
transferred to the ‘chronic pen’, as there was no ‘rail pen’ specified in 
the model.

Chronically sick animals, including a proportion of 
heavyweight calves with arthritis or calves experiencing a third 
relapse from BRD or arthritis, were similarly moved to this 
second specialty pen, designated the ‘chronic pen’. Calves housed 
in this pen did not receive prophylactic (i.e., in-feed) or 
therapeutic antimicrobials to prevent or treat disease, given that 
they had not and were not expected to respond to established 
treatment protocols; these animals continued to gain weight at the 

reduced rate of ADG for their diagnosis (48, 49). As in the 
hospital pen, the connections of calves in the chronic pen were 
reconfigured to include their new pen-mates.

At chronic pen entry, calves were probabilistically assigned to one 
of three ultimate destinations consistent with what might occur in 
large feedlot operations. One-third of the calves who entered the 
chronic pen were ultimately euthanized. The remainder were evenly 
split between (1) those who were eventually shipped to a slaughter 
plant (as with healthy calves), as they achieved near-to-target weights 
in a reasonable time frame; and (2) those who were slaughtered at a 
reduced final weight (see Table  1). The disposition and weight of 
chronically sick animals were evaluated every 7 days. The animals 
were sent for slaughter when they reached the minimum finishing 
weights specified in Table 1. Animals in the chronic pen which failed 
to reach their minimum target weight before the end of the feeding 
period were also euthanized.

Calves in any pen type could die of disease before reaching their 
target weight, and this was captured in the model by a daily mortality 
rate dependent on the number of days since feedlot entry. Daily 

TABLE 2 Pharmacokinetic and initialization parameters for probabilistically selected antimicrobials used for prophylaxis, metaphylaxis, or treatment in 
the feedlot model and for antimicrobials to which acquired resistance over the feeding period is of interest.

Antimicrobial 
class

Antimicrobial 
drug (example 
of active 
ingredient)

Antimicrobial 
drug (example 
of trade name)

Reason 
for use in 
feedlot 
modela

Average 
probability 

(%) of 
detectable 

resistance at 
arrivalb

Withdrawal 
period (days)c

Therapeutic 
interval (days)d

Aminoglycosides Spectinomycin N/A N/A 1.7 N/A N/A

Cephalosporins Ceftiofur CFA

Ceftiofur HCl

Excede 200

Excenel RTU EZ

T

T

0.0

0.0

13

3

9.2

1.1

Fluoroquinolones Enrofloxacin Baytril 100 T 0.4 36 0.7

Macrolides 

(15-membered ring)

Gamithromycin

Tulathromycin

Zactran

Draxxin

M, T

M, T

2.4

2.4

49

44

6.9

8.3

Macrolides 

(16-membered ring)

Tildipirosin

Tilmicosin

Tylosine

Zuprevo

Micotil

Tylan 100

M

M, T

P

4.3

4.3

4.3

42

28

0

26.3

3.6

0.1

Potentiated 

sulphonamides

Sulphadoxine

Trimethoprim

Borgal T 2.3

0.3

10

10

1.6

0.3

Penicillins Ampicillin

Penicillin

Polyflex

Procaine Penicillin G

N/A

T

1.7

1.7

6

5

0.8

0.1

Phenicols Florfenicol

Florfenicol/ flunixin

Nuflor

Resflor

T

T

0.1

0.1

55

60

3.2

3.2

Tetracyclines Chlortetracyclinef

Oxytetracycline

Chlor 100 Granular 

Medicated Premix

Liquamycin LA-200

P

M, T

4.9

4.9

5

48

2.0

2.6

aAbbreviations indicating reason for use in feedlot model: P, prophylaxis; M, metaphylaxis; T, treatment; N/A, not used in model.
bProbability of detectable phenotypic resistance on feedlot arrival for each antimicrobial was derived from recent studies of healthy feedlot cattle in western Canada (38–44). In the calibration 
experiments, the probability was a weighted average of the extracted prevalence data; in the Monte Carlo experiments, the probability was randomly drawn from a modified PERT distribution 
where the 95% CI were the minimum and maximum values and the average value was the most likely value (mode).
cThe withdrawal period in days reflects those reported in the Compendium of Veterinary Products—Canada edition (54).
dThe therapeutic interval is a crude estimate of the effective duration of selective pressure (i.e., the period over which the drug is active and selection for resistance is possible). The therapeutic 
interval for each antimicrobial was estimated from its reported serum elimination half-life in cattle (55–64), multiplied by three.
eProphylactic tylosin use did not co-select for Mannheimia haemolytica resistance to the other 16-membered ring macrolides in its subclass, consistent with the observation that ‘the in-feed 
levels of tylosin (have) no effect on the prevalence of M. haemolytica’ (45).
fChlortetracycline at both the ‘high’ and ‘low’ dosages were fully linked to each other and to oxytetracycline. When the ‘low dose’ of chlortetracycline was used, the calibrated ‘selection 
probability’ for tetracyclines was adjusted by a multiplier (0.2) that reflects the average concentration of that regimen relative to the ‘high dose’ regimen. The multiplier was estimated from 
AMU data collected by the Canadian Integrated Program for Antimicrobial Resistance Surveillance [referenced in Hannon et al. (99)] and a series of expert interviews with feedlot 
veterinarians.
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mortality rates subdivided by cause were drawn from empirical 
distributions reflecting temporal/seasonal and ecological changes in 
risk (see Figures 2A,B). It was assumed that death due to BRD was 

conditional on having experienced at least a first case of BRD requiring 
treatment with antimicrobials (overall BRD mortality rate of ~3%). 
While animals die from BRD without being diagnosed and treated, 

FIGURE 2

Daily mortality rates due to (A) BRD and (B) histophilosis and other causes over the feeding period. Epidemiological curves are derived from empirical 
data from a large, private veterinary practice in western Canada. These data represent approximately 700,000 high-risk, fall-placed animals at feedlot 
entry over 5 years (2012–2016).
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empirical data attributing death loss to treated vs. untreated animals 
were not available. This assumption does not impact total death losses 
in the model.

Resistance agent
The emergent AMR status for the population of M. haemolytica in 

the nasopharynx of each calf was governed at the level of resistance 
agent. The resistance selection probabilities, resistance waning rates, 
and baseline contact rates were unknown values expected to differ by 
drug class. The dynamics of resistance acquisition and loss for each 
antimicrobial class are thus directed by separate and mutually 
exclusive state charts (Figure 3).

M. haemolytica resistance state chart
Local M. haemolytica populations acquired detectable 

resistance at the calibrated ‘selection probability’, the per-day 
likelihood of developing a resistant phenotype in response to 
antimicrobial drug exposure (Figure 4). The selection probability 
was active during therapy (i.e., the dosing period; see ‘Treatment 
Agent and State Chart’ section) and for the period of selective 
pressure following the final—often the only—dose (i.e., the 
therapeutic interval, see Table 2). Resistant M. haemolytica during 
active exposure to the relevant drug was considered ‘stable’ and 
could not wane. After the therapeutic interval had elapsed and in 
the absence of selective pressure for a particular antimicrobial, the 
population of M. haemolytica could then lose its detectable 
resistance at the calibrated ‘waning rate’ (i.e., was ‘unstably’ 
resistant). Resistance present on arrival was assumed to 
be temporarily stable in a 48-h ‘delay’ state, such that it could not 
transmit or wane even in the absence of selective AMU pressure. 
This lag was included to establish the expected probabilities of 
population-level resistance during the period the pen was filling.

In addition to selection, local M. haemolytica populations 
acquired detectable resistance at the calibrated ‘contact rate’ through 
contagious spread from a connected calf in a shared pen (Figure 4). 
The calibrated parameter was the daily rate at which an animal with 
detectable resistance sent a ‘transmission’ message to a randomly 
selected pen-mate. When the message was received by a calf with a 
susceptible M. haemolytica population, it was assumed to be  a 
transmitting contact. As with on-arrival resistance, detectable 
resistance acquired contagiously was subject to a 48-h lag before it 
could (1) wane at the calibrated rate, given the absence of selective 
pressure for the relevant drug; or (2) transmit at the calibrated contact 
rate to unaffected pen-mates. This lag was included to permit the 
resistant population to establish and to facilitate calibrated parameter 
estimation. A similar lag between exposure and transmission would 
be expected in a true biological infection.

