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Introduction: The shift of the horse breeding sector from agricultural to leisure 
and sports purposes led to a decrease in local breeds’ population size due to the 
loss of their original breeding purposes. Most of the Italian breeds must adapt 
to modern market demands, and gait traits are suitable phenotypes to help this 
process. Inertial measurement unit (IMU) technology can be used to objectively 
assess them. This work aims to investigate on IMU recorded data (i) the influence 
of environmental factors and biometric measurements, (ii) their repeatability, (iii) 
the correlation with judge evaluations, and (iv) their predictive value.

Material and methods: The Equisense Motion S® was used to collect phenotypes on 
135 horses, Bardigiano (101) and Murgese (34) and the data analysis was conducted 
using R (v.4.1.2). Analysis of variance (ANOVA) was employed to assess the effects of 
biometric measurements and environmental and animal factors on the traits.

Results and discussion: Variations in several traits depending on the breed were 
identified, highlighting different abilities among Bardigiano and Murgese horses. 
Repeatability of horse performance was assessed on a subset of horses, with regularity 
and elevation at walk being the traits with the highest repeatability (0.63 and 0.72). 
The positive correlation between judge evaluations and sensor data indicates judges’ 
ability to evaluate overall gait quality. Three different algorithms were employed to 
predict the judges score from the IMU measurements: Support Vector Machine 
(SVM), Gradient Boosting Machine (GBM), and K-Nearest Neighbors (KNN). A high 
variability was observed in the accuracy of the SVM model, ranging from 55 to 100% 
while the other two models showed higher consistency, with accuracy ranging 
from 74 to 100% for the GBM and from 64 to 88% for the KNN. Overall, the GBM 
model exhibits the highest accuracy and the lowest error. In conclusion, integrating 
IMU technology into horse performance evaluation offers valuable insights, with 
implications for breeding and training.
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1 Introduction

In the last decades, there has been a significant loss in biodiversity, although is key for 
maintaining a sustainable environment. Biodiversity enhances animals’ resistance and 
resilience to stress including those caused by climate change. Biodiversity at genetic, species 
and ecosystem levels helps the challenges posed by distinct and changing environmental 
conditions and socio-economic factors. According to the Food and Agriculture Organization 
of the United Nations (FAO), the current rate of biodiversity loss is unprecedented in the past 
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century, with 26% of local breeds at risk of extinction and 67% with 
unknown risk status (1). This is true in the equine sector as well, where 
most of the local breeds are considered endangered or at risk of 
extinction. Italian horse heritage comprises breeds reared and adapted 
to different regional climates, cultures, and traditions. Over the last 
century, the horse breeding sector has experienced significant 
transformations. Indeed, horses that once were bred for meat 
production, warfare, or agricultural purposes, are now bred for sport 
or leisure activities (2). Thus, Italian local breeds, historically used for 
meat or draft work, are facing a decrease in population size, due to the 
change in the market demand and a consequent loss of their original 
breeding purpose. For this reason, most of them are now considered 
endangered by FAO, which in its report declared that, in 2022, horses 
are among the species with the largest proportion of breeds at risk of 
extinction (3). Currently, Italy counts 22 distinct breeds (4), 17 of 
which are classified as endangered. Horses belonging to these breeds 
are managed by four associations: ANACAITPR (National Association 
of Breeders of the Italian Heavy Draft Horse), ANAMF (National 
Association of Breeders of the Murgese Horse and the Martina Franca 
Donkey), ANACRHAI (National Association of Breeders of Haflinger 
Horses in Italy) and ANAREAI (National Breeding Association for 
Equine and Asinine Breeds in Italy), which aim to maintain genetic 
diversity and monitor population size. However, the transition from 
agricultural to sport horses presents a challenge for breed conservation 
since it must face the need to modernize the breeds while preserving 
genetic diversity. As an example, in the Bardigiano horse breed, which 
is part of the Italian equine heritage and it is facing the need to 
modernize towards current market demand, genetic diversity 
preservation is also pivotal (5). Indeed, it has been shown that both at 
pedigree and genomic level inbreeding has increased in the latest 
generations. Therefore, breeding strategies for optimizing the 
contribution of breeding animals are key to ensure long-term survival 
of breed (6).

