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Introduction: The presence of gastrointestinal nematodes, including zoonotic 
ascarids, in wild canids, felids and mustelids as definitive hosts in Central 
Asian countries has been documented in many studies based on traditional 
morphological methods. In contrast, relevant data for the badger are scarce. 
The aim of this study was the molecular identification of ascarid nematodes 
from five wild carnivore species in different regions of Kazakhstan.

Methods: A total of 211 adult ascarids were collected from gray wolves (Canis 
lupus, 8 of 83 infected with 2–6 Toxascaris leonina), red foxes (Vulpes vulpes, 
26 of 53, with 2–8 Toxascaris leonina), corsac foxes (Vulpes corsac, 6 of 11, 3–6 
Toxascaris leonina), lynx (Lynx lynx, 2 of 3, with 2–5 Toxocara cati) and badgers 
(Meles meles, 2 of 4, with 2–7 Baylisascaris melis). Genomic DNA was extracted 
from the worms and ribosomal DNA, including the first and second internal 
transcribed spacer genes, was amplified by polymerase chain reaction using 
specific oligonucleotide primers and then sequenced.

Results: Toxascaris leonina, but not Toxocara canis, was molecularly identified 
in the wild canids, Toxocara cati in the lynx and Baylisascaris melis in the badger. 
The maximum likelihood phylogenetic tree showed three distinct clades: the 
canid Toxascaris leonina was placed in one clade, Toxocara cati in another and 
Baylisascaris melis in a third.

Discussion: The study provides the world’s first molecular data and phylogenetic 
analysis of Baylisascaris melis, identified for the second time since its description 
over 100  years ago. This species was shown to be genetically distinct from other 
Baylisascaris spp. (B. columnaris, B. procyonis, B. transfuga, B. devosi). The 
possible zoonotic significance of ascarids from wild carnivores is discussed in 
the light of conditions in Central Asia.
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1 Introduction

Members of the genera Toxocara, Toxascaris, and Baylisascaris 
comprise the spectrum of ascarid nematodes (order Ascaridida: family 
Ascarididae) of terrestrial mammals, including the carnivores Canidae, 
Felidae, and Mustelidae (1, 2). Their adult stages parasitize the small 
intestines of the definitive host, which contaminates the environment by 
excreting worm eggs in feces. The eggs embryonate, can survive for 
months or years, and are ingested by another animal. Paratenic hosts 
(e.g., in Toxocara spp.) or intermediate hosts (in Baylisascaris spp.) may 
be  facultatively involved, e.g., prey rodents. After oral ingestion of 
infective eggs, larvae penetrate the intestinal mucosa and migrate to the 
liver and other tissues, including the brain (3, 4). The infection can also 
be transmitted to humans (known as ‘toxocariasis’) (5). For example, the 
seroprevalence of toxocariasis in humans has been reported to be 11% 
in eastern Kazakhstan (6) and up to 54% in western Siberian regions of 
Russia (7). Depending on the ascarid species and the number of eggs 
ingested, the infection may be  latent, but may also cause clinical 
symptoms (larva migrans syndrome) (4, 8). Contamination of the 
environment with ascarid eggs by domestic and wild carnivores is known 
in principle (4, 9, 10), but its impact in Central Asia is still unknown.

A number of studies have documented the occurrence and 
prevalence of helminth infections, including ascarids, in wild canids 
and felids in Kazakhstan [e.g., (11–14)] and neighboring countries 
[e.g., (15–19)]. In these studies, for example, wolves and red foxes were 
infected with Toxocara canis in 39% and 8–30% respectively, and with 
Toxascaris (T.) leonina in 38% and 6–78% respectively; Toxocara cati 
was present in 86% of lynx. In contrast, there are only two reports on 
the helminth fauna of badgers from Uzbekistan (17, 18), but no data 
from Kazakhstan. All these studies were carried out using traditional 
morphological methods. However, in field studies where the species 
identification of roundworms is based solely on their morphological 
features, the diagnosis is sometimes at least questionable, e.g., in 
badger (18–20). These diagnostic problems can be  solved using 
molecular methods that have been available for many years. Such 
methods confirm or modify the taxonomic classification and can also 
be used to study the phylogenetic relationships of parasites such as 
ascarids, detect their genetic diversity and explain epidemiological 
results [e.g., (2, 21–24)]. Therefore, the aim of the present study was 
to molecularly confirm the morphological species diagnosis of 
roundworms from five wild carnivore species in different regions of 
Kazakhstan, including wolf, red fox, corsac fox, lynx and badger, and 
to provide baseline data for future investigations.