The potential for transmission was allowed to vary during the 
feeding period. It was mediated by a calibrated ‘stress multiplier’, a 
dynamic parameter responsive to the temporal distribution of BRD 
events at the population level. The per-day contact rate was adjusted 
to reflect the increased likelihood of contagious transmission when 
animals were physiologically stressed and shedding higher numbers 
of respiratory pathogens (52). The multiplier’s effect was governed by 
a step function derived from empirical cumulative incidence data 
(Figure 5) and the cluster analysis in Babcock et al. (53). The combined 
impact of the calibrated stress multiplier and step function could vary 
from zero (i.e., no incremental effect on the per-day contact rate) to 

some positive increment corresponding to the product of the stress 
multiplier and DOF-determined step function value, added to the 
per-day contact rate.

FIGURE 3

Representation of AMR status for the population of Mannheimia 
haemolytica in the nasopharynx of each calf in the agent-based model. 
The first branch, demarcated by a ‘diamond’ symbol, indicates the 
possibility of two outcomes, where (1) resistance is present on arrival 
(default, dotted line, to a composite ‘resistant’ state with substates) or (2) 
resistance is not present on arrival (solid line, to a ‘non-resistant’ state) as 
derived from empirical data. Transitions between the ‘non-resistant’ and 
‘resistant’ states demarcated by ‘envelope’ symbols depend on (1) the 
receipt of ‘selection’ or ‘transmission’ messages or (2) the receipt of 
‘co-selection’, ‘co-transmission’ or ‘co-waning’ messages from linked 
antimicrobial drugs belonging to the same class or subclass and 
undergoing the same transition. Within the composite ‘resistant’ state, 
transition arrows demarcated by ‘envelope’ symbols reflect messages 
related to changing antimicrobial exposure and dictate whether 
resistance in the M. haemolytica population can wane (i.e., is 
‘unstably resistant’).
*The ‘devUResMH’ (developing unstable resistance) substrate is a 
temporary delay state within which resistance present on arrival or 
resistance acquired contagiously cannot wane nor be transmitted to 
pen-mates. Resistance can become ‘stable’ if the relevant 
antimicrobial drug is used, or else it becomes unstable with the 
potential to wane after 48 h (see ‘M. haemolytica Resistance State 
Chart’ section).
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Treatment agent and state chart
Each treatment agent governed the delivery of the appropriate AMU 

protocol to an individual animal (Supplementary Figure S9). For all 
metaphylactic and majority of therapeutic indications, the antimicrobial 
was administered in a single injectable dose. For all prophylactic (i.e., 
in-feed) indications and treatments for arthritis, the antimicrobial was 
administered in a multiday regimen (Supplementary Figures S4, S6). 
During therapy (i.e., the ‘dosing period’) and the subsequent therapeutic 
interval (see Table 2), the selection probability was active. It could lead to 
detectable resistance in the population of M. haemolytica for the treated 
animal. After the therapeutic interval had elapsed following a final dose 
in a regimen, an ‘end treatment’ message was sent to the resistance agent 
for the treated calf. The message triggered the transition from ‘stable’ to 
‘unstable’ resistance (see ‘Resistance Agent’ section), such that detectable 
resistance was eligible to wane. Treatment agents were deleted after the 
withdrawal period (54) for the associated antimicrobial had expired for 
that animal (Table 2).

Randomness and stochasticity

Cattle entered the feedlot as part of a stochastic process, with a 
variable number of animals arriving and filling each pen within 2 days 

at varying intervals between October and December. Other examples 
of randomness and stochastics at model initialization included the 
random assignment of (1) arrival weight (from a uniform 
distribution); (2) rate of ADG (from a normal distribution); and (3) 
probability of detectable resistance to each antimicrobial class (from 
a project evaluation and review techniques [PERT] distribution) to 
incoming lightweight steers. At initialization, the target market weight 
for healthy animals (i.e., calves not in the chronic pen) was also 
randomly selected from a uniform distribution. The prophylactic and 
therapeutic AMU protocols for a single realization of the model were 
randomized across a range of plausible alternatives at the start of 
the simulation.

The calves in the model became sick with the first occurrences of 
select diseases at stochastic rates drawn from exponential distributions 
informed by the empirical data summarized in Figure 1. Treatment 
failures and associated relapses of BRD and arthritis were similarly 
random events that occurred with fixed probabilities. BRD treatment 
failures over the baseline probability are responsive to emergent 
pen-level AMR and are, therefore, stochastic processes (Table 1). AMR 
acquisition and loss events were simulated stochastically per the 
calibrated selection and waning rates, respectively (Table  3), and 
depended partly on emergent patterns of prophylactic and therapeutic 
AMU. Contagious transmission events were stochastic processes 

FIGURE 4

Processes underlying the acquisition and waning of phenotypic resistance for the sentinel nasopharyngeal organisms unique to each calf. Transitions 
demarcated by ‘speech bubble’ symbols are triggered by receiving a message from another agent in the model (i.e., the calf’s home pen or a 
connected calf in the same pen).
1Transmission messages were sent from animals with detectable resistance to a randomly selected pen-mate at the calibrated contact rate, and the calibrated 
stress multiplier adjusted the baseline contact rate. There was a 48-h delay before on-arrival resistance could be transmitted to pen-mates to establish the 
appropriate population-level resistance at the simulation start. 2When a calf received a transmission message was received with a susceptible Mannheimia 
haemolytica population, the contact was always ‘effective’ (i.e., resulted in contagious transmission). 3There was a 48-h delay before contagiously acquired 
resistance could wane and/or be transmitted to pen-mates to permit the resistant population to become established in the affected animal. 4Resistance 
acquired selectively or contagiously could not wane if the animal was being actively exposed to (i.e., within the therapeutic interval of) the drug class of 
relevance; further, there was a 48-h delay before on-arrival resistance could wane to establish the appropriate population-level resistance at simulation start.
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arising from (1) the calibrated contact rates (Table 3) and (2) random 
contacts between calves in the same pen with discordant 
resistance status.

Input data

Model inputs are displayed in Table 1. Parameter inputs were partly 
informed by the peer-reviewed literature, market analyses, and expert 
opinion via consultations with feedlot veterinarians; in particular, the 
disease and mortality hazard rates were informed by proprietary data 
from private feedlot operations representing over 1.5 million animals. In 
the absence of a relevant source, inputs deriving from simplifying 
assumptions were favoured for the baseline and calibration experiments 
(identified as ‘model parsimony’ in Table 1). The inputs in Table 1 are 
organized by subheading to better highlight the agent or state chart where 
the value is used; the condition(s) precipitating the use of particular 
values are similarly detailed in the table.

The antimicrobial drugs listed in Table 2 include those available 
in the model and those to which acquired resistance is of particular 
interest. Where relevant, the table notes if the drug was used for 
prophylaxis, metaphylaxis, or therapy in the model, and applications 
are fully detailed in Supplementary Figures S3–S7. The AMU options 
are common in western Canadian feedlot medicine, and were 
developed in consultation with feedlot experts that included the teams 
which provided the model’s treatment rate data.

Peer-reviewed or other reliable data were unavailable to estimate 
the duration of selective pressure following treatment with an 
antimicrobial (i.e., the ‘therapeutic interval’ in Table 2). Elimination 

half-lives were therefore used to estimate the time required for the 
drug’s activity to be limited by its decreasing concentration (55–64). 
Three half-lives (i.e., when 88% of the drug was expected to 
be eliminated from the animal) were used as a crude estimate of the 
therapeutic interval. The interval for tulathromycin in the baseline 
model (8.3 days) corresponds to the midpoint of the plausible values 
proposed by Brault et al. (65) for that drug’s duration of effect. This 
assumption was subject to a sensitivity analysis as part of 
model validation.

Incidence time series for first cases of BRD, arthritis, and foot rot, 
as well as mortality due to BRD, histophilosis, and all other causes, are 
loaded from an external file. These are represented as daily time series 
for a single 1-year feeding cycle, the simulation time for all scenarios 
examining AMR in M. haemolytica.

