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Introduction: Escherichia coli is a major pathogen responsible for calf diarrhea, 
which has been exacerbated by the irrational and unscientific use of antimicrobial 
drugs, leading to significant drug resistance.

Methods: This study focused on the isolation and identification of E. coli from 
calf diarrhea samples in the Tongliao area of China. Isolation was conducted 
using selective media, Gram staining, and 16S rRNA sequencing. The minimum 
inhibitory concentration (MIC) of E. coli was determined through the microbroth 
dilution method. Additionally, the presence of antibiotic-resistant genes was 
detected, and multidrug-resistant strains were selected for whole-genome 
sequencing (WGS).

Results: The results revealed that all 40 isolated strains of E. coli exhibited 
resistance to sulfadiazine sodium, enrofloxacin, and ciprofloxacin, with 90% 
of the strains being susceptible to polymyxin B. Notably, strains 11, 23, and 24 
demonstrated severe resistance. The detection rates of the antibiotic resistance 
genes TEM-1, TEM-206, strA, strB, qacH, and blaCTX were 100%, indicating 
a high prevalence of these genes. Moreover, the majority of strains carried 
antibiotic resistance genes consistent with their resistance phenotypes. WGS 
of strains 11, 23, and 24 revealed genome sizes of 4,897,185  bp, 4,920,234  bp, 
and 4,912,320  bp, respectively. These strains carried two, one, and two plasmids, 
respectively. The prediction of antibiotic resistance genes showed a substantial 
number of these genes within the genomes, with strain 24 harboring the highest 
number, totaling 77 subspecies containing 88 antibiotic resistance genes.

Discussion: In conclusion, all 40 isolated strains of E. coli from calf diarrhea in 
this study were multidrug-resistant, exhibiting a broad distribution of antibiotic 
resistance genes and mobile components. This poses a significant risk of horizontal 
gene transfer, highlighting the critical situation of antibiotic resistance in this region.
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1 Introduction

Neonatal calf diarrhea (NCD) presents a formidable challenge to 
the global livestock industry, significantly hindering sector growth. This 
disease incurs substantial economic losses due to its high rates of 
morbidity and mortality, growth retardation in affected animals, and the 
associated treatment costs, along with severe long-term consequences 
(1–3). NCD is a leading cause of mortality in calves within their first 
month of life, with approximately 57% of pre-weaning calves 
succumbing to diarrhea (4–6). The etiology of NCD is multifactorial, 
with infections by various pathogens playing a critical role, compounded 
by factors such as genetics, age, environmental conditions, and 
nutritional status. The predominant pathogens causing NCD include 
Bovine Viral Diarrhea Virus(BVDV), Bovine Rotavirus (BRV), Bovine 
Coronavirus (BCoV), E. coli, Salmonella, Clostridium perfringens, 
Cryptosporidium, and Eimeriidae. E. coli, in particular, is highly 
contagious and can cause severe diarrhea and septicemia in calves, with 
higher morbidity and mortality rates observed in younger animals (7, 8).

Pathogenic E. coli is typically categorized into intestinal and 
extraintestinal pathogenic strains. The intestinal pathogenic strains are 
further divided into six types: Enterotoxigenic E. coli (ETEC), 
Enterohaemorrhagic E. coli (EHEC)/Shiga toxin-producing E. coli 
(STEC), Enteropathogenic E. coli (EPEC), Enteroinvasive E. coli (EIEC), 
Enteroaggregative E. coli (EAEC), and Diffusely adherent E. coli 
(DAEC). Among these, ETEC is the primary strain responsible for 
diarrhea in calves (9–12). ETEC’s pathogenic mechanism involves 
bacterial adhesion and colonization of the small intestinal epithelial cells 
via fimbriae, followed by the transfer of small peptides or secretion of 
enterotoxins that trigger a cascade of intracellular signals. This leads to 
a rapid loss of electrolytes from the intracellular environment to the 
intestinal lumen, resulting in watery diarrhea in calves (13–15).