2 Materials and methods

2.1 Ethical approval

The study had been approved by the local Animal Ethics Committee 
(extract from Protocol No. 1 dated 24 July 2019) prior to commencement 
and was conducted in accordance with the World Medical Association 
Code of Ethics (Declaration of Helsinki) for animal research.1

1 http://ec.europa.eu/environment/chemicals/lab_animals/

legislation_en.htm

2.2 Sample collection

Adult wild carnivores, including 83 gray wolves (Canis lupus), 53 
red foxes (Vulpes vulpes), 11 corsac foxes (Vulpes corsac), 3 European 
lynx (Lynx lynx) and 4 badgers (Meles meles) were available for this 
study. They had been shot by hunters in different regions of 
Kazakhstan (Figure 1) between December 2019 and October 2023. 
The gastrointestinal tract of each animal, frozen until examination, 
was examined for helminths as described by Skrjabin (25). Adult 
roundworms were collected, washed in physiological saline, 
morphologically identified to species (26, 27) and preserved in 70% 
ethanol.

2.3 DNA extraction

Following morphological specification, one worm from each 
ascarid-positive animal was randomly selected for molecular analysis. 
A small piece of this specimen was cut off and homogenized, and the 
homogenate was subjected to the standard phenol-chloroform 
method supplemented with proteinase K, to extract genomic DNA 
(gDNA). The DNA was then precipitated with ethanol (28), purified, 
dissolved in ddH2O and stored at −70°C for subsequent analysis.

2.4 PCR analysis

First, a polymerase chain reaction (PCR) was performed using the 
universal NC13/NC2 primer pair to amplify worm gDNA (21). PCR 
was performed in a 25 μL reaction mixture containing 10× Taq buffer 
with (NH4)2SO4, 2.5 mM MgCl2, 1 U Taq DNA polymerase and 
200 μM dNTPs (Thermo Scientific, Carlsbad, CA, USA), 10 pmol of 
each primer and 20 ng of extracted gDNA as a template. DNA 
segments were amplified using thermal cycling reactions for 30 cycles 
of denaturation (94°C for 30 s), annealing (55°C for 30 s) and 
extension (72°C for 30 s). The resulting amplification products were 
separated by electrophoresis on a 1.5% agarose gel prepared with 1× 
TAE buffer solution containing 8 ng/μL ethidium bromide. This was 
followed by species-specific PCR targeting the partial internal 
transcribed spacer 2 (ITS2) ribosomal DNA (rDNA) gene of Toxocara 
canis, Toxocara cati and T. leonina using the primer pairs Tcan1/NC2, 
Tcat1/NC2 and Tleo1/NC2, respectively, (21). All PCRs were 
performed as described by Jacobs et al. (21). For the identification of 
Baylisascaris sp. a primer pair targeting the ITS1-5.8S-ITS2 rDNA 
genes was used under the conditions described by Franssen et al. (29). 
The sequences of all primers used are shown in Table 1.