Key model outputs

The primary emergent model outputs were the simulated 
prevalences of detectable resistance to select classes of antimicrobial 
drugs, arising from the combination of initial conditions, temporal 
trends in feedlot disease, and prophylactic and therapeutic treatment 
selections. The resistance prevalence for each antimicrobial class was 
reported for several time points over the feeding period selected to 
coincide with those in the reference dataset (see ‘Reference Data 
Extraction’ section). Related outputs emerging from the model for 
each antimicrobial class and at each time point included (1) the 
cumulative number of uses of antimicrobials belonging to that class; 
(2) the cumulative number of acquired resistance events due to 

FIGURE 5

Cumulative incidence of first-case BRD diagnoses in high-risk calves through 120 DOF. The epidemiological curve (blue) is derived from empirical data from a 
large, private veterinary practice in western Canada. These data represent approximately 590,000 fall-placed animals over 5 years (2012–2016). A step function 
(black) is superimposed over the cumulative incidence curve; the red vertical lines delimit where unique regions of the curve (i.e., distinct periods of 
physiological stress/pathogen shedding) correspond to DOF. By 30 DOF, 50% of the high-risk animals who will get sick have a first case of BRD; by 48 DOF, 
75% will have a first case of BRD; by 70 DOF, 85% will have a first case of BRD. The stress effect multiplier adjusts the baseline contact rate to account for 
changing transmission potential over the feeding period as determined by the step function (e.g., after 70 DOF when the step function reduces to zero, the 
multiplier has no impact on the baseline contact rate). The impact of the calibrated stress multiplier on the contact rate in the ‘baseline’ scenario is reduced by 
half (from 10 to 5) between 30 and 48 DOF, reduced to 2 between 48 and 70 DOF, and reduced to 0 after 70 DOF.
*In the sensitivity analyses where the effect of the calibrated stress multiplier on the contact rate is minimized, the step function is reduced from 10 to 
0 after 21 DOF. **In the sensitivity analyses where the effect of the calibrated stress multiplier on the contact rate is maximized, the step function 
remains at 10 until 70 DOF and then goes to 0.
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selection; and (3) the cumulative number of acquired resistance events 
due to transmission. For configurations of the model where both 
AMU-linked selection and transmission could impact detectable 
AMR, the percentages of resistance acquisition events owing to each 
route were calculated from these values.

Model verification

Opportunities to verify that the model was performing as 
expected were built into both its single- and multirun configurations 

(26). In the single-run configuration, the model opens a graphical 
representation of the feedlot with colours and patterns that indicate 
the state of the pen- and calf-level agents (see ‘Agents and State Charts’ 
section); this depiction enables the user to visually confirm that the 
agents are behaving as intended during the simulation. Similarly, the 
model displays dynamic graphs for single runs that update each model 
‘day’ and permit observing how variables of interest are advancing in 
real time.

Metrics were output to an MS Excel workbook at the end of a model 
run (i.e., after the simulated feeding cycle). In addition to the Key model 
outputs described above, these included summaries of animal growth 

TABLE 3 Best objective and calibrated parameter values from individual calibration experiments for each of the antimicrobial class and configuration 
combinations.

Antimicrobial 
class

Reference 
drug 
belonging to 
classa

Configuration Best 
objective 

valueb

Selection 
probability, 
if applicable

Waning 
rate

Contact 
rate,

if 
applicable

Stress 
effect 

multiplier, 
if 

applicable

Mean 
probability 

per day

Mean 
rate per 

day

Mean rate 
per day

Unitless

15-membered ring 

macrolides
Tulathromycin

Drug use only 0.213 0.593 0.008 – –

Transmission only 0.157 – 0.173 0.130 0.438

Both drug use/ 

transmission
0.186 0.625 1.118 1.163 0.119

16-membered ring 

macrolides
Tilmicosin

Drug use only 0.592 0.763 0.001 – –

Transmission only 0.391 – 1.449 1.600 0.026

Both drug use/ 

transmission
0.382 1.000 0.825 0.915 0.026

Sulphonamides Sulphadimethoxine

Drug use only 1.725 0.955 0.001 – –

Transmission only 0.154 – 2.113 1.299 0.685

Both drug use/ 

transmission
0.153 0.452 3.393 1.982 0.741

Trimethoprim Trimethoprim

Drug use only 0.039 1 0.013 – –

Transmission only 0.018 – 0.035 0.004 3.150

Both drug use/ 

transmission
0.017 0.829 0.058 0.026 0.459

Tetracyclines Oxytetracycline

Drug use only 0.337 0.134 0.005 – –

Transmission only 0.291 – 0.011 0.005 0.623

Both drug use/ 

transmission
0.299 0.011 0.007 0.002 0.940

Cephalosporins Ceftiofur
Both drug use/ 

transmission
0.001 0.001 2.763 0.379 0.667

Fluoroquinolones Enrofloxacin
Both drug use/ 

transmission
0.002 0.025 0.610 0.001 0.046

Phenicols Florfenicol
Both drug use/ 

transmission
0.007 0.002 0.014 0.001 3.038

Fixed minimum value for calibration search function 0.001 0.001/day 0.001/day 0

Fixed maximum value for calibration search function 1 5/day 2/day 10

The configuration with the lowest best objective value for each antimicrobial class (shaded blue) offers the best fit to the empirical data. The calibrated parameter values associated with that 
configuration are in bold text.
aThe antimicrobial drug with the most complete dataset (i.e., one or more raw data points for each time point) was selected to represent the entire class.
bThe best (i.e., smallest) objective value was an average of the objective values from each realization (n = 30) in the best iteration.
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(e.g., mean DOF, mean arrival and finishing weights), AMU (e.g., counts 
of prophylactic regimen applications), disease and mortality (e.g., counts 
of first and subsequent instances of disease), and specialty pen use (e.g., 
calf-days in hospital and chronic pens). Together with the visualizations, 
these outputs were critical for checking and/or troubleshooting the 
model’s logic during its step-wise construction. A reduced set of 
summary outputs is generated for multirun configurations, including 
calibration and Monte Carlo simulations; depending on the desired unit 
of analysis, each row in the summary table represents a single pen or 
feedlot from one model realization.

Expert input and feedback were acquired from feedlot 
veterinarians over several phases of model development. Long-term 
engagement with the anticipated users of this model was important 
for building stakeholder confidence in the model’s utility as a 
reasonable approximation of a typical feedlot.

Model calibration

The unknown parameters were estimated by calibrating the model 
to previously reported resistance data for each antimicrobial class (see 
‘Model Calibration’ section and Figure 4 for an overview of calibrated 
parameters). Calibration refers to the systematic estimation of static 
input values that minimize the dissimilarity between the model’s 
emergent behaviour (i.e., the time-varying prevalence of AMR across 
the feeding period) and the observed or empirical data that serve as 
calibration ‘targets’ (25). Automated calibration experiments using the 
widely implemented OptQuest global optimization routine were 
created in the commercial software program (AnyLogic version 8.8.6: 
AnyLogic North America, LLC, Chicago, Illinois, USA, release date 
December 18, 2023) (66–68). Key parameters linked to the emergence 
and interanimal spread of resistance on feedlots were estimated for 
distinct configurations of the baseline model.

Reference data extraction
A rapid literature search was performed to identify relevant sources 

of resistance prevalence data for M. haemolytica isolates from healthy 
feedlot calves at various points across the feeding period. Studies 
concerning samples from primarily sick or dead cattle were excluded, 
given that these animals were more likely to have been treated with 
multiple classes or courses of antimicrobials and were not representative 
of the general feedlot population. Raw data from pertinent studies of 
western Canadian feedlot cattle treated metaphylactically per industry 
practice (38–44) were extracted to a spreadsheet in MS Excel. They 
included the average DOF at sample time, the total number of tested 
isolates, and the percentage of phenotypically resistant isolates for each 
antimicrobial of interest.

Data points clustered closely in time were grouped into DOF 
ranges that best defined the unique phases of the feeding period. 
Prevalence data from isolates collected at feedlot arrival were classified 
as occurring at 1 DOF; the DOF for subsequent time points were 
selected to (1) coincide with a historical reference dataset (40) and 
DOF relevant to management events in the feeding period or (2) 
reflect the midpoint of the DOF range in the reported data.