In a few Italian breeds, tools are available to evaluate horses based 
on traditional and linear scores for conformation, which are used to 
estimate breeding values (7). These evaluations can be used as indirect 
measures of movement-related traits, which might help the transition 
from work horses to leisure ones. However, since the modern market 
seeks especially sport and leisure horses (8), a comprehensive 
evaluation of gaits might be necessary. Currently, none of the Italian 
equine breeds have developed protocols to evaluate gaits and 
challenges exist due to the extensive training required for judges and 
the subjectivity involved in gait assessment. Animal breeding relies on 
precise phenotyping to be effective and often the phenotype recording 
is a limiting factor (9). Gaits traits in horses fit in this scenario of 
difficult traits, as they are influenced by both genetics (10) and 
environmental factors. In addition, these traits are exposed to change 
over time, and to human error and subjectivity during data collection. 
Consequently, the gap between objective recording and the difficulty 
in defining them must be filled to allow faster improvement in the 
breeding scheme. Therefore, there is a need to propose novel gaits’ 
traits that can provide objective measurements to meet the current 
challenges that local breeds are facing in shifting their breeding 
goals (11).

The integration of new tools such as inertial measurement units 
(IMU) technology and machine learning algorithms for image 
analysis offers solutions to this challenge. The IMUs are devices that 
measure acceleration and angular velocity, providing detailed 

movement data. Machine learning algorithms can analyze this data to 
predict and evaluate traits with greater accuracy than traditional 
methods. These tools are often combined to collect data efficiently and 
cost-effectively, requiring less time and expertise from the judges (12). 
Indeed, machine learning models can use data from sensor devices 
(13). The gold standard for kinematic analysis is the optical motion 
capture (OMC), which uses multiple cameras and reflective markers 
to track the movement of horses with high accuracy. Although this 
technology provides highly reliable and detailed data (14) it requires 
complex setups and is usually limited to research environments due 
to its high cost and logistical demands.

While sensors are widely used in the animal production sector for 
health-related monitoring (15), their application in equine 
performance remains relatively unexploited. Standalone inertial units 
are often created for riders and used in horse training. Nevertheless, 
IMU sensors can also be  used as reliable sources for more tough 
challenges such as lameness determination (16). These phenotyping 
technologies are growing in importance due to their ability to generate 
real-time, non-invasive, and accurate animal-level information, 
enabling phenotyping on a large scale (17). Several IMU tools are 
available for equine gait analysis, each serving different purposes. One 
of the most used in research is the Equimoves (18) which measure 
gaits, detect lameness, and estimate speed by applying seven sensors, 
placed on the head, withers, sacrum and the four legs (19). Other IMU 
sensors focus specifically on detecting asymmetries in movement, 
which are therefore highly useful in clinical and veterinary 
applications. Nevertheless, most of the studies on the comparison 
between experienced clinicians and IMU evaluation suggested that 
IMU can strengthen but not replace subjective lameness assessment 
since the agreement was not always close to unity (20, 21). Finally, it 
has been shown the potential of IMUs for the evaluation of the horse–
rider interaction during dressage riding, training of horses, or 
coaching (22). The overall advantage of implementing the use of IMU 
in horses is the possibility of gathering objective movement data in 
field conditions, where the use of well-established methods like OMC 
would be impractical and extremely expensive. In addition, since the 
technology is rather simple to implement, there is the possibility to 
collect objective data on a large scale of horses. However, IMUs also 
have some disadvantages, one of which is represented by their usually 
high cost, which has, nevertheless, decreased in recent years. In 
addition, to obtain reliable and reproducible data, care must be taken 
in placing the sensors in the right position, therefore, if not correctly 
implemented, this technology is also not free from human errors (22).

Therefore, in this article we  focus on addressing the above-
mentioned gap in knowledge by studying horses’ gaits via IMU sensor 
data. We aim to investigate on IMU recorded data (i) the influence of 
environmental factors and biometric measurements, (ii) their 
repeatability, (iii) the correlation with judge evaluations, and (iv) their 
predictive value. To achieve this, we  focused on two Italian horse 
breeds: the Bardigiano and the Murgese. The Bardigiano, bred in North 
Italy, was used in the past for meat production and is considered a 
meso-brachymorphic horse (Figure  1A). The term meso-
brachymorphic describes a body type that is medium-sized, with 
relatively short limbs and a robust, muscular structure. In horses, a 
meso-brachymorphic horse like the Bardigiano typically has a robust, 
muscular body with a wide chest, strong limbs, and a more compact 
appearance. The angles of the joints are very closed. This type of 
conformation is associated with strength and endurance rather than 
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speed, making such horses well-suited for tasks like trekking, carrying 
loads, or agricultural work. The Murgese is bred in South Italy 
historically for agricultural work, its morphology is substantially 
different and considered as a meso-dolichomorphic horse (Figure 1B). 
The term meso-dolichomorphic describes a body type that is medium 
to tall with a long, lean frame. In horses, a meso-dolichomorphic type, 
typically has a leaner, taller structure with longer legs and a more 
refined body shape compared to meso-brachymorphic type (as the 
Bardigiano horse breed). This conformation is often associated with 
agility and speed, making these horses well-suited for equestrian sports 
such as dressage, where longer strides and fluid movements are 
beneficial. Both breeds are currently facing the conversion from their 
original purposes to a new breeding objective to match the market 
demand. Bardigiano is evolving to fit working equitation and trekking 
activities, while the Murgese is aiming to fit equestrian purposes, such 
as dressage performance. The two analyzed breeds symbolize Italy’s 
equestrian tradition, revealing adaptability, tight connection with their 
respective landscapes, and potential to find a place in the current 
market demands. Through our study, we aim to provide novel tools to 
enhance the promotion of these equine breeds, ensuring their role in 
the modern equestrian landscape.