In veterinary practice, while antibiotics are often used to treat 
bacterial NCD, the application of antibiotic therapy for ETEC infections 
remains controversial. In this respect, most authors only justify its use 
in cases that are evolving toward systemic disease, both for the 
prevention of bacteriemia and to reduce the number of ETEC in the gut. 
However, antimicrobials are commonly used by veterinary surgeons for 
teating NCD, even in the absence of demonstrated ETEC involvement. 
This increased use of antibiotics has accelerated the emergence and 
spread of bacterial resistance, giving rise to multidrug-resistant (MDR) 
strains that pose a significant threat to global public health (16, 17). The 
emergence of bacterial resistance has promoted the development of 
colostrums and probiotics. Several studies have suggested the benefits 
of using bovine colostrum and probiotics as prophylactics to prevent 
diarrhea in calves by the administration of colostrum and probiotics 
after the first day of life. However, there is a lack of evidence supporting 
the use of maternally derived bovine colostrum and colostrum 
replacements as a therapy for diarrhea in calves (18). E. coli, serving as 
a potential source, intermediate carrier, and crucial reservoir of 
antibiotic resistance genes (ARGs), plays a pivotal role in the 
dissemination of bacterial resistance (19). Horizontal gene transfer 
(HGT) via plasmid-mediated conjugation is one of the primary 
mechanisms for the spread of ARGs (20, 21). HGT is facilitated by 
several well-known mechanisms including transduction, 
transformation, and conjugation, with conjugation being the 
most significant.

HGT is mediated by mobile genetic elements (MGEs), which are 
DNA molecules capable of moving between replicons (intracellular 

mobility) or between bacterial cells (intercellular mobility). MGEs 
include conjugative DNA elements (plasmids and integrative and 
conjugative elements [ICEs]), transposable DNA elements (transposons 
and integrons), and bacteriophages. These elements carry various genes, 
including those for antimicrobial and metal resistance, virulence, and 
catabolism. Recently, antimicrobial-resistant (AMR) bacteria have 
emerged as a critical public health threat. The spread of ARGs through 
HGT-associated MGEs, coupled with the role of MGEs in promoting 
the diversification of AMR bacteria, exacerbates this issue (22–24). This 
study aimed to understand the drug resistance of E. coli causing diarrhea 
in calves in the Tongliao area of China. A preliminary assessment was 
conducted through the isolation and identification of bacteria, drug 
resistance analysis, detection of drug resistance genes, and analysis of 
mobile components. The findings provide guidance for the clinical 
treatment of calf diarrhea caused by E. coli in the Tongliao area. They 
also establish a research basis for further study and control of the spread 
of bacterial resistance.

2 Materials and methods

2.1 Sample collection and strain isolation

Between May 2021 and May 2022, fecal samples from 50 calves 
with diarrhea symptoms were collected from cattle farms in 
Tongliao City, Inner Mongolia. The sample group consisted of 28 
female and 22 male Simmental calves within 1 month of age. None 
of the sampled calves had been treated with antibiotics. The 
samples were immediately streaked onto E. coli Chromogenic 
Medium and incubated at 37°C for 18 h. This process was repeated 
two to three times to ensure purity. Single colonies were obtained 
by isolating and purifying differently colored colonies. The isolated 
strains were identified by Gram staining and 16S rRNA sequencing. 
Genomic DNA was extracted from the bacteria using a previously 
described protocol, and the 16S rRNA gene was amplified using 
universal polymerase chain reaction (PCR) primers (Table 1). The 
PCR products were sequenced at Comate Bioscience Co., Ltd. 
(Jilin, China) and analyzed using BLASTN on the National Center 
for Biotechnology Information (NCBI) website (25). The E. coli 
ATCC 25922 quality control strain was kindly provided by the 
Laboratory of Pharmacology and Toxicology, School of Animal 
Medicine, Jilin Agricultural University.

2.2 Detection of Escherichia coli fimbria 
adhesin

PCR was used to detect the fimbria adhesin gene of E. coli isolates. 
The primer sequences and reaction conditions are shown in Table 1. 
The PCR products were detected by 1.3% agarose gel electrophoresis.

2.3 Drug sensitivity testing

Antimicrobial susceptibility was tested using the broth 
microdilution method according to Clinical and Laboratory Standards 
Institute (CLSI) guidelines (26). Minimum inhibitory concentrations 
(MIC) of each antibiotic were classified as resistant (R), intermediate 
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(I), or susceptible (S) based on CLSI breakpoints, or the National 
Antibiotic Resistance Monitoring System (NARMS) breakpoints for 
intestinal bacteria when CLSI breakpoints were unavailable. E. coli 
isolates resistant to three or more antibacterial agents were considered 
multidrug-resistant (MDR) (27). Tests were conducted in triplicate for 
each strain, with E. coli ATCC 25922 as the quality control strain.