Reference data synthesis
A custom longitudinal dataset with updated phenotypic resistance 

prevalence values was synthesized from the extracted data from all 

sources for M. haemolytica (Figures 6A,B). Because antimicrobial drugs 
from the same class or subclass were assumed to be equally vulnerable to 
the relevant resistance mechanism, the drug with the most complete 
dataset (i.e., one or more data points for each time point) was selected to 
represent all others in its class. Prevalence and exact 95% confidence 
intervals were estimated using an intercept-only (or null) generalized 
estimating equations model in SAS version 9.4 (69) with a binary 
outcome, binomial distribution and logit link function for each 
antimicrobial class of interest at each time point (1, 13, 50, 70, 105, and 
170 DOF), accounting for clustering by study with a repeated term and 
exchangeable covariance structure. If the model did not converge, exact 
confidence intervals were determined using the Clopper-Pearson 
estimation method. The percentage of resistant isolates at each time point 
was an average of the raw data values available for that range, weighted 
by the total number of isolates tested. A prevalence estimate was 
unavailable for the tetracycline class at 13 DOF; in-feed chlortetracycline 
was not provided to the animals in the only study with data from that 
time point (38), and the level of detectable tetracycline resistance (<1%) 
was an outlier among comparable studies.

Calibration configurations
Three model variants with unique structural configurations were 

each calibrated to the reference data for M. haemolytica and 
subsequently compared. In the first ‘antimicrobial use only’ 
configuration, the potential for transmission between animals was 
disabled and could not affect the spread of detectable resistance; 
selection pressure from AMU was therefore the only driver for AMR 
in this scenario. The selection probability and waning rate parameters 
were varied in this configuration to find the best fit to the reference 
data. In the second ‘transmission only’ configuration, the potential for 
selection due to AMU was disabled and could not affect the emergence 
of detectable resistance; contagious transmission was therefore the 
only driver for AMR in this scenario. The waning rate, respiratory 
contact rate and stress effect multiplier parameters were varied in this 
configuration to find the best fit. In the final ‘both antimicrobial use 
and transmission’ configuration, both drivers were enabled and could 
jointly affect the emergence of detectable resistance. The selection 
probability, waning rate, contact rate, and stress effect multiplier 
parameters were varied in this configuration to find the best fit.

Individual calibration experiments were performed for each 
configuration and antimicrobial class combination. Antimicrobial 
classes were selected for calibration if (1) the prevalence of detectable 
resistance was >1% at any of the time points and (2) the class was 
relevant to products used in feedlot medicine (e.g., tetracyclines) (70). 
The 1% threshold was used to distinguish antimicrobial classes where 
the change in detectable resistance over time was sufficient to model an 
association with AMU or contagious transmission. The 15- and 
16-membered ring macrolides were treated as distinct/independent 
subclasses given that their reference datasets were sufficiently dissimilar. 
Resistance breakpoints approved by the Clinical and Laboratory 
Standards Institute (71) (Wayne, Pennsylvania, USA) did not exist for 
two of the representative drugs selected for calibration, trimethoprim 
and sulphadimethoxine. ‘Resistance’, as defined for these drugs, refers to 
the percentage of isolates that grow at (i.e., are not inhibited by or are not 
susceptible to) the only tested concentrations (2 and 256 μg/mL, 
respectively) on the commercially available Bovine BOPO7F AST plate: 
SensititreTM Vet Bovine BOPO7F Plate, Thermo Fisher Scientific TM, 
Waltham, Massachusetts, USA (ThermoFisher Scientific™).
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Calibration settings and objective function
The initialization and simulation settings for each calibration are 

detailed in Supplementary Table S1. Automated calibration experiments 
using OptQuest’s optimization tool were run in AnyLogic® 8 for 
n = 2,500 iterations (model runs with unique combinations of target 
parameters) with n = 30 realizations (model runs that explore the 
extent of stochastic variation within each parameter set) per iteration. 
The number of iterations and realizations per iteration were selected to 
balance the competing priorities of methodological rigour (i.e., 

adequate assessment of stochastic variation influencing the objective 
function for a specific vector of parameters) and computational 
efficiency to allow acceptable exploration of the parameter space.

Each calibration experiment (n = 15 initial combinations of 5 
antimicrobial classes by 3 configurations) searched the parameter space 
defined by the minimum and maximum values in Table 3 for the inputs 
that best reproduced the reference data. The best fit was achieved when 
the average of the objective functions across the realizations within an 
iteration returned its lowest non-negative value (i.e., when the optimizer 

FIGURE 6

Percentage of Mannheimia haemolytica isolates with detectable phenotypic resistance to antimicrobial classes of interest (A) selected as external 
targets against which to calibrate the model and (B) not selected for calibration over the feeding period. Antimicrobial classes were selected for 
calibration if the prevalence of detectable resistance was >1% at any time point and the class was relevant for antimicrobial use in feedlot medicine 
(70). Each class was represented by AMR to one drug (see Table 3) with the most complete reference dataset. The custom longitudinal datasets were 
synthesized from recent empirical studies of antimicrobial resistance prevalence in western Canadian feedlot cattle from mixed origins. The 
percentage of resistant isolates at each time point is a weighted average of prevalence values extracted from recent studies of healthy feedlot cattle in 
Western Canada (38–44).
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minimized the difference between the simulated and empirical data). The 
compound objective function employed in this calibration comprised 
two components: (1) the curve fitness component, which applied 
AnyLogic’s difference function and (2) the point fitness component, 
which assigned greater weight or importance to reference points with 
stronger empirical data. The resulting fit at 1, 13 (if available), 70, and 170 
DOF was assigned additional weight relative to 50 or 105 DOF given the 
recency and relevance of the data informing reference estimates for those 
time points.

Monte Carlo experiments
Using the calibrated parameter values from the best iteration for 

each configuration/drug class combination (see Table 3), Monte Carlo 
experiments were performed to obtain simulated outputs for the 
expected prevalence of detectable resistance at time points that 
matched those from the reference dataset. Each experiment was run 
for n = 5,000 iterations over 1 year; the settings for these simulations 
were identical to those described in Supplementary Table S1 for the 
calibration experiments, except that the number of home pens was 
increased to 48 (n = 50 total pens). In particular, all baseline 
experiments assumed that every calf received tulathromycin at feedlot 
entry and that metaphylactic and therapeutic success over the feeding 
period was not impacted by resistance at the calf and pen levels, 
respectively. Historical first-case hazard and subsequent retreatment 
rates were expected to reflect the prevalence of AMR in the empirical 
data used for calibration. Simulated outputs were generated for the pen 
and feedlot levels (i.e., agents). Subsequent model sensitivity analyses 
were built on the foundation of these initial experiments.

Analysis of model output

Pairwise comparisons of best objective values
The objective value for each iteration is an average of the objective 

values from each realization in the iteration (n = 30). The calibrated 
parameters associated with the best iteration (i.e., the iteration with 
the smallest objective value) for each configuration/drug class 
combination are reported in Table 3. The relative fits of candidate 
configurations (antimicrobial use only vs. transmission only vs. both 
antimicrobial use and transmission) for each antimicrobial class were 
evaluated by dividing the absolute differences between the objective 
values for each pair by the average for each pair. Percentage differences 
over 20% indicated a substantial difference in model fit per the 
assessment criteria (72). The results are reported in a difference matrix.

Comparison of model fit from simulated outputs
For each configuration/drug class combination, the simulated 

prevalence of detectable resistance at select time points across the 
feeding period was summarized with the median and 95% 
prediction interval (2.5th and 97.5th percentiles) of 5,000 
iterations and graphed in R version 4.3.2: The R Foundation for 
Statistical Computing, Vienna, Austria, release date October 31, 
2023 (73). These figures facilitated the relative comparisons of 
candidate model configurations (i.e., hypotheses about how AMR 
emerges and spreads in the feedlot environment) against the 
reference dataset. Simulated data for the pen and feedlot levels were 
displayed in the same figure to highlight potential differences in 
output and model fit by hierarchical unit.