2 Materials and methods

2.1 Sampling

A total of 135, including 101 Bardigiano and 34 Murgese, born 
between 2000 and 2019, were tested. Those horses were born between 
2000 and 2019 which ensures a range of ages that reflects the current 
genetic diversity and management practices of the breeds. Among 
these, 72 young horses aged 3 or 4 years old were tested during a n a 
70-day performance test. During the 70-day performance test, horses 
were subjected to a controlled environment that consisted in the same 
feeding and same trainer as well as a standardized training protocol 
that allowed theminimization of external variables affecting horse 
performance. The horses were evaluated three times:

 1) First evaluation, where a committee comprising a veterinarian, 
and two judges evaluated the overall health status of the horse 
and took biometric measurements.

 2) A second trial at 30 days involved a session of free jumping, 
and an under-saddle session with a standardized trail to 
reduce environmental influence. Only one rider was allowed 
to ride all the horses in the designed riding center, conducting 
a 10-min session comprising two gaits: walk and trot.

 3) At the end of the performance test period (70 days), all the 
horses underwent a second trial repeating the free jumping 
and under-saddle (ridden) tests, now including canter, and a 
draft trial was added only for the Bardigiano horses. The 
same rider of the first test was involved in the second trial. A 
panel of at least three judges and riders were asked to 
evaluate the horses based on the criteria outlined in Table 1 
for each trial.

The performance test was conducted over 3 years: 2020, 2021, 
and 2022 with testing periods in June, July, and August for the 
Bardigiano in two different riding centers and November, December, 
and January for the Murgese, in three different riding centers. Horses 
experiencing veterinary issues before or during the test period were 
excluded from the study. For the 63 horses included in the study 
which were not sampled during a performance test, the same protocol 
was used for a total of 10 min trial (Supplementary Figure S1). In 
addition, a survey to collect animal and environmental factors was 
developed (Supplementary Figure S2). This protocol included 
information on sex, birth date, rider’s skills, biometric measurements 
(e.g., height at withers, thoracic circumference, cannon bone 
circumference, shoulder length), management practices, rider details, 
arena conditions, and health traits (Supplementary Figure S1). All 
gait measurements were conducted by the same operator using 
Equisense Motion S®, [Micromegas, Headquarters: 231 Allée Faust 
d’Elhuyard 64,210 Bidart, France] a 9-axis inertial unit equipped with 
an accelerometer (3 axes), a gyrometer (3 axes), and a magnetometer 
(3 axes); placement is shown in Supplementary Figure S3. The inertial 
system acquires 100 measurements per second, enabling precise 
analysis of the horse’s locomotion (Figure 2). Furthermore, by adding 
an electrode, the sensor measures horses’ heart rate during the 
session. The parameters collected by the IMU sensor and electrode 
included stride frequency, regularity, and elevation for walk, trot, and 
canter, as well as symmetry and weak diagonal at trot, heart rate, 
speed, and distance. A specific definition for each trait is 
reported below:

FIGURE 1

Example of Bardigiano (A) and Murgese (B) horse.
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 − Stride frequency refers to the number of complete strides a horse 
takes per minute, where a stride is the sequence of hoof lifts and 
placements of the same limb;

 − Regularity measures the consistency of gait rhythm and is scored 
on a scale from 0 to 10, where 10 indicates perfect consistency;

 − Elevation is the vertical displacement of the horse’s body during 
each stride, measured in centimeters;

 − Symmetry is evaluated while the horse trots in a straight line, 
comparing the lengths of paired strides. It is scored on a scale of 
0 to 10;

 − Heart rate: the rhythm, in beats per minute (BPM), that beats the 
heart of the horse.

Distance and speed were not considered in this study since they 
rely on data collected via GPS which is not included in the Equisense 
Motion S® but only provided as additional data if during the riding 
session the rider wears a phone.

