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Colostrum is rich in membranous vesicles of endocytic origin named exosomes, 
with proteins, lipids, RNA, and/or DNA cargos which can play different roles in 
physiological processes. Like other colostrum bioactive compounds, exosomes 
could be also influenced by individual characteristics. The objective of the study 
was to characterize miRNA cargo of colostrum exosomes from primiparous and 
multiparous cows in different farms. Twenty-seven colostrum samples of clinically 
healthy Holstein cows (11 primiparous and 16 multiparous) from 3 different farms 
were obtained and frozen. After thawing, exosomes were isolated following an 
ultracentrifugation protocol, and characterized morphologically. Particle size 
distribution and western immunoblotting were also analyzMaed. After RNA extraction, 
miRNAs were sequenced and analyzed to assess potential differences in profiles 
between primiparous and multiparous cows from different farms. Fourteen miRNA 
were upregulated and 11 miRNAs downregulated in primiparous compared with 
multiparous cows. Most of the miRNA differences between primiparous and 
multiparous cows regulate the gene expression of factors involved in mammary 
gland development and differentiation, and lipogenesis. In addition, miRNAs from 
one of the farms showed 8 miRNAs downregulated and 12 upregulated compared 
with the other 2 farms, independently of parity. Differences in miRNA between 
farms were mainly associated with immune and inflammatory-related genes. In 
conclusion, miRNA cargos of bovine colostrum exosomes differ in primiparous 
and multiparous cows, and some on-farm practices might also determine the 
content and activity of miRNA in colostrum exosomes.
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1 Introduction

Colostrum is an important source of nutrients, and it is also a pivotal source of key 
hormones and growth factors that may act at both gastrointestinal and systemic levels (1). 
Colostrum quantity and quality depend on management and environmental factors such as 
season, calving ease, length of dry period, parity, temperature humidity index, and sex of calves 
(2), but also on nutritional (3) or metabolic health status of the dams (4). Colostrum quality 
research has mainly focused on immunoglobulins concentration and, to a lesser extent, on other 
molecules such as cytokines (5), hormones (3), nutrients (6) or immune cells (7). However, 
colostrum is also rich in membranous vesicles of endocytic origin, named exosomes, secreted 
by multiple cell types, found in all biofluids, and considered major players in cell–cell 
communication (8).
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Exosomes can contain proteins, lipids, RNA, and DNA, 
participating in physiological and pathological processes. miRNAs 
are a group of small (~22 nucleotides) endogenous RNA molecules 
that regulate gene expression by binding coding RNA and 
blocking translation or methylation of promoter CpG-islands. 
There are more miRNAs in colostrum exosomes than in milk, and 
some of them are related to immune function and cell development 
miRNAs (9). It has been suggested that exosomes may participate 
in the development of the rumen (10), and region-specific miRNA 
have been found throughout the small intestine, whose expression 
patterns change throughout the first 6 weeks of the calf life (11). 
Interestingly, expression changes were most diverse during the 
first week of life, and many of these miRNAs targeted genes 
involved in the immune response, suggesting that the miRNA 
could regulate the development of the immune function during 
early life. In recent years, several studies have characterized 
bovine colostrum and milk microvesicles. Milk-isolated 
microvesicles carrying mRNAs and miRNAs have been related 
with calf gastrointestinal development and immune system (12). 
Furthermore, there exist differences in bovine colostrum miRNA 
between cow breeds (13), or between cows with different 
colostrum IgG concentration (14). We  hypothesized that cow 
parity could influence colostrum miRNA in exosomes. Therefore, 
the objective of this study was to isolate colostrum exosomes and 
compare their miRNA cargos from primiparous and multiparous 
cows of different dairy farms.