Sensitivity analyses
Additional scenarios were examined as part of a sensitivity 

analysis to evaluate the impact of key assumptions on the simulated 
prevalences of detectable resistance and relative fit of candidate 
configurations. The first experiment assessed the sensitivity of model 
outputs to variation in the therapeutic interval (i.e., the duration of 
selective pressure following antimicrobial treatment), a parameter 
estimated to equal three elimination half-lives in the absence of 
empirical data (55–64). For each of the ‘antimicrobial use only’ and 
‘both’ configurations, outputs were simulated for scenarios in which 
(1) the therapeutic interval for each antimicrobial class in Table 2 was 
reduced by half; or (2) the therapeutic interval for each antimicrobial 
class was doubled.

A subsequent analysis assessed the impact on the outputs of 
assumptions in the baseline (calibration) version necessitated by the 
availability of empirical data for parameterization. Outputs for the 
‘antimicrobial use only’ and ‘both’ configurations were simulated for 
scenarios in which (1) the choice of metaphylactic drug was 
permitted to vary per the probabilities in Supplementary Figure S3; 
or (2) the presence of detectable AMR at the calf and pen levels 
dynamically impacted metaphylactic and therapeutic success, 
respectively, resulting in first treatment and re-treatment rates for 
BRD over baseline (see ‘Health Status State Chart’ section for details 
on how AMR responsiveness is operationalized for individual calves 
in the model). A closer investigation of AMR responsiveness was 
pursued in a follow-up thought experiment that simulated an 
‘extreme 15-membered ring macrolide use’ scenario for the same 
configurations; in this scenario, calves received tulathromycin and 
gamithromycin for metaphylaxis and all BRD treatments, 
respectively. These conditions (i.e., repeated 15-ring macrolide 
exposures in calves with BRD) were intentionally selected to 
highlight the effect of AMR responsiveness on the likelihood of 
treatment failure in this model, which might differ from observations 
in experimental trials (74).

A final analysis assessed the sensitivity of model outputs to 
variation in the form of step function that directed the impact of the 
stress multiplier on the baseline contact rate (Figure 5). For each of the 
‘transmission only’ and ‘both’ configurations in this analysis, outputs 
were simulated for scenarios in which (1) the impact of the multiplier 
on the contact rate was minimized by constraining the full strength of 
the function (=10) to only 21 DOF (11, 75) or (2) the impact of the 
multiplier on the contact rate was maximized by maintaining the full 
strength of the function through to 70 DOF (76). All sensitivity 
experiments were run for 5,000 iterations with the calibrated 
parameter values, and the simulated prevalences of resistance for both 
pen and feedlot levels were reported with medians and 95% prediction 
intervals to demonstrate any differences in the trends across the 
baseline configurations under modified assumptions.

Results

Model calibration

Based on their detectable prevalence in the reference data (>1%) 
(Figures  6A,B), the antimicrobial classes chosen for the initial 
calibration experiments were macrolides (15- and 16-membered 
ring), sulphonamides, trimethoprim, and tetracyclines. The best 
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objective values from the three configurations for the selected drug 
classes were compared in Table 4. For each of the antimicrobial classes, 
the ‘transmission only’ and ‘both’ configurations offer a substantially 
better fit to the empirical data than the ‘antimicrobial use only’ 
variation. The percentage differences were > 20% in almost every case, 
with few exceptions; differences for ‘both’ vs. ‘drug use only’ for 
15-membered ring macrolides and for ‘both’ and ‘transmission only’ 
vs. ‘drug use only’ for tetracyclines did not reach the 20% threshold. 
The differences between the best objective values for the ‘transmission 
only’ and ‘both’ configurations were less than substantial (<20%) for 
all classes.

Based on these findings, single calibration experiments for the 
‘both’ configuration were performed to estimate unknown parameters 
for antimicrobial classes with prevalences of resistance that did not 
exceed 1% in the empirical data (Figure 6B), but are nevertheless 
important in feedlot medicine. Parameters for cephalosporins 
(ceftiofur), fluoroquinolones (enrofloxacin), and phenicols 
(florfenicol) are reported in Table 3.

Monte Carlo experiments

The simulated prevalences of detectable resistance across the 
feeding period were graphed against the reference data for 
15-membered ring macrolides (Figure  7), 16-membered ring 
macrolides (Figure  8), sulphonamides (Figure  9), trimethoprim 
(Figure 10) and tetracyclines (Figure 11) for each of the three model 
configurations (labelled A through C in the above).

Visual inspection of the figures confirms that the ‘transmission 
only’ and ‘both’ configurations have a better fit to the reference data 
than the ‘antimicrobial use only’ configuration across all classes of 
interest. Given the weighting scheme applied by the point fitness 
component of the objective function, model fit at 50 DOF was 
expectedly poor for the majority of the class/configuration 
combinations. Injectable 16-membered ring macrolides were not used 
prophylactically or therapeutically in the baseline version of this 
model, and thus the ‘antimicrobial use only’ configuration for this 
class offers a predictably poor fit to the reference data (Figure 8); this 
is mirrored in the comparatively high objective value for 
this combination.

All configurations for the 15-membered ring macrolides achieve 
a similar peak prevalence of resistance (56–57%) and offer a good fit 
to the reference data at 13 DOF (Figure 7). The prevalence of resistance 
for the ‘transmission only’ configuration remains high through 50 
DOF and declines rapidly after that; the fit of this configuration at the 
heavily weighted 70 and 105 DOF time points is particularly strong. 
The ‘antimicrobial use only’ and ‘both’ configurations for this class 
have more gradual declines than their ‘transmission only’ counterpart, 
accounting for their better fit at 50 DOF but poorer fits at subsequent 
time points. At the pen level, the 95% prediction interval (i.e., the 
variability in the prevalence of resistance) is substantially wider for the 
‘transmission only’ than the ‘both’ configuration up to 50 
DOF. Conversely, pen-level variation is noticeably wider for the ‘both’ 
variation after 70 DOF through the end of the feeding period.

The relative fit of the ‘antimicrobial use only’ configuration to the 
empirical data is stronger for tetracyclines than other antimicrobial 
classes (Table 4, Figure 11). The simulated outputs for this and the 
‘both’ configuration are characterized by wide feedlot-level prediction 

intervals through 105 DOF; this variability reflects the considerable 
range (9,654–28,900) in the number of tetracycline uses by 170 DOF 
due to reported variation in prophylactic protocols for histophilosis 
and liver abscess prevention (see Supplementary Figure S4). The 
‘transmission only’ and ‘both’ configurations for tetracyclines follow 
similar curves with comparable pen-level variation in outcome 
reflected in the width of their prediction intervals. Because the 
‘transmission only’ configuration for this class reaches a higher peak 
prevalence of resistance at 50 DOF (27.6%), the model fit is stronger 
at 70 DOF than for the ‘both’ variation.

By 50 DOF, the median cumulative percentage of resistance 
acquisition events attributed to transmission in the ‘both’ configuration 
was >90% for all classes; the percentage of resistance acquisition 
events attributed to AMU was 6.5% for 15-membered ring macrolides, 
4.7% for trimethoprim, 7.7% for tetracyclines, and nil/negligible for 
sulphonamides. Similarly, the percentage of resistance acquisition 
events attributed to AMU by 170 DOF was 4.6% for 15-membered 
ring macrolides, 5.2% for trimethoprim, 5.7% for tetracyclines, and 
nil/negligible for sulphonamides. Both sets of observations highlight 
the importance of contagious acquisition of resistance in achieving a 
good fit to the observed data.

Sensitivity analyses

The simulated prevalences of resistance at 13, 50, and 70 DOF for 
all classes/configurations under modified assumptions (i.e., ‘scenarios’) 
were reported in Supplementary Table S2 (pen level) and 
Supplementary Table S3 (feedlot level). In general, the model outputs 
were more robust to changes in the assumptions underscoring AMU 
(i.e., therapeutic interval length, variation in metaphylactic drug 
exposure) and the responsiveness of BRD treatment failure to AMR 
than to changes in duration of the effect of the stress multiplier on 
transmission potential.