2.2 Statistical analysis

2.2.1 Analysis of variance
The effect of environmental factors and biometric measurements 

was assessed through an analysis of variance (ANOVA), performed 
using R (v.4.1.2), with the following model:

ijklmn

   
   

  

ijklmn i j k l m

n i
i

i

Y Breed Sex Age Shoeing Rider
Training level Heigh at withers within breed
Cannon bone within breed
Shoulder lenght within breed +

= + + + + +
+ +
+
+ ε

µ

Where:

 − ijklmnoY  is the observed gait trait via the IMU sensor;
 − µ  represents the intercept of the model;
 − iBreed  is the effect of the breed (Murgese or Bardigiano);
 − jSex  represents the effect of the horse’s sex (male or female);
 − kAge represents the effect of the horse’s age (young ≤4; adult >5);
 − lShoeing  is the effect of the shoeing (shod, forelimb shod or 

not shod);
 − mRider  indicates the effect of the rider’s level (beginner, 

intermediate or expert) based on the rider’s license;
 −  nTraining level is the effect of the horse’s training (defined in 

hours per week: 0–2, 3–4, >4);
 − Height at wither within breedi , Cannon bone within breed ,i  

Shoulder length within breedi  effect of the interaction between 
breed and biometric measurements (divided into quartile classes).

 − ɛijklmn is the error term.

A total of 134 horses were evaluated for this analysis. Post-hoc 
Tukey contrast tests were conducted to identify pairwise differences 
between group means using the base R Tukey HSD function.

2.2.2 Repeatability
The repeatability of the horse’s performance was assessed using 

the rptR package in R (v.4.1.2), on a subset of data comprising 47 
Bardigiano horses participating in the performance test. All horses 
involved in repeatability calculation were female, aged 3 or 4 years, 
untamed when the performance test started. The evaluation took place 
after 30 days and 70 days of training, with assessments conducted 
using both judges’ evaluations and Equisense Motion S® data. The 
repeatability was assessed only on the gaits shared by the two trials: 
walk and trot, using the following formula (23):

 
G

G R

VR
V V

=
+

TABLE 1 Criteria evaluated by judges and riders during the performance test.

Trait Judges’ evaluation Riders’ evaluation

Daily management in the stable ✓

Acceptance of harnessing, mounting, docility in approaching the rider ✓

Technique on jumping – front passage ✓

Technique on jumping – back passage ✓

Rideability, response to rider commands, and attitude towards work ✓

Trot – rhythm, impulsion, amplitude, elasticity, and regularity ✓

Canter – rhythm, impulsion, amplitude, elasticity, and regularity ✓

Obedience, and trust towards the rider during the exercise ✓

Attention to requests ✓

Free jumping ✓

Flatwork ✓

Draft test ✓

Elevation at a trot ✓

Frequency at trot ✓

Symmetry ✓

Elevation at canter ✓

Frequency at canter ✓

Recovery time ✓
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Where R is the repeatability, GV is the variance among group 
means while RV  is the residual variance at data level.

2.2.3 Correlation
A subset of 111 trials was selected to evaluate the correlation 

between judge evaluations and IMU sensor data, focusing on trials 
with both types of data available. This analysis was restricted to 
horses participating in the performance test due to the reliability 
of the judges’ and riders’ scores. Both the 30 and the 70-day trials 
were considered. Pearson’s correlation coefficient was used to 
assess the strength and direction of linear relationships between 
IMU sensor measurements and judges’ scores as well as 
within them.

2.2.4 Predictive models
To determine the feasibility of predicting judge evaluations via 

Equisense Motion S® objective traits, the judges’ evaluations were 
categorized into binary classes: ‘negative’ for scores below the mean 
and ‘positive’ for scores at or above the mean. The study employed the 
same dataset used for correlation analysis. Three different algorithms 
were employed to assess the prediction study: Support Vector Machine 
(SVM), Gradient Boosting Machine (GBM), and K-Nearest Neighbors 
(KNN). These algorithms were chosen due to their different 
classification approaches, aiming to identify the best fit for the data. 
The SVM works by finding a hyperplane that best separates data 
points belonging to different classes (24) GBM is a tree-based model 
where trees are built to correct errors from previous ones (25), and 
KNN is a non-parametric model classifying data points based on the 
majority of neighbor labels in the training data (26). The models were 
evaluated using a 10-fold cross-validation to increase the accuracy and 

reliability of the analysis. Only judge evaluations concerning behavior, 
walk, and trot traits were studied due to the completeness of the 
dataset. The three models were implemented in R (version 4.1.2), 
SVM via the e1070 package, KNN via the class package, and GBM via 
the caret package. Several metrics were considered to assess model 
performance (27), including accuracy (the ratio of correctly predicted 
instances to the total instances), sensitivity (the proportion of actual 
positive cases that were correctly identified), specificity (the 
proportion of actual negative cases that were correctly identified), and 
F1 score (the harmonic mean of sensitivity and specificity), calculated 
as follows:

 
21 x Precision x RecallF

Precision Recall
=

+

For the SVM model, the tune function in the e1070 package in 
R was utilized to tune the gamma, which represents the complexity 
of the decision boundary, and the cost parameters which represent 
the balance between margins and misclassification. In the GBM 
model, the number of trees, shrinkage value, interaction depth, and 
the minimum number of nodes were tuned for each trial. 
Specifically, the number of trees represents the total number of 
boosting stages, the shrinkage value controls the contribution of 
each tree, the interaction depth determines the maximum depth of 
the individual trees, and the minimum number of nodes specifies 
the minimum number of samples required to split a node. For the 
KNN model, the number of neighbors was tuned using the 
appropriate function in the class package. All parameters were 
tuned individually for each trial, and the details of the parameters 
used for tuning are provided in Table 2.

FIGURE 2

Example of data collected by x axis of the Equisense Motion S accelerometer. Data collected during the trial performed by the horses has been divided 
by gait.
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3 Results and discussion

3.1 Analysis of variance

Table 3 presents the descriptive statistics for gait traits observed in 
horses participating in this study. Data on symmetry at trot and 
regularity were missing for some horses. This limitation likely arose 
from an insufficient training level for cantering and therefore a limited 
regularity or an inadequate duration of straight-line movement to 
capture symmetry data. Significant variability was observed in stride 
frequencies and elevations, reflecting both individual differences and 
breed-specific characteristics. As phenotypic variation results from the 
interaction between environment and genotype, the primary aim of 
this study was to identify environmental factors affecting gait traits 
(Supplementary Table S1).

Among the factors investigated in the ANOVA, breed showed a 
significant influence on most of the gait traits measured by the sensor 
(p < 0.05) including elevation at trot and canter, stride frequency at walk, 
trot, and canter, as well as stride regularity at trot and canter. The 
significant effect of the breed highlights the different predispositions 
towards sporting activities and the distinct abilities between Bardigiano 
and Murgese. Indeed, the Murgese horses displayed on average greater 
elevation (+2.81 cm at trot, +3.60 cm at canter) (Figure 3A) and lower 
stride frequency (−2.83 stride/min at walk, −4.27 stride/min at trot) 
(Figure  3B). Based on those differences we  can hypothesize the 
enhanced potential for sporting activities of Murgese horses, likely due 
to their physical attributes and selection towards dressage performance. 
As an example, a higher elevation is particularly valued in dressage 
competitions, thus, it is not surprising that it is higher in the Murgese 
breed. On the other hand, Bardigiano horses displayed lower elevation 
and higher frequency at walk and trot, which are traits favorable for 
endurance activities such as trekking or working equitation, where 
energy preservation is essential. The opposite trend was shown at canter, 
where the Bardigiano horses showed lower frequency (−1.46 stride/
min). However, this observation may be  influenced by the higher 
proportion of adult and well-trained Bardigiano horses (50% compared 

to 26% in Murgese) and should be  interpreted with caution. 
Furthermore, it was observed that un-shod horses showed a greater 
stride regularity at walk (+1.50) and trot (+0.37) (Figure 3C), along with 
reduced gait frequency at trot (−3.07 stride/min) (Figure 3D) compared 
to forelimbs shod horses. This latter result suggested the potential 
benefits of natural balance and enhanced gait expression in un-shod 
horses especially compared to front limbs shoed horses. This finding 
aligns with existing knowledge that shoes can alter gaits, since joint 
angles of the pastern move differently between shod and un-shod horses 
(28) as well as that shoes’ mass can influence gait (29). Horses only shod 
in the forelimbs showed lower values of regularity (−0.85 compared 
with shod and − 1.5 compared with un-shod; p-value <0.0001) 
(Figure 3C), possibly due to the increased difficulty in balancing and 
maintaining stable gait during the session, as the center of gravity shifts 
unnaturally towards the hind legs. Despite shoes being applied to 
protect against the wear of the hoof wall, to improve performance and 
to provide additional support on slippery surfaces, they may restrict the 
hoof mechanism and add additional weight on the distal limb. This 
increases its inertia, demanding a higher energy expenditure in 
protracting and retracting the limbs. Thus, the weight of shoes is likely 
affecting gaits, altering both energy and kinematics of locomotion (30).

The age (Figures 3E,F) had a significant effect on the frequency of 
walk, by indicating that adult horses (−2.91 stride/min) are commonly 
better-trained and exhibit lower gait frequency during the session. 
Additionally, canter heart rate was impacted by age, with younger 
horses having higher heart rates (+32.02 bits/min), which suggests 
that training level affects parameters such as the cardiovascular 
response of horses. The sex had a significant effect on heart rates both 
at trot and canter (Figure 3G), with males showing a lower heart rate 
at trot (−9.03 bits/min) and canter (−16.10 bits/min) compared to 
female. This result may be attributed to pre-selection and increased 
attention given to training of male horses. Typically, in these breeds, 
only a few stallions undergo training under the saddle, leading to a 
pre-selection process to identify the most valuable ones.

