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Radiomics models have been widely exploited in oncology for the investigation 
of tumor classification, as well as for predicting tumor response to treatment and 
genomic sequence; however, their performance in veterinary gastrointestinal 
tumors remains unexplored. Here, we  sought to investigate and compare 
the performance of radiomics models in various settings for differentiating 
among canine small intestinal adenocarcinoma, lymphoma, and spindle cell 
sarcoma. Forty-two small intestinal tumors were contoured using four different 
segmentation methods: pre- or post-contrast, each with or without the inclusion 
of intraluminal gas. The mesenteric lymph nodes of pre- and post-contrast 
images were also contoured. The bin settings included bin count and bin width 
of 16, 32, 64, 128, and 256. Multinomial logistic regression, random forest, and 
support vector machine models were used to construct radiomics models. 
Using features from both primary tumors and lymph nodes showed significantly 
better performance than modeling using only the radiomics features of primary 
tumors, which indicated that the inclusion of mesenteric lymph nodes aids 
model performance. The support vector machine model exhibited significantly 
superior performance compared with the multinomial logistic regression and 
random forest models. Combining radiologic findings with radiomics features 
improved performance compared to using only radiomics features, highlighting 
the importance of radiologic findings in model building. A support vector 
machine model consisting of radiologic findings, primary tumors, and lymph 
node radiomics features with bin count 16  in post-contrast images with the 
exclusion of intraluminal gas showed the best performance among the various 
models tested. In conclusion, this study suggests that mesenteric lymph node 
segmentation and radiological findings should be integrated to build a potent 
radiomics model capable of differentiating among small intestinal tumors.
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1 Introduction

The full workflow of radiomics involves various steps, including 
clinical data collection, image acquisition and preprocessing, image 
segmentation or target region delineation, feature extraction and 
selection, and model building (1). All these steps can significantly 
affect the results of the radiomics analysis, meticulous studies of each 
step are performed. For instance, acquiring an adequate number of 
image samples is important because numerous radiomic features are 
analyzed (1, 2). Various imaging parameters and protocols among 
institutions have been found to increase feature instability. Image 
acquisition factors, including tube current and slice thickness, have 
been thoroughly studied in human radiomics (3–5). Image 
preprocessing includes registration, filtering, and intensity 
normalization (6); image registration aligns multimodal images; 
filtering reduces noise; and normalization stabilizes feature extraction 
(7–9). Image segmentation can be  performed manually, semi-
automatically, or automatically, and comparisons among these 
methods have been performed (10). Manual segmentation utilizes 
expert knowledge—yet, inter- and intra-observer variability does 
exist. By contrast, semi-automatic segmentation allows the user to 
modify algorithm-created segmented regions, whereas automatic 
segmentation uses computer-based segmentation (11, 12).

Most radiomics feature-extraction studies involve the generation 
and assessment of histograms, textures, and morphological features (13, 
14). Histogram features represent Hounsfield unit (HU) intensity, and 
texture features quantify tumor heterogeneity by typically including 
gray-level co-occurrence and gray-level size zone matrices (15). 
Morphological features show tumor shapes in two- and three-
dimensional images. The effects of the feature extraction method, 
including bin sizes and numbers, have also been vigorously studied (16). 
Recently, artificial-intelligence convolutional neural networks were 
adopted to increase harmonization, feature stability, and reliability (17). 
Feature selection deploys filter, wrapper, embedded, and dimension-
reduction methods (18) to select crucial features from among the 
numerous features calculated. Least absolute shrinkage and selection 
operator (LASSO), as well as ridge regression, are embedded methods 
commonly used in radiomics (19). Model building in clinical radiomics 
settings can aid diagnosis, provide prognosis, and predict responses (20). 
Common models used are support vector machine, random forest, 
linear discriminant analysis, and multinomial logistic regression (21–24).

The role of radiomics models in human oncology has been widely 
investigated. Studies have not only investigated tumor classification and 
genomic sequence prediction but also focused on predicting tumor 
response after treatment (20, 25–30). Researches have demonstrated 
the role of radiomics models in predicting the response to bevacizumab 
in brain necrosis following radiotherapy (31), as well as their promising 
potential for predicting lung tumor shrinkage during chemoradiation 
(30, 32), for the diagnosis and prediction of nasopharyngeal carcinoma 
(20), and their diagnostic significance for various tumors.