2.5 Sequencing analysis and phylogeny

Two positive amplification products were randomly selected 
from each host species for sequencing and genotyping. The 
respective amplicons were purified using a Quick PCR Purification 
Kit (Invitrogen, Lithuania) according to the manufacturer’s 
protocols. Sequencing was performed according to the Seq Studio 
Genetic Analyzer manual (Thermo Fisher Scientific Applied 
Biosystems, USA). The nucleotide sequences were visually checked 
using the Bio Capt program (version 11.0) and then analyzed by 
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BLAST search against the GenBank database.2 Finally, the nucleotide 
sequences were aligned using the Clustal W program, and the 

2 https://www.ncbi.nlm.nih.gov/

relationships of the taxa were analyzed with 1,000 bootstrap 
replicates by the maximum likelihood method with MEGA11 (30). 
For the inference method, the nearest neighbor Interaction (NNI) 
was used. The tree for Baylisascaris species was rooted by the 
outgroup Anisakis nascettii (JX486104).

FIGURE 1

Map of Kazakhstan showing the provinces and the geographical origin of the host species collected.

TABLE 1 List of primers used in this study.

Parasite Target gene Primer name Primer sequence (5′–3′) Reference

Universal nematode 5.8S NC13 F: ATCGATGAAGAACGCAGC (21)

NC2 R: TTAGTTTCTTTTCCTCCGCT

Toxocara canis ITS2 Tcan1 F: AGTATGATGGGCGCGCCAAT (21)

NC2 R: TTAGTTTCTTTTCCTCCGCT

Toxocara cati ITS2 Tcat1 F: GGAGAAGTAAGATCGTGGCACGCGT (21)

NC2 R: TTAGTTTCTTTTCCTCCGCT

Toxascaris leonina ITS2 Tleo1 F: CGAACGCTCATATAACGGCATACTC (21)

NC2 R: TTAGTTTCTTTTCCTCCGCT

Baylisascaris spp. ITS1-5.8S-ITS2 ITS1-5.8S-IT2-F F: ATAGTGAGTTGCACACTAATGT (29)

ITS1-5.8S-ITS2-R R: TTATATGCTTAAATTCAGCGGG

F, forward primer; R, reverse primer.

TABLE 2 Prevalence, intensity and abundance of adult ascarid species on the basis of morphology in wild carnivores in Kazakhstan.

Host N infected/N 
examined

% prevalence 
(95% CI)

N worms 
found

Range of 
intensity

Mean (SD) 
intensity

Mean (SD) 
abundance

Ascarid 
species 
identified

Wolf 8/83 9.6 (4.3–18.1) 34 2–6 4.3 (1.3) 0.4 (1.3) Toxascaris leonina

Red fox 26/53 49.1 (35.1–63.2) 134 2–8 5.1 (1.7) 2.5 (2.9) Toxascaris leonina

Corsac fox 6/11 55 (23–83) 27 3–6 4.5 (1.0) 2.6 (2.5) Toxascaris leonina

Lynx 2/3 66 (9–99) 7 2–5 3.5 (2.3) 2.1 (2.5) Toxocara cati

Badger 2/4 50 (0.7–93) 9 2–7 4.5 (3.5) 2.3 (3.3) Baylisascaris melis

95% CI, 95% confidence interval; SD, standard deviation.
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FIGURE 2

Electrophoresis of PCR products of gDNA from representative 
ascarid samples using the universal primer pair NC13/NC2: lane L: 
DNA marker; lanes 1–5: gDNA from ascarids collected from red fox 
(1), wolf (2), corsac fox (3), lynx (4) and badger (5); lane K: negative 
control (ddH2O).

FIGURE 3

Electrophoresis of PCR products of gDNA from representative ascarid samples using the primer pairs Tleo1/NC2 (A) and Tcat1/NC2 (B), species-
specific for Toxascaris leonina and Toxocara cati, respectively. Lane L: DNA marker; lanes 1–5: DNA from ascarids collected from red fox (1), wolf (2), 
corsac fox (3), lynx (4) and badger (5); lane K: negative control (ddH2O).

2.6 Statistical analysis

Explorative data analysis was performed using the BIAS statistical 
software (31). The observed prevalence, mean intensity and abundance 
of each ascarid species were calculated as described by Bush et al. (32).