2.4 Detection of resistance genes

Primer 5.0 software was used to design primers for the resistance 
genes. The primer sequences for E. coli antibiotic resistance genes are 
listed in Supplementary Table S1. Extraction of E. coli genomic DNA 
and detection of drug resistance genes were carried out as previously 
described (28).

2.5 Whole genome sequencing of 
multidrug-resistant strains

The selection of severely drug-resistant strains for whole-
genome sequencing was based on drug susceptibility testing. 
Whole-genome sequencing was conducted on the Nanopore 
sequencing platform by Biomarker Technologies Corporation 
(Qingdao, China). High-quality genomic DNA was extracted, and 
its concentration, purity, and integrity were assessed using a 
NanoDrop spectrophotometer and Qubit fluorometer (Thermo 
Fisher, Waltham, MA, United States). Large DNA fragments were 
filtered using the BluePippin system. A library was prepared using 
the Oxford Nanopore Technologies (ONT) Template Prep Kit 
(SQK-LSK109; Oxford, United Kingdom) and the NEB Next FFPE 
DNA Repair Mix Kit (Ipswich, MA, United  States). The high-
quality library was sequenced on the ONT PromethION platform, 
yielding raw sequencing data (29). Filtered subreads were 
assembled using Canu v1.5 software (30). The assembly results 
were corrected by Racon v3.4.3 software using three generations of 
subreads, with further error correction performed using Pilon 
v1.22 software with second-generation data to obtain a more 
accurate genome for subsequent analysis.

2.6 Data analysis

Gene prediction was conducted using Prodigal v2.6.3 software (31). 
Gene sequences were cross-referenced with the Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional 
databases for annotation (32, 33). Drug resistance genes were identified 
by comparing sequences with the antibiotic resistance database using 
ResFinder software (34–36). Plasmid typing was predicted using 
PlasmidFinder 2.1 software (36, 37). MobileElementFinder software 
was employed to predict mobile elements within the genomes (38).

3 Results

3.1 Identification of Escherichia coli

A total of 40 E. coli strains were isolated from 50 fecal samples. 
The isolates showed blue-green colonies on E. coli Chromogenic 
Medium and specific bands close to the size of the target fragment 
16Sr RNA (1,500 bp) were amplified in all test samples. The sequencing 
results, compared via BLAST on the NCBI database, confirmed the 
isolates were E. coli.

3.2 Detection of Escherichia coli fimbria 
adhesin

The fimbria adhesin gene in the 40 E. coli genomes was detected 
using PCR. The detection rates for the F5 gene and the F41 gene were 
55% (22/40) and 45%, respectively, while the F4, F6, and F18 genes 
were not detected. The PCR results for the fimbria adhesin gene are 
shown in Figure 1.

3.3 Drug sensitivity tests

The results of drug sensitivity tests for the 40 E. coli isolates are 
presented in Table 2. The highest resistance rates were observed for 
sulfadiazine sodium, enrofloxacin, and ciprofloxacin at 100%. In 

TABLE 1 Primer sequences.

Primer name Primer sequence (5′  →  3′) The length of the amplification/bp

16S-F AGAGTTTGATCCTGGCTCAG
1,500

16S-R GGTTACCTTGTTACGACTT

F4-F TGAATGACCTGACCAATGGTGGAACC
484

F4-R GCGTTTACTCTTTGAATCTGTCCGAG

F5-F GCGACTACCAATGCTTCTGCGAATAC
230

F5-R GAACCAGACCAGTCAATACGAGCA

F6-F GCCAGTCTATGCCAAGTGGATACTTC
391

F6-R GTTTGTATCAGGATTCCCTGTGGTGG

F18-F TGGCACTGTAGGAGATACCATTCAGC
230

F18-R GGTTTGACCACCTTTCAGTTGAGCAG

F41-F TTAGCAGCGAAGATGAGTGATGGG
515

F41-R GTACTACCTGCAGAAACACCAGATCC
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contrast, polymyxin B showed the lowest resistance rate at 10%. E. coli 
strain 24 exhibited resistance to all 11 antibiotics tested, while strains 
11 and 23 also demonstrated high resistance. Therefore, these three 
strains were selected for whole-genome sequencing.