2 Materials and methods

2.1 Sample collection

One hundred mL of unpasteurized bovine colostrum (first milking) 
was obtained after calving from 27 clinically healthy Holstein cows [11 
primiparous and 16 multiparous (7 of second lactation, 5 of third 
lactation and 4 of forth lactation)] in 3 different farms all located in the 
north-east of Spain from July to November 2020. Samples were 
collected in sterile 50-mL conical tubes and immediately frozen at 
−20°C. All farms offered a single diet throughout the dry period, but 
its ingredient and nutrient composition differed by farm as described 
in Supplementary Table S1. All farms targeted 60-days for the length of 
the dry period, but actual duration differed among individuals 
within farms.

2.2 Exosomes isolation

Colostrum exosomes were isolated using ultracentrifugation based 
on (15) protocol with some modifications. After thawing the samples 
at room temperature, they were centrifuged twice at 12,500 × g for 
15 min at 4°C and the upper fat layer removed. Then, samples were 
diluted 1:2 with PBS and centrifuged at 50,000 × g for 1 h at 4°C in a 
high-speed centrifuge. Then, four fifths of the supernatant were 
discarded (23 mL), and the remaining supernatant was washed in PBS 
for a final centrifugation at 50,000 × g for 2 h at 4°C in 38-mL 
ultracentrifuge tubes in a high-speed centrifuge. Then, the supernatant 
was discarded, and the smooth pellet formed on the top of the firm 
casein pellet was recovered and resuspended in PBS for exosome 
characterization analysis.

2.3 Exosomes characterization

2.3.1 Cryo-transmission electron microscopy 
(Cryo-TEM)

Ultrastructural morphology of purified exosomes was analyzed by 
Cryo-Transmission Electron Microscopy (Cryo-TEM). A 3.9 μL drop 
of the purified exosomes samples were deposited onto holey carbon 
on a 400-mesh copper grid, previously treated by glow discharge. The 
grid was mounted on a plunger (Leica EM GP main unit, Leica 
Microsystems, Vienna, Austria), water excess was removed by blotting 
with filter paper (Whatman n°1 Filter Paper 90 mm Diameter, Silmid, 
Birmingham, UK) and exosomes suspension was straightforward 
vitrified by rapid immersion in liquid ethane (−178°C). Samples were 
mounted on a Gatan 626 cryo-transfer system and inserted into a Jeol 
JEM 2011 under cryo conditions. Electron microscope operating 
energy was 200 kV. Images were recorded using a Gatan Ultrascan 
US1000 CCD camera.

2.3.2 Nanoparticle tracking analysis (NTA)
Particle size distribution and concentration were further assessed 

by Nanoparticle Tracking Analysis (NTA) with Nanosight NS300 
(Malvern Panalytical, Malvern, UK). A 1:2,000–1:5,000 dilution of the 
sample in PBS was performed. Data were further processed using 
NanoSight Software NTA 3.4.

2.3.3 Western immunoblotting
Purified exosomes samples were analyzed by western blot following 

the protocol previously described (16). Eight μL of purified exosomes 
were loaded per lane. Primary antibodies used were against CD9 (1:500, 
Invitrogen, Massachusetts), MFGE8 (1:1,000, Sigma, MO, USA), 
TSG101 (1:250, Invitrogen, MA, USA), and Alix (1:1,000, Cell Signaling 
Technology, MA, USA). Secondary anti-mouse Alkaline Phosphatase-
conjugated antibody (1:20,000, Sigma, MO, USA) was used for CD9 
and TSG101 and anti-rabbit Alkaline Phosphatase-conjugated antibody 
(1:30,000, Sigma, MO, USA) was used for MFGE8 and Alix. Positive 
control corresponding to bovine milk exosomes (Lyophilized Exosome 
Standards (Bovine Milk) ref: ESL-01, Creative Biolabs) was used.