Surprisingly, rider experience and horse training level, along with 
cannon bone circumference and shoulder length, did not yield 

TABLE 2 Tuning parameters used for each trait and model.

Model SVM GBM KNN

Gamma Cost Number of 
trees

Interaction 
depth

Shrinkage Min observations 
in node

k

Daily management 0.01 100 100 5 0.1 5 11

Acceptance of 

harnessing

0.000001 0.1 100 5 0.01 5 11

Rideability 1 1 100 1 0.1 5 11

Trot 0.000001 0.1 150 1 0.2 15 11

Obedience 0.001 100 150 1 0.01 10 11

Attention to 

requests

1 10 100 1 0.1 5 11

Flatwork 0.01 100 100 3 0.2 5 11

Elevation at a trot 0.1 1 50 1 0.2 5 11

Frequency at trot 0.01 100 50 1 0.2 5 11

Symmetry 0.01 100 50 3 0.2 15 11

Recovery time 0.1 100 50 3 0.2 5 11
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significant effects on gait traits, likely due to the limited variability in 
these factors in our samples. Indeed, most of the horses were trained 
by only two professional riders following the same training routine. 
Regarding biometrical measurements, they did not provide any 
significant effects, probably because their variability is already 
included in the breeds’ variability.

3.2 Repeatability

The study’s second aim was to assess which traits change or stay 
consistent during the horse’s life. This information can provide a better 
understanding of the effect of training on traits improvements and the 
identification of traits bound to horse’s natural attitude. Stride 
regularity at walk (0.635) and elevation at walk (0.717) demonstrated 
the highest repeatability between the two trials, indicating that walk 
is less influenced by training and remains relatively consistent 
throughout the horse’s life. Conversely, all the other measurements 
had lower repeatability, suggesting greater susceptibility to 
environmental influences and the potential for improvement through 
training (Supplementary Table S2).

3.3 Correlation

Another key aspect when using IMU sensor data collection is to 
assess how those new traits correlate with traditional evaluation. 
Correlation analyses within sensor data and between judges’ 
evaluations and Equisense Motion S® performance revealed 
interesting patterns. Hereafter and in Figure  4, only significant 
correlations are reported and further discussed. Within sensor data, 
elevations showed positive correlations among gaits, ranging from 
high for trot-canter (0.618) to moderate for walk-canter (0.250); this 

can be due to the horse’s training or the rider’s attitude to collect the 
gait. However, since the ANOVA did not highlight any significant 
difference between riders for the elevation, the differences might 
be bound to the natural predisposition of the horse. Further studies 
are needed to investigate this aspect; one potential solution is to study 
elevation without the rider to truly understand the cause of this 
correlation. Similarly, heart rate exhibited strong positive correlations 
among gaits, ranging from trot-canter (0.795) to walk-trot (0.720), 
indicating that horses’ fitness level affects heart rate across all gaits. 
Stride frequency at trot negatively correlated with elevation at trot 
(−0.448) and canter (−0.482), suggesting that horses with higher 
frequencies may expend energy on increasing frequency rather than 
increasing elevation which is a proxy of gait quality. This may 
be perceived from a rider’s perspective as the tendency to hurry the 
trot, which is usually considered a negative aspect since it does not 
create momentum and energy usable for sports activities like jumping 
or dressage. This trend may be influenced by breed traditional use as 
those historically used for draft work prioritize forward movement 
over vertical collection. Conversely, stride frequency at canter is 
positively correlated with elevation at trot and canter (0.426, 0.303), 
indicating that increasing stride frequency likely leads to increased 
elevation and overall gait activity and quality. In small breeds like the 
Bardigiano horse, the activity of the gait is considered positive and 
usually is described by the rider as a movement of the body weight on 
the back limbs, which can lead to an improved propulsion forward 
and upward.