3.4 Detection of resistance genes in 
Escherichia coli

The detection results of AMR genes are shown in Table 3. Resistance 
genes for 25 antibiotics were identified. The highest detection rates were 
for β-lactam antibiotic resistance genes TEM-1, TEM-206, and blaCTX; 
aminoglycoside resistance genes strA and strB; and the quaternary amine 
compound efflux pump gene qacH, all at 100%. The lowest detection rate 
was for the phenylpropanol resistance gene catI at 12.5%. The 

aminoglycoside resistance gene aadA5 and the sulfonamide resistance 
gene sul1 had detection rates above 50%. This indicates that the 
predominant resistance genes in E. coli from calf diarrhea in Tongliao are 
qacH, strA, strB, TEM-1, TEM-206, and blaCTX. Among the 40 E. coli 
strains, 24 carried the highest number of resistance genes, accounting for 
84.62% of the total detected resistance genes. Most resistance genes 
correlated with their resistance phenotype.

3.5 Whole genome sequencing analysis of 
multi-drug resistant strains

3.5.1 Genome assembly statistics
Whole genome sequencing of the three multidrug-resistant 

strains revealed the following genome lengths: strain 24 had 

FIGURE 1

Detection results of E. coli fimbria adhesin. (M: DL2000DNA Maeker; 1–40 PCR amplification product of E. coli fimbria adhesin).
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TABLE 2 Results of E. coli drug susceptibility testing.

Serial 
number

Ofloxacin Kanamycin Doxycycline Cephalothin Tetracycline Ciprofloxacin Serial 
number