2.3.4 RNA sequencing and profiling
RNA from 200 μL of purified exosomes was extracted through the 

miRNeasy Serum/Plasma kit (Qiagen). RNA quality and quantity were 
assessed using an Agilent 2100 Bioanalyzer and RNA ladder. Small RNA 
libraries were prepared using the Small RNA_NebNext kit (NEB, 
Ipswich, MA, USA) according to the manufacturer’s instructions. 
Briefly, 1 μg of total RNA was subjected to DNase I treatment (RNase-
Free) to remove genomic DNA contamination. RNA fragments of 
10–40 nt in length were generated using the fragmentation buffer. The 
RNA fragments were then ligated with 3′ and 5′ adapters, followed by 
reverse transcription and PCR amplification to generate the sequencing 
library. The final libraries were analyzed using the Agilent 2100 
Bioanalyzer. The libraries were sequenced on an Illumina HiSeq2500 
with a single-end 50 bp read length according to the manufacturer’s 
instructions. The sequencing depth for each sample was 10 million reads.

2.4 Data analysis

The quality of the miRNA profiling raw data was checked using 
FastQC (17). The reads were trimmed for QC and the presence of the 
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Universal Illumina adapter using Skewer v.2.0.0 (18). Trimmed reads 
were mapped to the Bos taurus reference genome (Ensembl, release 
104, file Bos_taurus.ARS-UCD1.2.dna.fa.gz) using Bowtie v.1.2.2 (19) 
and counts were assigned to annotated miRNA genes (Ensembl, 
release 104, file Bos_taurus.ARS-UCD1.2.104.chr.gtf.gz) using HTSeq 
v.2.0 (20). The number of unaligned tags was increased to the 
refinement made using ShortStack v.3 (21) by removing the multi-
mapping reads impossible to reassign. Qualimap v.2.2.1 (22) was used 
to check the quality of the aligned reads. Differential expression 
analysis was performed in R (version 4.0.0) (23)/Bioconductor (24) 
environment, using the DESeq2 package version 1.28.1 (25). Genes 
that had less than 10 read counts across all samples were filtered out 
before processing the data. Principal component analysis (PCA) was 
conducted using the prcomp method from the stats core R package on 
the regularized log-transformed data and plotted using the ggplot2 
package (26). First parity or other parities were the fixed effect, and 
farms were considered independent among them. Samples 604, 6,598, 
and 9,280 were removed from the analysis as outliers. The expression 
of miRNAs genes between type of animals (primiparous vs. 
multiparous) within farms were selected as differentially expressed if 
the FDR-adjusted p-value was less than 0.05, and the absolute log2 
fold change was more than 1. In addition, bedtools v2.27.1 (27) and 
samtools 1.8 (28) were used. Similarly, the different expressions of 
miRNAs among the three farms, compared by pairs, were evaluated 
following the same procedure.

3 Results

3.1 Exosome characterization

Bovine exosomes were characterized by Cryo-TEM, NTA, and 
Western immunoblotting. Images of Cryo-TEM showed that 
colostrum vesicles had a round appearance (Figure 1). No differences 
were observed in particle size or yield either in primiparous or 
multiparous cows, or among the different farms (Figure 2). The mean 
particle size of all samples was 182 ± 8.3 nm with a main peak at 
125–135 nm, and they were within the 10 and 90 percentile range of 
111 ± 2.4 nm and 276 ± 10.6 nm, respectively, and mean particle yield 
was of 1.97 ± 0.230×1012 particles/mL. Western blot confirmed that 
samples were enriched with exosome-specific markers MFGE8 and 
ALIX (Figure 3). Marker CD9 was not detected in colostrum samples 
whereas TSG101 was detected in all analyzed samples but not in the 
positive control used (Supplementary Figure S1).