Conversely, in veterinary radiomics, few studies have investigated 
the role of radiomics models in canine malignancies. A study by 
Banzato et al. utilized linear discriminant analysis and identified the 
most discriminant factor to predict the grade of canine meningioma 
(33). Another study used multiple quadratic discriminant models to 
differentiate between benign and malignant liver tumors (34). Linear 
discriminant analysis has also been performed to differentiate between 
benign and malignant splenic tumors (35).

Few studies have investigated the role of radiomics models of 
gastrointestinal tract tumors in humans, with a main focus on 
gastrointestinal stromal cell tumors, a subtype of spindle cell sarcoma 
(36–40). However, no studies have been conducted on radiomics 
models of veterinary gastrointestinal tumors. Thus, the objective of 
this study was to investigate various models and their performance in 
differentiating between small intestinal adenocarcinoma, lymphoma, 
and spindle cell sarcoma.

2 Materials and methods

2.1 Ethics statements

This study was a retrospective investigation, and ethical review 
and approval were not required. It was approved by each 
participating institution.

2.2 Data collection

This multi-institutional study included cases from six animal 
medical centers: Konkuk Veterinary Teaching Hospital, VIP Animal 
Medical Center, Shine Animal Medical Center, Helix Animal Medical 
Center, Daegu Animal Medical Center, and Busan Jeil Animal Medical 
Center. Dogs diagnosed with small intestinal tumors were investigated. 
Examinations conducted between 2012 and 2022 were reviewed. The 
data from multiple institutions were compiled and evaluated by a 
single veterinarian (JJ). The inclusion criteria were: (1) histopathologic 
diagnosis of intestinal adenocarcinoma, lymphoma, spindle cell 
sarcoma, or cytologic diagnosis of small intestinal lymphoma and (2) 
computed tomography (CT) examinations of intestinal tumors. The 
exclusion criteria were as follows: (1) absence of a prominent small 
intestinal mass on CT examination and (2) ileocecocolic junction 
mass, the exact origin of which could not be  determined on CT 
examination (ileum, cecum, and colon).

2.3 Computed tomographic examinations

CT examinations were performed using LightSpeed (General 
Electric Medical System, Chicago, IL, United States), Revolution ACT 
(General Electric Medical System), Brivo CT 385 (General Electric 
Medical System), Aquilion (Canon Medical Corporation, Tochigi, 
Japan), Aquilion Lightning (Canon Medical Corporation), BrightSpeed 
(General Electric Medical System), and Somatom Scope (Siemens 
Healthcare, Erlangen, Germany). The number of CT slices ranged from 
4 to 64. CT acquisition settings included a slice thickness of 
0.8–2.5 mm, helical pitch of 0.70–1.75 mm, and matrix dimension of 
512 × 512 with variable fields of view. The detailed acquisition settings 
for the scanners are listed in Supplementary Table S1. The patients were 
placed in either the supine or prone position under general anesthesia. 
Owing to the retrospective nature of the data, detailed contrast 
medium dosages, injection speeds, or anesthesia protocols were not 
included in all examinations. For cases with the aforementioned 
records, nonionic contrast medium (iohexhol 350 mg/mL; Onimpaque, 
GE Healthcare, Princeton, NJ, United States) was administered via a 
power injector at a rate of 2.0–2.5 mL/s or manually. Post-contrast CT 
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images were obtained during the portal phase, approximately between 
60 and 90 s after contrast medium injection. All the CT images were 
saved as Digital Imaging and Communication in Medicine.

2.4 Image segmentation

Small intestinal tumor segmentation was performed using the 
commercially available software 3D Slicer.1 Manual segmentation of 
the intestinal tumors in both pre- and post-contrast CT images was 
performed. Where the intestinal tumor margin was unclear on 
pre-contrast CT images, post-contrast CT images and their segmented 
areas were used as references. The segmented tumor region of interest 
was drawn by one radiologist with 4 years of experience (JJ) and 
confirmed by two senior radiologists (JK and KE). When there were 
different opinions in terms of tumor segmentation, final segmentation 
was made based on consensus.