Ofloxacin Kanamycin Doxycycline Cephalothin Tetracycline Ciprofloxacin

ATCC 25,922 0.5/S 1/S 0.25/S 0.125/S 0.5/S 0.25/S ATCC 25,922 0.5/S 1/S 0.25/S 0.125/S 0.5/S 0.25/S

1 8/R 32/I 8/I 1/S 4/S 4/R 21 64/R 32/I >512/R >512/R 64/R 128/R

2 8/R 256/R 8/I >512/R 16/R 128/R 22 64/R 64/R >512/R >512/R 16/R 128/R

3 16/R 32/I 8/I 512/R 1/S 256/R 23 32/R 16/S 4/S 0.25/S >512/R 128/R

4 8/R 32/I 4/S 512/R 16/R 128/R 24 64/R 512/R 128/R >512/R 32/R 128/R

5 8/R 32/I 8/I 512/R 16/R 8/R 25 64/R 512/R 4/S >512/R 16/R 128/R

6 4/I 32/I 16/R 0.5/S 8/I 2/R 26 64/R 32/I 4/S 512/R 32/R 128/R

7 8/R 64/R 16/R 512/R 16/R 4/R 27 32/R 128/R 1/S 512/R 32/R 128/R

8 8/R 32/I 8/I 1/S 8/I 128/R 28 32/R 64/R 32/R 0.5/S 16/R 128/R

9 8/R 64/R 16/R 512/R 8/I 128/R 29 8/R 32/I 8/I 512/R 16/R 128/R

10 4/I 16/S 8/I 0.25/S 2/S 2/R 30 32/R 16/S 512/R 512/R 32/R 128/R

11 16/R 256/R 8/I 512/R 8/I 128/R 31 32/R 64/R >512/R >512/R 32/R 128/R

12 16/R 64/R 32/R 0.25/S 16/R 128/R 32 64/R 16/S 256/R 512/R 16/R 64/R

13 8/R 32/I 0.25/S 512/R 32/R 128/R 33 16/R 16/S 128/R 512/R 64/R 128/R

14 8/R 16/S 4/S >512/R 128/R 128/R 34 32/R 32/I 4/S 512/R 32/R 128/R

15 64/R 16/S 128/R 512/R 8/I 128/R 35 16/R 16/S 4/S >512/R 128/R 128/R

16 32/R 16/S >512/R 512/R 32/R 128/R 36 8/R 16/S 0.5/S 512/R 32/R 128/R

17 16/R 32/I 128/R 512/R 32/R 32/R 37 16/R 32/I 128/R 512/R 64/R 64/R

18 16/R 16/S 64/R 512/R 32/R 128/R 38 16/R 64/R 16/R >512/R 4/S 128/R

19 16/R 32/I 16/R >512/R 8/I 128/R 39 64/R 32/I >512/R 512/R 4/S 128/R

20 64/R 32/I >512/R 512/R 4/S 128/R 40 64/R 256/R 8/I >512/R 16/R 128/R

Serial 
number

Sulfadiazine 
sodium

Enrofloxacin Gentamycin
Polymyxin 

B
Florfenicol

Serial 
number

Sulfadiazine 
sodium

Enrofloxacin Gentamycin
Polymyxin 

B
Florfenicol

ATCC 

25,922
32/S 0.25/S 0.5/S 0.06/S 0.25/S

ATCC 

25,922
32/S 0.25/S 0.5/S 0.06/S 0.25/S

1 >512/R 8/R 8/I 0.125/S 2/S 21 >512/R 128/R >512/R 0.25/S 128/R

2 >512/R 16/R 2/S 0.25/S 8/R 22 >512/R 128/R >512/R 0.25/S 4/I

3 >512/R 32/R >512/R 0.125/S 16/R 23 >512/R 256/R >512/R 0.25/S >512/R

4 >512/R 8/R >512/R 0.125/S 16/R 24 >512/R 128/R >512/R 16/R 32/R

(Continued)
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TABLE 2 (Continued)

Serial 
number

Sulfadiazine 
sodium

Enrofloxacin Gentamycin
Polymyxin 

B
Florfenicol

Serial 
number

Sulfadiazine 
sodium

Enrofloxacin Gentamycin
Polymyxin 

B
Florfenicol

5 >512/R 8/R >512/R 0.25/S 32/R 25 >512/R 128/R >512/R 8/R 16/R

6 >512/R 4/R 16/R 0.25/S 0.5/S 26 >512/R 128/R >512/R 0.125/S 64/R

7 >512/R 8/R >512/R 0.25/S 32/R 27 >512/R 128/R >512/R 0.125/S 128/R

8 >512/R 4/R >512/R 0.125/S 16/R 28 >512/R 128/R >512/R 0.125/S 2/S

9 >512/R 16/R >512/R 16/R 32/R 29 >512/R 128/R >512/R 0.125/S 16/R

10 >512/R 4/R 16/R 0.125/S 0.5/S 30 >512/R 32/R >512/R 0.125/S 16/R

11 >512/R 32/R >512/R 0.25/S 8/R 31 >512/R 128/R >512/R 0.125/S 4/I

12 >512/R 128/R >512/R 0.125/S 1/S 32 >512/R 128/R >512/R 0.25/S 16/R

13 >512/R 8/R >512/R 0.25/S 2/S 33 >512/R 128/R >512/R 0.125/S 4/I

14 >512/R 16/R >512/R 0.25/S >512/R 34 >512/R 128/R >512/R 0.125/S 32/R

15 >512/R 128/R >512/R 0.25/S 16/R 35 >512/R 8/R >512/R 0.06/S 512/R

16 >512/R 64/R >512/R 0.25/S 16/R 36 >512/R 8/R >512/R 0.125/S 2/S

17 >512/R 32/R >512/R 0.25/S 8/R 37 >512/R 32/R >512/R 0.125/S 4/I

18 >512/R 128/R >512/R 0.125/S 2/S 38 >512/R 128/R >512/R 0.125/S 16/R

19 >512/R 32/R >512/R 0.125/S 16/R 39 >512/R 128/R >512/R 0.125/S 8/R

20 >512/R 128/R >512/R 0.25/S 8/R 40 >512/R 128/R 128/R 4/R 16/R
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4,912,320 bp with two plasmids and a G + C content of 50.31%; strain 
11 had 4,897,185 bp with two plasmids and a G + C content of 50.68%; 
and strain 23 had 4,920,234 bp with one plasmid and a G + C content 
of 50.62%. All sequences have been deposited in the NCBI Sequence 
Read Archive and are publicly accessible under the accession 

numbers CP157955-CP157957, CP103295-CP103297 and 
CP157958-CP157989, respectively. The circular whole genome maps 
of the three E. coli strains are shown in Figure 2. Comparative analysis 
indicated that strains 11 and 24 showed significant advantages in 
amino acid transport and metabolism, energy production and 

TABLE 3 Results of 40 strains of E. coli drug resistance gene detection.