3 Results

A total of 211 adult ascarids were collected from 154 host animals. 
Based on morphology, three species were identified: wolves (9.6% 
infected), red foxes (49.1%) and corsac foxes (55%) were infected only 
with T. leonina, lynx (66%) and badgers (50%) were infected only with 
Toxocara cati and Baylisascaris (B.) melis, respectively. Their mean 
intensity and abundance were low (Table 2). Adult Toxocara canis were 
not found in any of the hosts.

The first PCR performed with the universal primer pair NC13/
NC2 showed that the length of the PCR products from the ascarids of 
canids (wolf, red fox, and corsac fox) was different from that of the 
PCR products from the worms of lynx and badger (Figure 2).

The second PCR, performed with the respective species-specific 
primer pairs targeting the ITS2 rDNA region, identified T. leonina 
in canids and Toxocara cati in lynx (Figure  3). The primer pair 
specific for Toxocara canis gave no results in any sample (data not 
shown). Ribosomal ITS2 amplicons were obtained from six 

T. leonina isolates (232–261 bp), two each from wolf, red fox and 
corsac fox, and from two Toxocara cati isolates (375 and 434 bp) 
from lynx. The badger ascarids were identified as Baylisascaris sp. 
using a primer on the ribosomal ITS1-5.8S-ITS2 region and by 
comparison of the nucleotide sequences obtained with references 
from the GenBank database. Ribosomal ITS1-5.8S-ITS2 amplicons 
of 511 bp and 842 bp in length were obtained from two B. melis 
isolates. Nucleotide sequence data for all isolates have been deposited 
in the NCBI GenBank database under the accession numbers shown 
in Table 3.

Nucleotide sequences from representative ascarid samples of the 
five host species were used to construct the maximum likelihood 
phylogenetic tree. Three distinct clades were identified: T. leonina 
from canids was placed in one clade with bootstrap values ranging 
from 46 to 96, Toxocara cati from lynx in another and B. melis from 
badgers in a third (Figure 4). Maximum tree analyses of the ribosomal 
ITS1-5.8S-ITS2 gene sequence showed that the two B. melis isolates 
formed a clade with the four reference species Baylisascaris columnaris, 
Baylisascaris procyonis, Baylisascaris transfuga, and Baylisascaris 
devosi. Both B. melis isolates showed slight genetic differences 
(Figure 5).

4 Discussion

In this study, five wild carnivore species in Kazakhstan were 
examined for their respective ascarid species. The species found, their 
prevalence, intensity and abundance partly differ from those of other 
Kazakh studies. This is not surprising as the regions of origin of the 
sampled hosts were different. It should also be noted that the data 
presented (as from previous studies) are not representative. They are 
based on a relatively small number of non-randomly selected hosts in 
a few regions of Kazakhstan, a large country of 2,725,000 km2, where, 
for example, the wolf and red fox populations are estimated to 
be 30,000 and 75,000, respectively, (33, 34). It is also well documented 
that the ascarid fauna of wild carnivores varies between landscapes 
(e.g., steppe, foothills, mountains) (19, 35, 36), which may be explained 
by local differences in prey availability (10). Furthermore, lynx are 
protected species and their killing requires justified exemptions. It is 
therefore quite difficult to study representative samples of these wild 
carnivores in such large countries.

https://doi.org/10.3389/fvets.2024.1452237
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Uakhit et al. 10.3389/fvets.2024.1452237

Frontiers in Veterinary Science 05 frontiersin.org

Nevertheless, it is the first study to use molecular methods to 
identify ascarid nematodes from Central Asian countries. Phylogenetic 
analysis revealed three distinct species: Toxocara cati, T. leonina, and 
B. melis (Figure 4), confirming the morphological diagnosis.