For 15-membered ring macrolides, outputs for the ‘both’ 
configuration at 13 DOF were uniquely sensitive to changes in 
therapeutic interval length; at this time point, doubling the therapeutic 
interval substantially increased the median prevalence of resistance 
from 57 to 100% at both the pen and feedlot levels (Supplementary  
Tables S2, S3). The increases in prevalence owing to interval length 
were more modest (3–4%) for the ‘antimicrobial use only’ 
configuration, highlighting how transmission amplified selective 
pressure for resistance to macrolides in the early feeding period. When 
the choice of metaphylactic drug was permitted to vary, the variation 
in outcome (i.e., the width of the 95% prediction intervals) increased 
considerably relative to baseline for both configurations and at most 
time points (Supplementary Tables S2, S3). At the pen level, the lower 
bound of the interval reduced to <1% for all permutations, implying 
that more simulations generate nil/low prevalences of resistance 
through 170 DOF when metaphylaxis was selected probabilistically. 
At the feedlot level, increased variation in outcome due to 
metaphylactic variability had largely disappeared by 50 DOF in the 
‘both’ configuration.

For the tetracycline class configurations, absolute differences in 
the median resistance prevalence in response to AMU variations did 
not exceed 2% at either level or any time point 
(Supplementary Tables S2, S3). The variation in outcome for 
tetracyclines was similarly robust to changes in the choice of product 
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TABLE 4 Pairwise comparisons of best objective values from candidate configurations for each antimicrobial class.

Antimicrobial 
class Configuration 15-membered ring macrolides 16-membered ring macrolides Sulphonamides Trimethoprim Tetracyclines

Drug 
use Transmission Both Drug use Transmission Both Drug 

use Transmission Both Drug 
use Transmission Both Drug 

use Transmission Both

15-membered ring 

macrolides

Drug use 30.3% 13.5%

Transmission −30.3% −16.9%

Both −13.5% 16.9%

16-membered ring 

macrolides

Drug use 40.9% 43.1%

Transmission −40.9% 2.3%

Both −43.1% −2.3%

Sulphonamides

Drug use 167% 167%

Transmission −167% 0.6%

Both −167% −0.6%

Trimethoprim

Drug use 72.4% 78.6%

Transmission −72.4% 5.6%

Both −78.6% −5.6%

Tetracyclines

Drug use 14.6% 11.9%

Transmission −14.6% −2.7%

Both −11.9% 2.7%

The absolute difference between two objective values is divided by the average of those values to compare the ability of candidate configurations to reproduce the reference data. Percentage differences exceeding 20% (shaded blue and in bold text) indicate a substantial 
difference in model fit.
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for metaphylactic use, a likely consequence of the existing variability 
in prophylactic and therapeutic use across simulations in the baseline 
configurations. Outputs for all the sulphonamide class and 
trimethoprim configurations were similarly insensitive to changes in 
the AMU assumptions (no absolute differences >0.5% in the median 

prevalence of resistance at either level or any time point). These drug 
classes were only used together therapeutically as potentiated 
sulphonamide injectables for previous BRD treatment failures and, 
therefore, infrequently in the configurations where AMU impacts 
detectable AMR (103 median uses by 170 DOF).

FIGURE 7

Comparison of model fit for each of the (A) antimicrobial use only, (B) transmission only, and (C) both configurations for 15-membered ring 
macrolides. Figures depict the range of likely outcomes at the pen (yellow) and feedlot (grey) levels derived from the repeated random sampling of 
model inputs across 5,000 Monte Carlo simulations. The best objective values for the ‘antimicrobial use only’, ‘transmission only’, and ‘both’ 
configurations for 15-membered ring macrolides are 0.213, 0.157, and 0.186, respectively. Per the calibration algorithm, a 15-membered ring macrolide 
(i.e., tulathromycin) is administered to all high-risk cattle entering the feedlot. By 170 DOF, the median number of uses of 15-membered ring macrolide 
class drugs in the ‘antimicrobial use only’ configuration is,9,600 (range 9,596–9,600); the median cumulative percentage (%) of resistance acquisition 
events in the ‘both’ configuration attributed to (1) antimicrobial use and (2) transmission is 4.6 and 95.4%, respectively.

FIGURE 8

Comparison of model fit for each of the (A) antimicrobial use only, (B) transmission only, and (C) both configurations for 16-membered ring 
macrolides. Figures depict the range of likely outcomes at the pen (yellow) and feedlot (grey) levels derived from the repeated random sampling of 
model inputs across 5,000 Monte Carlo simulations. The best objective values for the ‘antimicrobial use only’, ‘transmission only’, and ‘both’ 
configurations for 16-membered ring macrolides are 0.592, 0.391, and 0.382, respectively. Per the calibration algorithm, 16-membered ring macrolides 
are not administered metaphylactically or therapeutically to high-risk cattle entering the feedlot. By 170 DOF, the median number of uses of 
16-membered ring macrolide class drugs in the ‘antimicrobial use only’ scenario is 0.
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The impact of making BRD treatment failures responsive to AMR 
was nil/negligible under the baseline treatment protocols 
(Supplementary Tables S2, S3), suggesting that the emergent 
prevalence of pen-level resistance to therapeutic drugs rarely exceeds 

the fixed treatment failure rate derived from historical data. In the 
‘extreme macrolide use’ counterfactual scenario, the median 
prevalence of resistance to 15-membered ring macrolides was 
reasonably robust to AMR responsiveness for both configurations 

FIGURE 9

Comparison of model fit for each of the (A) antimicrobial use only, (B) transmission only, and (C) both configurations for sulphonamides. Figures depict 
the range of likely outcomes at the pen (yellow) and feedlot (grey) levels derived from the repeated random sampling of model inputs across 5,000 
Monte Carlo simulations. The best objective values for the ‘antimicrobial use only’, ‘transmission only’, and ‘both’ configurations for sulphonamides are 
1.725, 0.154 and 0.153, respectively. Per the calibration algorithm, sulphonamides are administered therapeutically in combination with trimethoprim 
both (1) to treat second relapses of BRD in cattle under 1,200 pounds and (2) to treat first relapses of arthritis in cattle under 1,000 pounds. By 170 DOF, 
the median number of uses of sulphonamide class drugs in the ‘antimicrobial use only’ configuration is 103 (range 68–147); the median cumulative 
percentage (%) of resistance acquisition events in the ‘both’ configuration attributed to (1) antimicrobial use and (2) transmission is 0.02 and 99.98%, 
respectively.

FIGURE 10

Comparison of model fit for each of the (A) antimicrobial use only, (B) transmission only, and (C) both configurations for trimethoprim. Figures depict 
the range of likely outcomes at the pen (yellow) and feedlot (grey) levels derived from the repeated random sampling of model inputs across 5,000 
Monte Carlo simulations. The best objective values for the ‘antimicrobial use only’, ‘transmission only’, and ‘both’ configurations for trimethoprim are 
0.039, 0.018, and 0.017, respectively. Per the calibration algorithm, trimethoprim is administered therapeutically in combination with sulphadoxine both 
(1) to treat second relapses of BRD in cattle under 1,200 pounds and (2) to treat first relapses of arthritis in cattle under 1,000 pounds. By 170 DOF, the 
median number of uses of trimethoprim in the ‘antimicrobial use only’ configuration is 103 (range 68–147); the median cumulative percentage (%) of 
resistance acquisition Events in the ‘both’ configuration attributed to (1) antimicrobial use and (2) transmission is 5.2 and 94.8%, respectively.
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where AMU could impact detectable resistance and at both pen and 
feedlot levels (Supplementary Table S4). However, observed increases 
in the number of 15-membered ring macrolide uses 
(Supplementary Table S4) and the number of first and subsequent 
BRD cases due to AMR-associated failure of metaphylaxis or treatment 
(Supplementary Table S5) demonstrate the functionality of the AMR 
responsiveness mechanism.

In the scenarios with modified step functions that either 
constrained or maximized the impact of stress on the effective 
contact rate, there were substantial changes in the median 
prevalences of resistance for the majority of the antimicrobial classes/
configurations where transmission impacts detectable AMR 
(Supplementary Tables S2, S3). For both 15-membered ring 
macrolides and tetracyclines, the absolute differences in median 
resistance were greatest for the ‘transmission only’ configuration at 
50 and 70 DOF for both pen and feedlot levels; when the stress 
multiplier’s effect was limited to the first 21 DOF, resistance at the 
feedlot level by 50 DOF dropped to 5 and 9%, respectively. 
Conversely, when the stress multiplier’s full effect was maintained to 
70 DOF, resistance increased to 74 and 43% by 50 DOF for 
15-membered ring macrolides and tetracyclines, respectively, and 
remained high through 70 DOF. Outputs for the sulphonamide 
configurations were especially responsive to changes in transmission 
potential, given the primary role of transmission in AMR emergence 
for this class.