Serial 
number

Drug-
resistance 
gene

Number of 
detections

Detection 
rate (%)

Serial 
number

Drug-
resistance 
gene

Number of 
detections

Detection 
rate (%)

1 aphA1 24 60 14 floR 35 87.5

2 aadA25 26 65 15 mprF 21 52.5

3 aadA5 9 22.5 16 Int1 34 85

4 aadA 33 82.5 17 qnrS 34 85

5 aadA2 31 77.5 18 sul1 19 47.5

6 aadA17 28 70 19 sul2 28 70

7 catI 5 12.5 20 qacH 40 100

8 CTX-M-55 28 70 21 strA 40 100

9 tetA 35 87.5 22 strB 40 100

10 tetD 23 57.5 23 TEM-1 40 100

11 tetR 25 62.5 24 TEM-206 40 100

12 AAC(3)-IIa 23 57.5 25 blaCTX 40 100

13 cmlA6 33 82.5

FIGURE 2

Whole genome maps. (A) Whole genome map of strain 11. (B) Whole genome map of strain 23. (C) Whole genome map of strain 24. The outermost 
circle is the genome size indication, each scale is 5  kb; the second and third circles are the genes on the positive and negative strands of the genome, 
respectively, with different colors representing different COG functional classifications; the fourth circle is the repetitive sequences; the fifth circle is 
the tRNAs and rRNAs, with tRNAs in blue and rRNAs in purple; the sixth circle is the GC-content, and the light yellow portion indicates that the GC-
content of the region is higher than the average GC content of the genome, the higher the peak the greater the difference with the average GC 
content, and the blue part indicates that the GC content of the region is lower than the average GC content of the genome; the innermost circle is the 
GC-skew, the dark gray represents the region where the G content is greater than the C, and the red represents the region where the C content is 
greater than the G.
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conversion, and DNA replication, recombination, and repair. Strain 
24 had superior capabilities in energy production and conversion, 
amino acid transport and metabolism, and carbohydrate transport 
and metabolism compared to strains 11 and 23, but was less efficient 
in lipid transport and metabolism, biosynthesis of secondary 
metabolites, transport and catabolism, and signal 
transduction mechanisms.

3.5.2 Gene ontology and KEGG function 
annotation

The genomic sequences of the three E. coli strains were annotated 
for KEGG metabolic pathways. The results showed significant gene 
involvement in metabolic pathways, particularly in amino acid 
biosynthesis and carbon metabolism. GO functional annotation 
indicated that most genes were related to biological processes, 
especially metabolic processes, cellular processes, and single-organism 
processes, which are crucial to the strains’ life activities. Strain 24 had 
more genes related to catalytic activity, metabolic processes, cell 
membranes, and cell membrane components compared to strains 11 
and 23 (see Supplementary Figure S1).

3.5.3 Analysis of resistance genes
Whole genome sequencing of E. coli strains 11, 23, and 24 revealed 

68, 63, and 77 isoform types of resistance genes, respectively, with total 
counts of 71, 78, and 88 resistance genes. Chromosomal genomes of 
strains 11, 23, and 24 carried 51, 57, and 58 types of resistance genes, 
with counts of 53, 72, and 59, respectively. Plasmid genomes carried 
17, 6, and 21 types of resistance genes, with counts of 18, 6, and 29, 
respectively (see Supplementary Tables S2–S4). Resistance genes in the 
chromosomal genomes of all three strains mediated resistance to 

quinolones, aminoglycosides, tetracyclines, macrolides, β-lactams, 
and lincosamide antibiotics. The primary mechanisms included 
antibiotic efflux, modification-induced inactivation, target site 
substitution, and alteration of antibiotic targets.

3.5.4 Analysis of mobile components
Mobile elements in the genomes were analyzed using Mobile 

Element Finder. The analysis predicted that mobile elements in the 
genomes of the three E. coli strains mainly existed as transposons and 
insertion sequences, with numerous reverse repetitive sequences 
(Figure 3). The mobile elements carrying drug resistance genes were 
primarily composite transposons, mostly from the IS6 family. Only 
the insertion sequence in plasmid 1 of strain 24 carried a drug 
resistance gene. Strain 11 contained a compound transposon 
(TN4352) with no predicted family, while strain 23 had a single 
transposon (Tn2) with no predicted family (see Supplementary Tables 
S5–S7).