The correlations between judge or rider scores and sensor data 
reveal interesting results for both general traits such as rideability and 
obedience, as well as specific ones like flatwork, trot, or elevation at 
trot and canter. Rideability correlates positively with stride frequency 
at walk (0.255) indicating that judges perceive a better work attitude 
in horses with good activity at walk. A negative correlation was found 
between rideability and heart rate at canter (−0.318); this suggests that 
horses with lower heart rates during canter tend to be more rideable 
and easier for the rider to manage. Similarly, obedience and trust 
towards the rider during exercises moderately correlate with stride 
frequency at walking (0.275) and negatively with heart rate at canter 
(−0.304), suggesting an overlap between the evaluation of rideability 
and obedience. Elevation at canter, measured by the sensor, exhibited 
positive correlations (from 0.374 to 0.471) with the evaluation 
provided by the rider regarding impulsion at canter, frequence at 
canter and effort recovery time. This suggests riders’ capability to 
discriminate overall gait quality, providing a positive score for horses 
that are engaging the back limbs in several canter related evaluation. 
The positive correlation of elevation at canter expressed by the sensor 
with recovery time expressed by the judges (0.374) can be explained 
through the association between higher stride and increased energy 
expenditure with a consequent increase in heart rate, resulting in a 
longer recovery time. Conversely, the correlation between the 
elevation measured by the sensor and the evaluation provided by the 
judges regarding elevation (0.461) and frequency (0.471) indicates a 
lack of differentiation by riders’ scores between the two measurements. 
Judges tended to unify the two results, considering the overall quality 
of the canter gait and giving a positive score in both elevation and 
frequency if the horse reveals a high elevation at canter, recorded by 
the sensor. Regarding elevation at trot from sensor data, it only 
correlates significantly with recovery time (0.263), suggesting that 
higher elevation requires more effort for the horse, resulting in a 

TABLE 3 Descriptive statistics of gait traits collected by Equisense  
Motion S®.

Variable n Min Max Mean SD

Frequency walk 135 39.33 57.31 51.66 3.32

Regularity walk 134 0.0 7.92 3.46 2.06

Frequency trot 134 78.32 109.33 90.27 6.04

Regularity trot 134 0.24 7.88 5.66 1.11

Frequency 

canter

132 79.63 112.15 99.73 9.24

Regularity 

canter

82 0.10 9.02 4.71 2.38

Elevation walk 135 1.13 6.46 2.85 0.84

Elevation trot 134 4.21 12.39 7.53 1.69

Elevation 

canter

132 7.40 22.33 15.92 2.54

Symmetry 96 1.75 8.70 6.88 1.17

Heart rate walk 108 34.4 121.92 93.28 14.21

Heart rate trot 104 89.84 157.69 126.86 13.14

Heart rate 

canter

100 108.73 196.67 156.83 18.95
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longer time needed to recover the energy perceived by the rider. Heart 
rate during canter displayed negative correlations (ranging between 
−0.284 to −0.352) with the evaluation of rideability, trot, canter, 
obedience, and flatwork. This suggests that an increased heart rate 
during canter results in reduced rideability, obedience, and overall gait 
quality assessed by judges’ scores. Conversely, stride frequency at walk 
showed moderate positive correlation (ranging from 0.235 to 0.280) 
with management of the horse, rideability, obedience, and flatwork, 
reflecting the perception of an active, obedient, and responsive horse 
engaging its hindlimbs and ready to respond to the riders’ requests.

Regarding the correlation within judges’ and riders’ evaluation, 
a highly positive correlation between obedience and rideability 
(0.914) implies that these evaluations may measure the same aspect 

of the horse’s behavior. Therefore, it may be helpful to unify these 
scores into a single evaluation assessing the overall attitude of the 
horse towards collaboration with the rider, simplifying the 
assessment process for judges and ensuring consistency in 
evaluations. The strong positive correlation between elevation and 
frequency at canter (0.983) provided by the rider indicates riders’ 
difficulty in objectively discriminating those two traits. Riders often 
evaluate positively a horse exhibiting an active gait, characterized by 
both good elevation and frequency. This preference aligns with the 
improvement that is sought for breeding purposes, such as for the 
Bardigiano horse, that originally was bred for agricultural purposes; 
thus, an active canter is not common and at the same time appreciated 
by the judges.

FIGURE 3

LSM (Least Squares Means) results show the effect of breed on elevation and frequency at the three gaits (A,B), the effect of shoeing on regularity at 
trot and walk (C) and frequency at trot (D), the effect of age on frequency at walk and heart rate at canter (E,F), and the effect of sex on and heart rate 
at trot and canter (G).
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3.4 Predictive models

To explore the predictive potential of sensor data for evaluation 
outcomes, three different models were tuned, used and their 
performance measured within a 10-fold cross-validation. Among the 
three models tested, the GBM model achieved the highest accuracy 
and lowest error, with its F1 score consistently surpassing those of the 
other models (Figure 5).