Changes to the step function had related impacts on the median 
percentage of resistance acquisition events attributed to AMU at 50 
and 170 DOF in the ‘both’ configuration for all classes. When the 
contact rate multiplier effect is constrained to 21 DOF, there were 
fewer total acquisition events, and AMU accounts for a greater 

percentage of these than in the baseline scenario. For 15-membered 
ring macrolides and tetracyclines, the percentage of resistance 
acquisition events attributed to AMU by 50 DOF increased to 10.2 
and 16.5%, respectively.

Discussion

While it is well-established that the development of AMR in 
animal production and elsewhere is accelerated by ‘selection pressure 
placed on susceptible microbes by the use of antimicrobial agents’ (3), 
a comprehensive understanding of the factors that cause the spread 
and persistence of AMR bacteria is limited by the currently available 
data (77). Knight et al. (78) describe how mathematical models can 
inform policies for managing AMR but acknowledge that the major 
drivers of the spread of resistance at the population level have not been 
‘convincingly identified’. This study aimed to explore hypotheses about 
how population-level AMR emerges in a typical, small- to mid-sized 
Canadian feedlot with calves at increased risk for BRD. The baseline 
version of the model was exclusively populated by fall-placed steer 
calves sourced via auction; calves with this risk profile are most often 
recently weaned and lighter weight animals, and are more likely than 
heavier and older animals to be  in the early stages of respiratory 
disease (29) and to receive metaphylactic antimicrobials at feedlot 
entry (6).

Mathematical or dynamic models are well-suited to the 
representation and investigation of AMR and other complex, adaptive 
systems (23). Still, there are few examples of this approach in 
agriculture and food systems settings (24). Available studies are most 
often of the aggregate or compartmental type and employed to 

FIGURE 11

Comparison of model fit for each of the (A) antimicrobial use only, (B) transmission only and (C) both configurations for tetracyclines. Figures depict 
the range of likely outcomes at the pen (yellow) and feedlot (grey) levels derived from the repeated random sampling of model inputs across 5,000 
Monte Carlo simulations. The best objective values for the ‘antimicrobial use only’, ‘transmission only’, and ‘both’ configurations for tetracyclines are 
0.337, 0.291, and 0.299, respectively. Per the calibration algorithm, tetracyclines are administered prophylactically (i.e., in-feed) both (1) as a pulse or 
long-term regimen to prevent histophilosis; and (2) as part of a regimen to prevent liver abscesses in 30% of animals. Tetracyclines are similarly 
administered therapeutically both (1) to treat foot rot in 50% of cases in cattle under 1,200 pounds and (2) to treat first cases of arthritis in cattle under 
1,000 pounds. By 170 DOF, the median number of uses of tetracycline class drugs in the ‘antimicrobial use only’ configuration is 19,292 (range 9,654–
28,900); the median cumulative percentage (%) of resistance acquisition events in the ‘both’ configuration attributed to (1) antimicrobial use and (2) 
transmission is 5.7 and 94.3%, respectively.
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examine the within-host dynamics of AMR in single food animals 
(79–82); a notable exception extends a compartmental model to study 
the within-herd spread of resistant Escherichia coli in pigs (83). 
Aggregate models are comparatively easy to parameterize but are 
limited in their ability to account for individual heterogeneity or the 
substantial impact of chance events in closed systems (84), including 
feedlot pens. This novel study draws on the many strengths of agent-
based modelling techniques (85), including (1) the explicit modelling 
of individual animals with unique risk profiles, disease histories, and 
exposures to AMU; (2) the flexibility to incorporate behavioural units 
at multiple scales in a nested structure (e.g., each of animal, pen, and 
feedlot ‘agents’); and (3) the ability to capture emergent system 
phenomena (e.g., AMR prevalence) arising from the rule-based 
interactions of agents with each other and their co-evolving 
environments. This approach has been used effectively elsewhere in 
research concerning BRD dynamics in the context of French fattening 
farms. Picault and colleagues investigated the impact of farming 
practices, including pen size and metaphylaxis, on BRD outcomes and 
antimicrobial usage in calves of varying risk with a stochastic, 
individual-based model (86).

Birkegård et al. (87) argue that to extract useful conclusions from 
advanced mechanistic (i.e., agent-based) models depicting AMR, 
related research should focus on providing data to parameterize and 
validate these tools. Notable strengths of this work are its use of 
diverse, multilevel datasets to explain population-level resistance 
trends (78) and the transparency with which the inputs are reported 
(24, 26). This model integrates current and emerging research with 
publicly available surveillance data, market analysis data (e.g., weight 
and ADG metrics), and expert opinion informed by feedlot 
veterinarians (e.g., likelihood of AMU treatment protocols). 
Exogenous (i.e., externally specified) variables that precipitate 
exposures to antimicrobials, including the first-case hazard rates for 
select feedlot diseases (Figure 1), the disease-specific and all-cause 
mortality rates (Figures  2A,B), and related disease parameters 
(Table 1), are derived from proprietary data from partner veterinary 
practices representing over 1.5 million animals from 2007 to 2020. The 
‘huge work to parameterize these models’ (87) was undertaken here 
in a singular effort to solicit setting- and context-specific inputs with 
which to ground the model in robust epidemiological data.

Martínez and Baquero (88) propose that the ‘emergence and 
spread of antibiotic resistance can only be understood in a multi-
parameter space’ including ecological selection and contact rates, 
among others. Calibration is a useful approach to generate parameter 
values for which estimates are unavailable or otherwise unobservable, 
as with those that govern changes in detectable AMR (Figure  4). 
Furthermore, to evaluate the relative importance of plausible 
hypotheses contributing to resistance spread, it is necessary to 
systematically calibrate models to empirical data (namely, the time-
varying proportion of resistant isolates across the feeding period) (78). 
Suitable ‘calibration targets’ (25) in the required format were 
unavailable, and the synthesis of a custom, longitudinal dataset for 
M. haemolytica was a critical component of this study (Figures 6A,B). 
Access to the dataset described by Noyes et al. (40) was granted by 
P. Morley (personal communication, 2018), and established a 
historical baseline prevalence of resistance. In addition to more recent 
(2019–2021) data from CFAASP, the reference dataset is also 
populated with empirical resistance data from approximately 1,600 
recently weaned fall-placed feedlot calves at several points across the 

early feeding period (89). The model could theoretically 
be  re-calibrated for other BRD-associated pathogens (16, 34) if 
suitable longitudinal reference datasets could be curated. The potential 
to model AMR transmission between bacterial species of interest is a 
logical extension of this study.

Birkegård et al. (87) note that all the models of AMR development 
and spread included in their review assert that ‘an increase in 
antimicrobial use increases AMR’. The results of our study 
convincingly demonstrate that the emergence of population-level 
AMR cannot be  fully understood without also accounting for 
transmission in the model’s structure, jointly operationalized here by 
the calibrated contact rate and stress multiplier parameters. Across all 
antimicrobial classes of interest, the model performed worse when the 
impact of transmission on the spread of detectable resistance was 
ignored (i.e., in the ‘antimicrobial use only’ configurations). 
Furthermore, the large majority (>90%) of the resistance acquisition 
events at 50 DOF and through 170 DOF in the ‘both’ configuration 
was a consequence of contagious rather than selective acquisition for 
all antimicrobial classes. Consistent with this finding, Abi Younes et al. 
(38) report evidence of the rapid interpen spread of a macrolide-
resistant M. haemolytica clone by 13 DOF in healthy feedlot calves that 
received metaphylactic tulathromycin. Snyder et  al. (90) similarly 
describe the ‘contagious spread’ of M. haemolytica between stocker 
calves after metaphylaxis as demonstrated by the genetic relatedness 
(i.e., clonality) of multidrug-resistant isolates collected at revaccination 
(10–14 days after arrival).