4 Discussion

Calf diarrhea is prevalent in many farms worldwide, characterized 
by rapid disease progression and high mortality, leading to significant 
economic losses for the global farming industry (39). Reports indicate 
that 39% of calves in the United States suffer from diarrhea (40), with 
similarly high rates observed in Korea, where 53.4% of calf deaths are 
attributed to this condition (41). ETEC represents a major cause of 
diarrhea in calves, as well as an important zoonotic pathogen (42). 
Diarrhea remains a leading cause of morbidity and mortality 
throughout the world, especially in developing countries, with ETEC 

FIGURE 3

Analysis result of mobile components. (A) Result of mobile components analysis of strain 11 Chromosomal genomes. (B) Result of mobile components 
analysis of strain 11 plasmid 1. (C) Result of mobile components analysis of strain 11 plasmid 2. (D) Result of mobile components analysis of strain 23 
Chromosomal genomes. (E) Result of mobile components analysis of strain 23 plasmid 1. (F) Result of mobile components analysis of strain 24 
Chromosomal genomes. (G) Result of mobile components analysis of strain 24 plasmid 1, (H) Result of mobile components analysis of strain 24 
plasmid 2.
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being responsible for hundreds of millions of cases of childhood 
diarrhea each year, accounting for between 1.6 and 2.5 million deaths 
(43). Since diarrheic calves are a major source of ETEC transmission 
to humans, effective prevention and treatment of calf diarrhea remain 
a significant global challenge (44, 45). Antibiotics have traditionally 
been effective in managing this disease; however, the extensive and 
often inappropriate use of antibiotics has led to the emergence of 
antibiotic-resistant E. coli strains, posing a severe public health 
problem globally.

As the national core of beef cattle producing area of China, 
Tongliao has a large number of beef and the diarrhea caused by 
E. coli is frequently occurring. However, there are few studies on the 
drug resistance of E. coli in this area. In this study, drug sensitivity 
testing revealed that the 40 E. coli isolates from calves with diarrhea 
exhibited varying degrees of resistance to 11 antibiotics. Sodium 
sulfadiazine, enrofloxacin, and ciprofloxacin showed the highest 
resistance rates at 100%, followed by gentamicin, ofloxacin, and 
thiramycin with resistance rates exceeding 80%. Multidrug 
resistance was also prevalent. Previous studies, such as those by 
Yassin et al. and Jia et al., have reported high resistance rates to 
tetracycline, ciprofloxacin, enrofloxacin, and gentamicin in E. coli 
isolates from different regions in China (46, 47). Similarly, He et al. 
reported high resistance rates in the Xinjiang region (48). 
Comparatively, Algammal et  al. found lower resistance rates in 
Egyptian isolates, while Khawaskar et al. reported varied resistance 
in Indian isolates (11, 15). These variations highlight the regional 
differences in antibiotic resistance, likely influenced by local 
therapeutic practices. The high resistance rates observed in this 
study underscore the severe antibiotic resistance in bovine E. coli in 
Tongliao, China. Although the sample size of strains in our study is 
relatively small, but in the follow-up study, we  will continuous 
attention to the resistance of E. coli strains isolate from calf diarrhea 
in Tongliao.

Polymyxin B has become a last-resort antibiotic for treating 
Gram-negative multidrug-resistant bacterial infections (49). In this 
study, the E. coli isolates were generally sensitive to polymyxin B, 
although 10% showed resistance, emphasizing the need for 
judicious antibiotic use to prevent further resistance development. 
The detection of resistance genes revealed that β-lactam resistance 
genes (blaCTX, TEM-1, TEM-206), aminoglycoside resistance genes 
(strA, strB), and the quaternary amine compound efflux pump gene 
(qacH) were prevalent, with a 100% detection rate. This high 
prevalence of resistance genes, coupled with the presence of 
multiple resistance genes in individual strains, correlates with their 
resistance phenotypes and indicates severe resistance issues in the 
Tongliao area.

Whole genome sequencing (WGS) has been increasingly used 
to analyze the genetic information of drug-resistant strains and the 
transfer mechanisms of resistance genes (50–52). WGS of three 
multidrug-resistant E. coli strains in this study revealed significant 
genetic insights. Strains 11, 23, and 24 carried two, one, and two 
plasmids, respectively. GO functional annotation showed an 
abundance of genes related to metabolic processes, cellular 
processes, and single-organism processes. Strain 24, in particular, 
had more genes associated with catalytic activity, metabolic 
processes, and cell membrane components, suggesting a role in 
antibiotic efflux and reduced absorption. KEGG pathway analysis 
indicated significant enrichment of genes involved in amino acid 

biosynthesis and carbon metabolism, aligning with the GO 
annotation results. Previous studies have shown that E. coli can 
develop antibiotic resistance through various mechanisms, with 
antibiotic resistance mediated by efflux pumps, biofilm formation, 
and enzymatic modification of antibiotics, among other 
mechanisms (23, 47, 53). The three E. coli strains in this study 
exhibited multiple resistance mechanisms, with antibiotic efflux 
being predominant, especially in strain 24, which carried more 
resistance genes on plasmids compared to strains 11 and 23.