The SVM model has consistently shown the widest range of all 
classification performance metrics. Accuracy for the SVM model 
ranged from 55 to 100%, while GBM and KNN models demonstrated 
higher consistency, with accuracies from 74 to 100% for GBM and 64 
to 88% for KNN (Supplementary Table S3). Despite reaching higher 
accuracy for some traits, the F1 scores of the SVM models were 
generally lower, due to a lower specificity. This suggests a tendency to 
classify all cases as positive; this possibly is due to its susceptibility to 
unbalanced classes (31), also indicating that our classes may lack clear 
separation and seem to overlap. Indeed, this model is better suited for 
classification tasks with distinct class boundaries. The KNN model 
showed consistency and tended to achieve a high level of specificity 
but had the lowest sensitivity, which indicates difficulty in detecting 
positive cases while correctly identifying negative ones. These results 
also suggest sensitivity to irrelevant features, highlighting the need for 
careful feature selection and training samples to improve performance, 
as already proved by several studies (26, 32, 33). In our data this is 

highlighted by the predictive trials that exhibited lowest sensitivity 
scores, such as those assessing daily management, rideability, 
obedience and attention to requests. These traits lack clear sensor-
collected values and are objectively more challenging to detect solely 
through sensor data.

The evaluations predicted with the highest overall accuracy were 
rideability, attention to the requests, and recovery time, with respective 
accuracies of 83% (F1 = 0.74), 85% (F1 = 0.75), and 90% (F1 = 0.90). 
This indicates that we can correctly predict over 80% of the judges’ 
scores using IMU measurements. The closeness between the accuracy 
in % and the F1 Score suggests that the misclassified results will 
be  equally distributed between False Positive and False Negative, 
leading to a balanced model.

Focusing on the best model (GBM), the highest accuracies (100%) 
were observed for daily management, flatwork, and recovery time, 
followed by an accuracy of 88% for attention to requests and trot trial. 
Although 100% accuracy must be interpreted with caution, as it may 
indicate overfitting, it could still be a realistic prediction for very small 
datasets and easily predictable trials. Indeed, a precise collection of 
heart rate data makes recovery time easy to predict, similarly the 
flatwork score should be  straightforward to predict since the 
evaluation is based on frequency, elevation, and regularity. All F1 
scores were above 0.85. Some results such as those for trot or flatwork 
and recovery time were expected due to the direct link of IMU data 
and judges’ evaluations since they are evaluating the same aspects. 

FIGURE 4

Correlation plot. Displays significative correlations between judges’ evaluations (uppercase) and sensor data (lowercase). Positive correlations are in 
orange, while negative correlations are in blue with transparency reflecting correlation’s strength.
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Oppositely, the impact of daily management and attention to requests 
on the traits measured by the sensor is not straightforward and may 
lead to poor classification results. However, it appears that gait 
parameters somehow predict aspects related to the horse’s behavior 
and collaboration with humans. A possible explanation would be that 
the rider’s corrective actions after an unexecuted request may 
influence the overall balance of the horse and its natural gait, 
interfering with the sensor-measured traits.

Although these results are preliminary and judges’ evaluations 
were divided into only positive or negative scores, there seems to 
be the possibility to predict judges’ scores from sensor data. With 
more data collected in the future, it might be  possible to predict 
judges’ scores through portable and easy to use sensor data, potentially 
reducing human error and providing owners or buyers with a more 
precise way to evaluate animals. This cost-effective method could 
allow for the evaluation of more animals, aiding in selecting horses 
that better meet the desires of future owners regarding behavior, 
dressage performance, or recovery capability, aspects which are 
increasingly important.

4 Conclusion

In conclusion, this research aimed to study gait traits using 
sensor data collected via Equisense Motion S®. Differences in several 
gait traits were identified, highlighting the different predispositions 
between the Bardigiano and Murgese. These differences emphasize 
the importance of preserving local breeds, as they possess unique 
gait traits that are essential for maintaining their genetic and 
functional diversity. Factors such as shoeing and age showed an 
effect on most of the gait traits collected via Equisense Motion S®. 

In contrast, riders’ skills and horses’ training levels did not 
significantly influence gait traits, possibly due to the homogeneity of 
our samples. It was also observed that only the walk gait trait 
remained consistent across the two trials, suggesting that other gait 
traits may be more susceptible to variations due to training. Most of 
the judges’ evaluations are correlated to sensor data although some 
of them were strongly related to each other. This suggests that judges 
often assess overall gait quality rather than focusing on specific 
traits. This reinforces the value of sensor data for detailed analysis of 
gait traits, which are challenging to assess accurately with the human 
vision alone. Sensor data allowed for accurate prediction of judges’ 
evaluations, demonstrating the potential of this technology for 
reliable performance assessment. In conclusion, the integration of 
sensor technology provides valuable insights into horse’s 
performance evaluation, with implications for breeding, training, 
and competitive sports. This technological advancement can help the 
breeders in identifying horses with higher rideability potential, 
thereby accelerating the selection process.
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