The extent to which ABM permits the strategic incorporation of 
stochastic elements to describe real-world entities and phenomena 
was among the many motivations for pursuing this type of 
representation (91). Indeed, individual models are the preferred tool 
to account for (1) the biological variability of agents across one or 
more dimensions and (2) uncertainties deriving from the data used as 
model inputs. Stochastic processes are a key feature of the model (see 
‘Randomness and Stochasticity’ section), but were constrained in this 
baseline exploration by assumptions that reflected the availability and 
generalizability of empirical data for parameterization and calibration. 
For example, while a probabilistic selection mechanism exists for 
metaphylactic drug selection (Supplementary Figure S3), this choice 
was fixed in the baseline version (i.e., every calf received tulathromycin 
at entry, consistent with the AMU history of calves in the reference 
and BRD incidence data). This and other key assumptions imposed 
on the system, including those that defined the risk status of incoming 
animals, effectively limited a more extensive exploration of 
stochasticity in the model’s outputs. At the feedlot level, these 
restrictions were reflected in the narrow prediction intervals for the 
majority of the antimicrobial class/configuration combinations in the 
baseline scenario (Figures 7–11).

The wider prediction intervals for the pen level outputs in 
Figures 7–11 highlight the increased variability in the prevalence of 
resistance at this unit of analysis. Smaller or subpopulations (e.g., 
calves from a single ‘home’ pen) are more vulnerable to the impacts of 
chance events than their superset counterparts (e.g., calves from all 
pens in the feedlot). Furthermore, there were more repetitions and, 
therefore, opportunities to explore stochastic combinations at the pen 
level (n = 240,000 pens over 5,000 iterations). Increased variability in 
outcome was similarly observed for select antimicrobial classes when 
the assumption restricting drug choice was relaxed in the scenario 
with metaphylactic variation; the outputs for 15-membered ring 
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macrolides were especially sensitive to this change 
(Supplementary Tables S2, S3), given that the proportion of 
simulations with universal tulathromycin metaphylaxis use was 
reduced by over 40% (per the probabilities in Supplementary Figure S3). 
In general, varying the choice of metaphylactic drug had a greater 
impact than modifying the stress multiplier’s effect on AMR 
transmissibility on the variability in outcome (i.e., the range of 
resistance prevalences across realizations of the model) for all classes.

Conversely, the median prevalences of resistance for most 
antimicrobial classes were markedly more sensitive to changes in the 
step function and adjusted contact rate than to the assumptions 
related to AMU and AMR responsiveness. The effect of the stress 
multiplier is constrained to 21 DOF in the minimized function, 
consistent with the observation that the peak incidence of BRD 
associated with M. haemolytica generally occurs within 2–3 weeks of 
feedlot arrival (11, 30, 75). In the maximized function, the effect of the 
stress multiplier is maintained at full strength to 70 DOF to account 
for more delayed patterns of morbidity timing in some cohorts (92). 
The extreme variations of the step function explored in the sensitivity 
analyses are useful experiments but biologically improbable (i.e., the 
increased likelihood of pathogen transfer owing to physiological stress 
is unlikely to stop at 21 DOF or to continue without abating to 70 
DOF). Furthermore, BRD cases occurring beyond the early feeding 
period are more likely to be associated with other or mixed BRD 
pathogens (e.g., M. bovis and H. somni) than M. haemolytica (93, 94). 
The function in the baseline scenario reflects empirical data for first-
case BRD diagnoses in high-risk calves (Figure 5) and the finding 
elsewhere (53) that ‘75% of BRD cases are reported to occur within 
the first 40–55 days after arrival’ (76).

Despite having minimal impact on the outputs of interest in this 
study, the AMR responsiveness mechanism is nevertheless a critical 
feature of the feedlot model. The conditions required for maximum 
responsiveness (i.e., high levels of detectable resistance to the 
therapeutic options) were simulated in the ‘extreme 15-membered 
ring macrolide use’ scenario, a thought experiment that (1) confirmed 
the emergent stochastic element was working as intended; and (2) 
identified how related outputs (e.g., BRD cases and AMU counts) were 
affected by responsiveness to pen-level AMR. There were 10% more 
first cases of BRD (owing to metaphylactic failure) and 110% more 
relapses of BRD (owing to therapeutic failure) in the responsive vs. 
non-responsive versions of the ‘both’ configuration 
(Supplementary Table S5). Resistance-linked treatment failure could 
not be decoupled from other-cause treatment failure in the empirical 
data available for parameterization, and was, therefore, externally 
specified in the calibration version of this model. In future 
experiments, model responsiveness to detectable resistance (informed 
by testing or otherwise) will allow for increasingly complex feedback 
between AMU and AMR and more meaningful analysis of truly 
emergent model properties.

The 15- and 16-membered ring macrolides were treated as distinct 
subclasses and simulated independently in all model versions reported 
here. There were several practical and biological reasons for this 
choice, including that there was nil or negligible injectable 
16-membered ring macrolide (i.e., tilmicosin and tildipirosin) use in 
the studies from which the reference data were synthesized (38–44). 
The confidence in the outputs informed by the data for this subclass 
was consequently lower than for their 15-membered ring counterparts. 
Furthermore, substantially dissimilar prevalences of phenotypic 

resistance to tulathromycin and tilmicosin were observed for isolates 
across the early feeding period in (38), highlighting the previously 
described potential for distinct genetic pathways to resistance by 
macrolide subclass (95, 96). Notably, the newly discovered resistance 
gene estT has been detected in M. haemolytica isolates and encodes an 
enzyme that hydrolyzes 16- but not 14- or 15-membered ring 
macrolides (97). A series of calibrations in which detectable resistance 
to 15- and 16-membered ring macrolides is linked with a conditional 
probability is planned but beyond the scope of this paper. Importantly, 
in-feed tylosin use did not co-select for resistance to macrolides in 
either subclass in these experiments, given that orally administered 
macrolides did not impact the prevalence or susceptibility of 
respiratory microbes in a relevant study from Zaheer and 
colleagues (45).

The outputs from these simulations cannot be generalized to feedlot 
systems outside of the western Canadian context or feeding operations 
with different management practices or risk groups. The parameters 
governing the acquisition and loss of detectable resistance are calibrated 
to the unique population of cattle and the set of assumptions adopted 
here (see ‘Key Assumptions Underscoring Model Conceptualization’ 
section and Supplementary Table S1). Importantly, these and other 
parameters can be  modified to reflect alternate feedlot and animal 
characteristics, changing expert opinion, and the conditions specific to 
other reference datasets as they become available. Related limitations of 
this study similarly deserve consideration. This model assumes that 
every calf has a commensal population of M. haemolytica, and that 
treatment failures over historical retreatment rates in the 
‘AMR-responsive’ scenarios depend on the emergent prevalence of 
pen-level phenotypic resistance in this organism. While M. haemolytica 
is often regarded as the primary bacterial pathogen associated with 
acute BRD (37), the presence and impact of AMR in other 
BRD-associated bacteria, including P. multocida, H. somni, and M. bovis 
(16, 34), were not considered here. This necessary simplification 
nevertheless provides an empirical rather than theoretical basis for 
examining the dynamics of AMR in a specific pathogen [i.e., in contrast 
to an ‘average’ pathogen, as is sometimes modelled in other studies (e.g., 
(86))]. Indeed, a previous review (24) noted that resistance was 
modelled for a generic bacterial organism and/or a generic antimicrobial 
in 40 and 74% of the models, respectively, that investigated the 
relationship between AMU and AMR.

This study establishes the feedlot model as a tool that can be used 
to explore questions related to AMR and antimicrobial stewardship in 
the context of BRD management. Model variants which included the 
impact of contagious acquisition on population-level AMR offered a 
stronger fit to empirical data and will be  used in forthcoming 
experiments. This study offers a preliminary quantitative assessment 
of the relative contributions of AMU-linked selection and 
transmission to AMR emergence in this setting. It might reasonably 
inform interventional studies that investigate BRD management 
strategies in feedlots. The agent-based modelling framework described 
here is sufficiently flexible to accommodate updates or modifications 
to the infrastructure as required. Recent additions include laboratory 
testing that will facilitate the comparison of different pen sampling 
strategies and AMR diagnostic techniques consistent with the broader 
goals of this project. The emergent behaviour of AMR across the 
feeding period may be  impacted by the introduction of testing-
informed treatment decisions at the pen level (98) and is the focus of 
future analyses.
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