As the small intestine is a hollow organ containing intraluminal gas, 
two contouring methods were devised. The first included the 
intraluminal gas, whereas the second did not. To exclude gas in the 
second method, a threshold cutoff of −150 HU was set so that pixels 
<−150 HU would not be selected. Thus, four segmentation methods 
were created for each intestinal tumor: (1) pre-contrast, gas included; 
(2) post-contrast, gas included; (3) pre-contrast, gas excluded; and (4) 
post-contrast, gas excluded. Method 1 was defined as pre-contrast, 
gas-included segmentation; Method 2 as post-contrast, gas-included 
segmentation; Method 3 as pre-contrast, gas-excluded segmentation; 
and Method 4 as post-contrast, gas-excluded segmentation (Figure 1). 
Mesenteric lymph nodes were also segmented to investigate whether the 
presence of mesenteric lymph node radiomics feature data contributed 
to the radiomics model performance. When multiple mesenteric lymph 

1 version 5.2.1; https://www.slicer.org

nodes were identified, the lymph node that best represented the overall 
status of the mesenteric lymph nodes was selected by a radiologist (JJ). 
Both pre- and post-contrast lymph node images were segmented.

2.5 Qualitative computed tomographic 
evaluation

All CT images were reviewed using commercially available 
software (Radiant, Medixant, Poznan, Poland) by a radiologist (JJ) 
under the supervision of two senior radiologists (JK and KE). CT 
images were displayed in soft-tissue and lung-window settings [soft-
tissue window (window level, 60; window width, 400) and lung window 
(window level, −400; window width, 1,500)]. The evaluation criteria 
for intestinal tumors were established similarly to previous studies (41, 
42) and included: location (duodenum, jejunum, ileum), tumor growth 
pattern (concentric, eccentric, mixed), margin (well-defined or poorly 
defined), obstruction (present or absent), mineralization (present or 
absent), mesentery fat stranding (present or absent), peritoneal effusion 
(present of absent), mesenteric lymphadenopathy (present or absent), 
metastases in thoracic or abdominal organs (present or absent), 
enhancement pattern (homogenous or heterogenous). Obstruction 
was considered present when the maximum diameter of the tumor was 
greater than the height of the L5 vertebral body (43). Fat stranding was 
defined as a misty appearance or increased attenuation of the 
mesenteric fat (44), and lymphadenopathy was considered present if 
the size was >5 mm in any dimension (45).

2.6 Radiomics feature extraction and 
model building

Tumor and lymph node radiomics features were computed 
through various bin settings using Pyradiomics (Python-based) (13). 
The bin settings included bin counts (BC) and widths (BW) of 16, 32, 

FIGURE 1

Four methods of intestinal segmentations in pre-contrast (A) and post-contrast images (D). Method 1 (B): pre-contrast, gas-included segmentation; 
Method 2 (E): post-contrast, gas-included segmentation; Method 3 (C): pre-contrast, gas-excluded segmentation; Method 4 (F): post-contrast, gas 
excluded-segmentation.
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64, 128, and 256. Seventy-two radiomics features (14 shape features, 
18 histogram features, 24 gray level co-occurrence matrix, and 16 gray 
level size zone matrix) were computed. Detailed information on these 
features is provided in Supplementary Table S2.

Radiomics models were constructed using the Statistics and 
Machine Learning Toolbox in MATLAB (MathWorks, Natick, MA, 
United States). Feature selection and training/test set formation for 
model building were chosen by multinomial LASSO with 0.3 holdout 
ratio and 100 repetitions. Multinomial logistic, random forest, and 
support vector machine (SVM) models were developed. All models 
were built for segmentation of tumors only or tumors and mesenteric 
lymph nodes. Models built using tumor segmentation only were 
termed “Primary Tumor (PT) models,” whereas those built using 
tumor and lymph node segmentations were termed “Primary Tumor 
and Lymph Node (PTLN) models.” Tumors in pre- and post-contrast 
images were matched with lymph nodes in pre- and post-contrast 
images, respectively. Models were built for all bin settings and 
segmentation methods.