Previous studies have shown that E. coli can develop antibiotic 
resistance through various mechanisms, including efflux pumps, 
biofilm formation, and enzymatic modification of antibiotics (23, 
47, 53). As predicted by the CARD database, the three E. coli strains 
in this study exhibited multiple resistance mechanisms, with 
antibiotic efflux being the predominant mechanism, especially in 
strain 24, which carried more resistance genes on plasmids 
compared to strains 11 and 23. Insertion sequences, the simplest 
mobile elements in bacterial genomes, play a crucial role in the 
transfer and dissemination of antibiotic resistance genes (54). 
Studies have shown that composite transposons, formed by identical 
or related insertion sequence elements, can facilitate the movement 
of resistance genes, promoting their spread (55). This study 
integrated the results of whole-genome sequencing with prediction 
of mobile genetic elements (MGEs) to analyze the genomes of three 
E. coli strains. It was found that these genomes carried a large 
number of transposons and insertion sequences containing 
antibiotic-resistance genes, and Type I  integrase genes were 
discovered in some composite transposons carrying antibiotic-
resistance genes. The Tn4352 complex transposon in plasmid 1 of 
strain 11 carried both an integrase gene and the aminoglycoside-
resistance gene APH(3′)-Ia. One complex transposon containing a 
Type I integrase gene was found in both plasmid 1 and plasmid 2 of 
strain 24, and the complex transposon in plasmid 1 contained the 
chloramphenicol efflux pump protein gene cmlA6, the 
ADP-ribosyltransferase gene arr-2, and the dihydrofolate reductase 
gene dfrA14. Furthermore, this composite transposon overlapped 
with the cmlA6 gene in a Tn3 composite transposon carrying the 
florfeniol-resistance gene floR. In the composite transposon of 
plasmid 2, in addition to the Type I integrase and aadA2 and dfrA12 
resistance genes, a gene island was observed containing the 
resistance genes mphA and sul1, although the Type I integrase gene 
was not located within the gene island. Unlike strains 11 and 24, 
strain 23 carried the Type I integrase gene in the gene island of the 
chromosome, which contained the dfrA17, aadA5, and sul1 
resistance genes, and its gene structure was more similar to that of 
the gene island in plasmid 2 of strain 24. Based on the above results 
and integrase structural analysis, it was inferred that the composite 
integrase on the plasmids and chromosomal gene islands contained 
Type I integrase, with some of these integrases carrying the dfrA-
aadA resistance gene cassette. Due to the specific structure of the 
integrons’ multi-gene cassettes, the gene cassettes can be inserted at 
specific sites under the action of integrase, and the unique structure 
allows the integrons to capture a large number of exogenous mobile 
drug resistance genes and then to express these captured exogenous 
genes. At the same time, the integrons can be carried by transposons, 
gene islands, and other mobile elements, thus contributing to the 
horizontal transfer of drug-resistant genes, resulting in the 
intensification of bacterial drug resistance.
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5 Conclusion

In this study, the isolation and identification of E. coli isolates from 
calf diarrhea from the Tongliao region, together with analysis of drug 
resistance, revealed that E. coli in this region is severely resistant to 
drugs, with 100% resistance to sulfadiazine sodium, enrofloxacin and 
ciprofloxacin. The detection rates of the antibiotic-resistance genes 
TEM-1, TEM-206, strA, strB, qacH, and blaCTX were 100%. Whole-
genome sequencing of the three multi-drug resistant E. coli strains 
demonstrated that all three strains carried plasmids containing 
resistance genes. These resistance genes and MGE prediction showed a 
large number of transposons and insertion sequences in these genes in 
the strains. Furthermore, the presence of integrase genes was found in 
the plasmids and chromosomal genomes of several strains, contributing 
significantly to the horizontal transfer of drug-resistance genes, and thus 
leading to significantly increased resistance against antimicrobial drugs.
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