3.2 Characterization of miRNAs

A total of 943 miRNAs were isolated, with 88.4% of them 
associated with known genes. Twenty miRNAs represented between 
80 and 85% of total miRNAs reads, from those, 12 were known 
(bta-miR-30a, bta-miR-26a-2, bta-miR-99a, bta-let-7f-2, bta-miR-
200a, bta-let-7a-3, bta-miR-2285 t, bta-miR-200c, bta-miR-27b, 
bta-miR-30d, bta-miR-30f, bta-let-7a-2). The comparison between 
primiparous and multiparous cows revealed 14 miRNAs 
downregulated (bta-miR-2478, bta-miR-885, bta-miR-503, bta-miR-
708, bta-miR-424, bta-miR-9-1, bta-miR-218-1, bta-miR-452, bta-miR-
497, bta-miR-195, bta-miR-3431, bta-miR-378c, bta-miR-224, and 

bta-miR-181c, in order of log2Folds magnitude), and 11 miRNAs 
upregulated (bta-miR-128-2, bta-miR-143, bta-miR-145, bta-miR-
181a-1, bta-miR-181b-2, bta-miR-1388, bta-miR-181a-2, bta-miR-
193a, bta-miR-2299, bta-miR-28, and bta-miR-10174, in the order of 
2 log-folds) in primiparous in comparison with multiparous cows. The 
overview of these differences was represented in a heatmap as 
Supplementary Figure S2.

When assessing potential anecdotical differences in colostrum 
samples among farms, one farm was distinguished in the PCA plot 
from the other 2 farms (Figure 4), and it was also revealed in the 
DESeq2 analysis. Colostrum samples from the outstanding farm had 
8 downregulated (bta-miR-99a, bta-miR-181d, bta-miR-126, bta-miR-
195, bta-miR-2387, bta-miR-2285e-1, and 2 unknown miRNAs in 
chromosome 7and 8), and 12 upregulated (bta-miR-221, bta-miR-
146a, bta-miR-345, bta-miR-222, bta-miR-142, bta-miR-155, bta-miR-
223, bta-miR-2284w, bta-miR-378c, bta-miR-378-2 and 2 unknown 
miRNAs in chromosome 7 and 19) miRNAs compared with the other 
2 farms, which did not differ in the expression of any miRNAs.

4 Discussion

Herein mean particle size of exosomes (182 ± 8.3 nm) was 
greater than that described in the literature in colostrum samples 
(149 ± 8.6 nm) (29) or in milk samples (100 nm) (30). The mean 
particle yield was of 1.97 ± 0.230×1012 particles/mL, which was also 
greater than that reported in the literature (1.4×1011 particles/mL) 
(31), probably mainly due to different exosome isolation protocols. 
In the current study, several filtration procedures (filtration using 
cellulose acetate filters (1′2, 0′8 and 0′45 mm) or PVDF filters 
(0′45 mm), dialysis membranes with a 300 kDa cut-off, and 
centrifuge filters with a 300 kDa cut-off) were tested without 
affecting the quality of exosomes (Supplementary Figure S3). By 
contrast, previous studies reported a benefit of using filter 
membranes before (29, 31) or after (30) ultracentrifugation, or 
using a size exclusion chromatography column after centrifugation 
(31). The lack of filtration steps in the current samples may have 
increased particle size and number of exosomes in comparison 
with previous studies. Similar to our study, TSG101 and Alix were 
found in colostrum samples (8), and MFGE8 was detected in 
bovine raw milk (32). Colostrum samples herein did not mark for 
CD9, which it has been previously reported to be  present in 
exosomes from bovine milk (29, 31), and bovine transition milk 
samples collected during the first and second days in milk of 
lactating cows (33).