In addition to the radiomics models, qualitative CT findings were 
added as features to build clinical-radiomics models. Clinical-
radiomics models were constructed using the Statistics and Machine 
Learning Toolbox in MATLAB. Multinomial LASSO with 0.3 holdout 
ratio of 100 times repetition was used to select features and divide 
training/test set. Random forest and SVM models were created. 
Similar to the radiomics models, the PT and PTNL clinical-radiomics 
models were built to combine radiological findings with radiomics 
features for all bin settings and segmentation methods.

2.7 Statistical analyses

All statistical analyses were performed using the Statistics and 
Machine Learning Toolbox in MATLAB. For all the models, the 
accuracy and area under the curve (AUC) of the training and test sets 
were calculated. The AUCs for the training and test sets were 
calculated as the mean of the model prediction performance for the 
individual tumor subtypes (adenocarcinoma, lymphoma, and spindle 
cell sarcoma). The DeLong test was used to compare the performance 
of the models.

For PTLN models, a method with the highest performance was 
analyzed for commonly selected features, whereas for the PTLN 
clinical-radiomics models, a method with the highest performance 
was analyzed for both commonly selected features and radiological 
findings. Among the 100 bootstrapping repetitions, radiomics features 
and radiologic findings selected >95 times were regarded as commonly 
selected. T-tests were used to compare commonly selected radiomic 
features of small intestinal adenocarcinoma, lymphoma, and spindle 
cell sarcoma. Fisher’s exact tests were used to compare commonly 
selected radiological findings among the tumors. A p-value of <0.05 
denoted statistical significance.

3 Results

3.1 Patient population

In total, 41 dogs met the inclusion criteria. The mean age was 
11.3 years (range, 5–18 years) and the mean body weight was 7.5 kg 

(range, 1.9–37.0 kg). Sixteen castrated males, 19 spayed females, one 
intact male, and five intact females were included. The following 
breeds were included: Shiba Inu (1), Dachshund (2), Pomeranian 
(2), Poodle (5), Cane Corso (1), Miniature Pinscher (2), Maltese 
(12), Schnauzers (2), Pug (1), Yorkshire Terrier (3), Beagle (2), 
Rottweiler (1), Spitz (1), Shih Tzu (1), Bichon Frise (1), Cocker 
Spaniel (1), Shetland Sheepdog (1), Pungsan (1), and Mixed (1). 
Forty-two intestinal tumors were segmented, including nine 
adenocarcinomas, 14 lymphomas, and 19 spindle cell sarcomas. All 
adenocarcinomas and spindle-cell sarcomas were diagnosed via 
histopathological examination. Four lymphoma cases were 
diagnosed by cytological examination while 10 cases were diagnosed 
by histopathological examination. One dog with lymphoma had two 
multifocal intestinal masses that were both diagnosed as 
lymphomas. Each intestinal mass was considered an individual 
intestinal tumor case. Different mesenteric lymph nodes were 
segmented for each tumor. The patient demographics are presented 
in Supplementary Table S3.

3.2 Computed tomography features

Adenocarcinomas included one tumor in the duodenum, five 
tumors in the jejunum, and three tumors in the ileum. Lymphomas 
included two tumors in the duodenum, 10 tumors in the jejunum and 
two tumors in the ileum. Spindle cell sarcomas consisted of three 
tumors in the duodenum, 15 tumors in the jejunum, and one tumor 
in the ileum. In terms of growth patterns, adenocarcinomas showed 
two concentric, one eccentric, and six mixed patterns. Lymphomas 
exhibited 10 concentric and four eccentric patterns. Spindle cell 
sarcomas demonstrated 14 eccentric and five mixed patterns. The 
adenocarcinoma margins were well-defined in seven cases and poorly 
defined in two cases. Lymphomas included 10 well-defined margins 
and four poorly defined margins. Spindle cell sarcomas showed well-
defined margins in 18 cases and poorly defined margins in one case. 
Obstruction was noted in four cases of adenocarcinoma, one case of 
lymphoma, and two cases of spindle cell sarcoma. Mineralization was 
present in one case of adenocarcinoma, two cases of lymphoma, and 
three cases of spindle cell sarcoma. Fat stranding was present in six 
cases of adenocarcinomas, six cases of lymphomas and four cases of 
spindle cell sarcoma. Peritoneal effusion was noted in one case of 
adenocarcinoma, two cases of lymphomas and three cases of spindle 
cell sarcoma. Lymphadenopathy was noted in four cases of 
adenocarcinoma, 12 cases of lymphomas and two cases of spindle cell 
sarcoma. Metastases were observed in one case of adenocarcinoma 
and two cases of spindle cell sarcoma. A heterogeneous enhancement 
pattern was noted in eight adenocarcinomas and 18 spindle-cell 
sarcomas. Homogenous enhancement was observed in all lymphomas. 
The results are summarized in Table 1.