In the three canid hosts, only T. leonina was identified, but not 
Toxocara canis. This is consistent with previous findings, based on 
traditional morphological methods, that T. leonina was the 
dominant ascarid species in corsac foxes in Kazakhstan (11), wild 
canids in southern Siberia (15), and stray dogs in Eurasian regions 
(37). It may be due to the higher cold tolerance of T. leonina eggs 
compared to Toxocara canis eggs, which favors this roundworm 
species in colder regions (37). However, it should be noted that the 
worms in the present study were obtained from adult hosts. This 
may have biased the results, as Toxocara canis is known to 
be mainly found in young canids (1, 26). In fact, other studies in 
Kazakhstan and neighboring countries have reported that wolves, 
red foxes or corsac foxes are infected with both ascarid species 
(12–14, 16–18).

Toxocara cati was the only ascarid species found in lynx. This was 
consistent with most reports from different countries (10, 15, 18), 
although occasionally T. leonina was also reported from this felid 
species (2, 38).

Wild canids and felids (as well as their domestic relatives) infected 
with ascarids contaminate the environment by excreting worm eggs 
in feces. The embryonated eggs are a potential source of infection for 
domestic dogs and cats and for paratenic hosts, including humans, 

TABLE 3 GenBank accession no. and number of nucleotide base pairs of 
representative samples of adult ascarids from this study.

Species Host Accession no. N  bp

Toxascaris leonina Wolf OR647588 261

Wolf OR647594 241

Red fox OR647692 242

Red fox OR647694 232

Corsac fox OR647689 234

Corsac fox OR647691 235

Toxocara cati Lynx OQ975261 434

Lynx OQ975262 375

Baylisascaris melis Badger PP333110 842

Badger PP333114 511

FIGURE 4

Maximum likelihood phylogeny constructed from nucleotide data of representative ascarid samples from wild carnivores in Kazakhstan. Numbers 
along the branches show bootstrap values resulting from different analyses in percent; scale: estimated number of nucleotide substitutions per site; 
species name and host species after the GenBank accession no.
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FIGURE 5

Maximum likelihood tree based on ribosomal ITS1-5.8S-ITS2 gene regions from several Baylisascaris spp. available in the GenBank and two isolates 
from this study. Numbers along the branches show bootstrap values resulting from different analyses in percent; scale: estimated number of 
nucleotide substitutions per site; species name and host species after the GenBank accession no.; red dots: isolates from this study; blue triangle: 
outgroup.

who may ingest these eggs (1, 9, 10). In the light of the results 
presented, this infection risk can be assessed as follows: (a) T. leonina 
is considered a negligible parasite from a veterinary and zoonotic 
point of view (37). (b) In contrast, Toxocara cati is pathogenic in its 
definitive feline host (39) and also in paratenic hosts: Experimental 
studies have shown that after ingestion of Toxocara cati eggs, larvae 
migrate into tissues, including the brain, causing pathomorphological 
alterations in mice and pigs and abnormal neurobehaviour in mice 
(40, 41). It should therefore be considered as a potential cause of 
neural larval migrans symptoms in humans (42). However, lynx are 
likely to be a negligible source of Toxocara cati infection to humans, 
at least in Central Asia. This is because the lynx prefers to live in 
forested areas, which provide sufficient cover for hunting and 
abundant prey without much contact with human settlements (43). 
(c) Toxocara canis may be present in wolves and red foxes (see above), 
although not in this study. These wild canids are more synanthropic 
than the lynx, and their range extends close to human settlements (10, 
44). This increases the risk of successful transmission of their parasites, 
including the zoonotic Toxocara canis, to domestic animals and 
humans (1, 9, 10).