The highly expressed miRNAs found were common among all 
animals and farms, and they have also been reported as common 
miRNA in milk or colostrum samples in previous studies (34, 35). 
Some of the different miRNA contents in primiparous and 
multiparous cows regulate the expression of genes participating in 
mammary gland development and differentiation. The bta-miR-
424/503 cluster and bta-miR-452 were downregulated in 
primiparous cows, and they have been described to be up-regulated 
during mammary gland involution (36, 37). Specifically, bta-miR-
424/503 cluster has been reported to be  involved in the 
transcriptional regulation of TGF-ß (36). Furthermore, bta-miR-
708 was also downregulated in primiparous cows, and it has been 
reported to regulate the expression of TNFSF11, EGF, and HOXA5, 
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which are genes involved in the development and differentiation of 
the mammary gland (38). Lastly, bta-miR-128-2 was upregulated in 
primiparous cows, and it has been described to be repressed by 
TGF-ß during mammary epithelial oncogenic transformation (39). 
Some other miRNAs that differed between primiparous and 
multiparous cows have been involved in lipogenesis. On one hand, 
some were downregulated in primiparous cows: bta-miR-497, 
which has been involved in the regulation the fatty acid synthesis 
(40), bta-miR-378c, which is related to maternal body conditional 
index (41), and bta-miR-3431 which has been reported to 
be upregulated in dairy cows when they were supplemented with 
linseed oil (42). On the other, the miRNA upregulated in 
primiparous cows were bta-miR-193a, which has been involved in 
adipocyte differentiation (43), bta-miR-181a-1, bta-miR-181b-2, 
bta-miR-143, and bta-miR-145, which have been involved in milk 
fat synthesis (44–47), and bta-miR-2299 and bta-miR-1388, which 
they were downregulated and bta-miR-28, which was upregulated, 
in dairy cows when they were supplemented with linseed or 

safflower oils (42). Other miRNAs downregulated in primiparous 
cows were bta-miR-2478, which has been associated with the 
inhibition of melanin production (48), bta-miR-885 which has been 
related with retinol biosynthesis (37), and two miRNAs (bta-miR-
195, and bta-miR-181c) linked to tumor growth signaling pathways 
(49, 50).

Although it was not the objective of the study and animals were 
only checked by clinical diseases signs and clinical mastitis, 
we observed that miRNA profile of colostrum exosomes of one 
farm differed from the other 2 in the PCA. The miRNA found to 
differ upregulate genes related to immune and inflammatory 
responses like in Staphylococcus aureus infections [bta-miR-378-2 
and bta-miR-223; (51, 52), respectively], in the regulation of 
lymphocyte functions [bta-miR-155; (53)], or as biomarkers in 
inflammatory diseases [bta-miR-221 and bta-miR-222; (54)]. Those 
miRNAs that were downregulated in that specific farm were more 
diverse in their regulation responses: bta-miR-126 was found to 
regulate vascular integrity (55), bta-miR-181d has been involved in 

FIGURE 1

Bovine colostrum exosomes visualized by CryoTEM.

FIGURE 2

Examples of nanoparticles size distribution of isolated exomes samples from primiparous cows in Farm I (a), Farm 2 (b), and Farm 3 (c).
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the regulation of inflammatory response in heat-stressed cows (56), 
or bta-miR-2387 targeted lipid metabolism-related genes in (57) 
study. Although the study of differences among farms was 
exploratory, and it was not targeting any specific farm management 
practice or animal diseases, the fact that 2 farms had similar miRNA 
profiles (while all farms differed in nutrients and ingredients 
composition, Supplementary Table S1), may exclude diet 
composition as an influencing factor on colostrum exosomes 
miRNAs in the present study. Since most of the upregulated 

mi-RNAs in the outstanding farm were immune and inflammatory 
related, and this farm was not vaccinating cows during the dry 
period while the other 2 farms did, vaccination might be  an 
important factor behind this anectodical difference in miRNA 
composition of colostrum.

Exosomes in colostrum from primiparous and multiparous cows 
differed in 25 miRNAs. Most of these miRNAs are involved in the 
regulation of lipogenic pathways, and development and differentiation 
of the mammary gland.

FIGURE 3

Western blot analyses of the presence of two exosome markers (Alix and MFGE8) in samples of either primiparous or multiparous cows of the 3 farms 
included in the study. Positive control corresponds to commercial purified exosomes from bovine milk (Lyophilized Exosome Standards, Creative 
Biolabs).
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