3.3 Model performance of multinominal 
logistic, random forest, and SVM radiomics 
models

The accuracy and AUC for the training and test sets of the PT 
multinomial logistic models are summarized in 
Supplementary Tables S4, S5. Among the BC settings, Method 4 
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with BC32 exhibited the highest test accuracy (0.6583) and AUC 
(0.8224). Method 2 with BC128 showed the lowest test accuracy 
(0.5092) and AUC (0.6973). Among the BW settings, Method 2 
with BW16 exhibited the highest test accuracy (0.6342), and 
Method 4 with BW16 exhibited the highest test AUC (0.8082). 
Method 3 with BW16 and BW32 had the lowest test accuracy 
(0.4992), whereas Method 1 with BW16 demonstrated the lowest 
AUC (0.6763).

For the PTLN multinomial logistic models, the accuracies and 
AUC for the training and test sets are presented in 
Supplementary Tables S6, S7. Among the BC settings, Method 4 with 
BC16 exhibited the highest test accuracy (0.7592), and Method 4 with 
BC32 had the highest test AUC (0.8881). Method 3 with BC16 
exhibited the lowest test accuracy (0.6650) and AUC (0.8294). Among 
the BW settings, Method 4 with BW16 had the highest test accuracy 
(0.7758) and AUC (0.9034). Method 4 with BW256 exhibited the 
lowest test accuracy (0.6775), and Method 3 with BW1, exhibited the 
lowest test AUC (0.8360).

For the PT random forest models, the accuracy and AUC for the 
training and test sets are summarized in Supplementary Tables S8, S9. 
Among the BC settings, Method 1 with BC16 showed the highest 
test accuracy (0.6052) and AUC (0.7728). Method 3 with BC16 
exhibited the lowest test accuracy (0.4867), and Method 2 with 
BC64 exhibited the lowest test AUC (0.6853). Among the BW 
settings, Method 1 with BW16 had the highest test accuracy 
(0.5925), and Method 4 with BW16 had the highest test AUC 
(0.7797). Method 2 with BW32 exhibited the lowest test accuracy 

(0.4892), and Method 2 with BW256 had the lowest test AUC 
(0.6631).

The accuracies and AUC for the training and test sets of the PTLN 
random forest models are presented in Supplementary Tables S10, S11. 
Among the BC settings, Method 1 with BC256 had the highest test 
accuracy (0.7858), and Method 4 with BC32 had the highest test AUC 
(0.9231). Method 2 with BC256 exhibited the lowest test accuracy 
(0.7267), whereas Method 3 with BC16 had the lowest test AUC 
(0.8767). Among the BW settings, Method 1 with BW64 demonstrated 
the highest test accuracy (0.7833), and Method 1 with BW32 showed 
the highest test AUC (0.8927). Method 2 with BW128 exhibited the 
lowest test accuracy (0.6842), and Method 3 with BW256 exhibited 
the lowest test AUC (0.8495).

The accuracy and AUC for the training and test sets of the PT 
SVM models are summarized in Supplementary Tables S12, S13. 
Among the BC settings, Method 4 with BC16 showed the highest test 
accuracy (0.7600), and Method 4 with BC32 exhibited the highest test 
AUC (0.8875). Method 2 with BC128 had the lowest test accuracy 
(0.6067), and Method 3 with BC128 had the lowest test AUC (0.7685). 
Among the BW settings, Method 2 with BW16 showed the highest test 
accuracy (0.6967) and AUC (0.8625). Method 2 with BW128 had the 
lowest test accuracy (0.5733), and Method 2 with BW256 exhibited 
the lowest test AUC (0.7490).