This study also presents the first molecular data and provides the 
first phylogenetic analysis of B. melis worldwide. The badger ascarid 
was shown to be genetically distinct from Baylisascaris spp. of other 
carnivores: B. columnaris (definitive host: skunk [Mephitis spp.]), 

B. procyonis (raccoon [Procyon lotor]), B. transfuga (bears [Ursus 
spp.]) and B. devosi (marten [Martes spp.], fisher [Pekania pennanti], 
wolverine [Gulo gulo]) (Figure  5). This also confirms the 
morphological differentiation by Sprent (45) and supports the 
hypothesis (46) that the ascarids found in North American badgers 
(Taxidea taxus), which have been described as B. columnaris, are in 
fact B. melis. The significance of the slight genetic differences between 
the two B. melis isolates analyzed remains to be  investigated. The 
phylogenetic analysis also showed that B. procyonis and B. columnaris 
form a clade. This confirms previous results suggesting that they are 
closely related species or that the former is even a synonym of the 
latter (47, 48).

Interestingly, there is little information on the geographical 
distribution and prevalence of B. melis in badger populations in 
Eurasia. First described over 100 years ago in Belgium (49), this is 
the second unequivocal identification of this species. This 
nematode had not been mentioned in any relevant study in 
central, western or southern European countries. There are two 
studies from Italy and Switzerland reporting only unspecified 
“ascarid” eggs or worms in a few badgers (Table 4). In contrast, 
ascarids have been collected from badgers in Uzbekistan, 
Azerbaijan and Caucasian Russia and morphologically identified 
as Toxocara canis, B. columnaris or B. devosi (Table 4). However, 
it is most likely that these worms were misidentified and were 
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actually B. melis; the molecular results support this assumption. 
Thus, data from the literature and the results presented here 
suggest that B. melis may occur primarily, if not exclusively, in 
badger populations of western and central Asia. The reasons for 
this are still unknown.

It should be  noted that B. melis is able to infect rodents 
(facultative intermediate hosts) under experimental conditions: It 
was highly pathogenic and caused fatal neural larva migrans 
symptoms in the American ground squirrel (Urocitellus armatus); 
mice (Mus musculus) did not develop clinical symptoms, but their 
brains and other tissues contained B. melis larvae (50). Whether this 
can also occur in Central Asian ground squirrel species 
(Spermophilus spp.) or other rodents under natural conditions does 
not seem impossible and requires further study. In any case, based 
on the clinical and pathological findings in rodents, a zoonotic 
significance of B. melis cannot be  excluded and should 
be further investigated.

This study concludes by identifying ascarid nematodes from five 
distinct wild carnivore species in Central Asia within the 
phylogenetic framework. The study also presents the world’s first 
molecular data on B. melis from badger. It provides further insights 
into the classification and genetic diversity of ascarids. It reiterates 

the need for molecular methods to complement traditional 
morphological methods as a basic diagnostic tool in the future, for 
example in studies of the fauna, diversity, ecology and epidemiology 
of wildlife parasites, especially potential zoonotic agents. For future 
research, we  are also considering collecting feces from wild 
carnivores to detect roundworm infection, which would increase the 
sample size.
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TABLE 4 Results of previous studies on intestinal helminths, including 
ascarids, in badgers in Eurasia.

Country
N ascarid 
positive/N 
examined

Method 
used

Reference

Uzbekistan 0/19 Nec (17)

4/25 “Toxocara 

canis”

Nec (18)

Azerbaijan 10/43 “B. 

columnaris”

Nec (20)

4/43 “B. devosi”

Russia 

(Caucasus)

3/60 “B. 

columnaris”

Nec (19)

Poland 0/17 Cop (51)

Slovenia 0/18 Nec (52)

Croatia 0/13 Nec (53)

Austria 0/20 Nec (54)

Germany 0/16 Nec (55)

0/84 Nec (56)

Switzerland 2/249 “ascarids” Nec (57)

Italy 0/19 Nec (58)

1/43 “ascarid egg” Cop (59)

0/18 Nec (60)

Spain 0/85 Nec (61)

0/26 Nec (62)

Portugal 0/163 Cop (63)

Great Britain 0/118 Nec (64)

Ireland 0/50 Cop (65)

0/289 Nec (66)

Nec, necropsy; Cop, coproscopy.
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