The accuracies and AUC for the training and test sets of the PTLN 
SVM models are presented in Supplementary Tables S14, S15. Among 
the BC settings, Method 3 with BC32 demonstrated the highest test 
accuracy (0.8067), and Method 4 with BC32 had the highest test AUC 

TABLE 1 Summary of qualitative CT analysis of intestinal tumors.

Adenocarcinoma (n  =  9) Lymphoma (n  =  14) Spindle cell sarcoma (n  =  19)

Location Duodenum 1/9 2/14 3/19

Jejunum 5/9 10/14 15/19

Ileum 3/9 2/14 1/19

Growth pattern Concentric 2/9 10/14 0/19

Eccentric 1/9 4/14 14/19

Mixed 6/9 0/14 5/19

Margin Well-defined 7/9 10/14 18/19

Ill-defined 2/9 4/14 1/19

Obstruction Present 4/9 1/14 2/19

Absent 5/9 13/14 17/19

Mineralization Present 1/9 2/14 3/19

Absent 8/9 12/14 16/19

Fat stranding Present 6/9 6/14 4/19

Absent 3/9 8/14 15/19

Peritoneal effusion Present 1/9 2/14 3/19

Absent 8/9 12/14 16/19

Lymphadenopathy Present 4/9 12/14 2/19

Absent 5/9 2/14 17/19

Metastases Present 1/9 0/14 2/19

Absent 8/9 14/14 17/19

Enhancement pattern Homogenous 1/9 14/14 1/19

Heterogenous 8/9 0/14 18/19
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FIGURE 2

Comparison between receiver-operating characteristics curves of the PT and PTLN in multinomial logistic regression, random forest, and SVM models. 
(A) The PTLN model using Method 4 and BW16 showed a significantly higher AUC than the PT model using Method 4 and BC32 (AUC 0.9034 vs. 
0.8224). (B) The PTLN model using Method 4 and BC32 demonstrated a significantly higher AUC than the PT model using Method 4 and BW16 (AUC 
0.9231 vs. 0.7797). (C) The TLN model using Method 3 and BW128 exhibited a significantly higher AUC than the PT model with method 4 and BC32 
(AUC 0.9483 vs. 0.8875).

(0.9360). Method 2 which used BC128 exhibited the lowest test 
accuracy (0.7100) and AUC (0.8715). Among the BW settings, 
Method 3 with BW128 had the highest test accuracy (0.8225) and 
AUC (0.9483). Method 3 with BW16 exhibited the lowest test accuracy 
(0.7167) and AUC (0.8760).

3.4 Model performance of random forest, 
SVM clinical-radiomics models

For the PT random forest clinical-radiomics models, the accuracy 
and AUC for the training and test sets are summarized in 
Supplementary Tables S16, S17. Among the BC settings, Method 4 
with BC32 showed the highest test accuracy (0.7633) and AUC 
(0.9200). Method 3 with BC256 had the lowest test accuracy (0.6675), 
and Method 2 with BC32 had the lowest test AUC (0.8352). Among 
the BW settings, Method 1 with BW256 exhibited the highest test 
accuracy (0.7592), and Method 4 with BW16 had the highest test AUC 
(0.9033). Method 4 with BW128 exhibited the lowest test accuracy 
(0.6733), and Method 2 with BW32 exhibited the lowest test AUC 
(0.8523).

For the PTLN random forest clinical-radiomics models, the 
accuracy and AUC for the training and test sets are presented in 
Supplementary Tables S18, S19. Among the BC settings, Method 1 
with BC16 demonstrated the highest test accuracy (0.7925), and 
Method 4 with BC32 showed the highest test AUC (0.9419). Method 
2 with BC32 exhibited the lowest test accuracy (0.7333), and Method 
3 with BC256 exhibited the lowest test AUC (0.8965). Among the BW 
settings, Method 1 with BW64 had the highest test accuracy (0.8200) 
and AUC (0.9207). Method 4 with BW128 exhibited the lowest test 
accuracy (0.7150), and Method 3 with BW16 exhibited the lowest test 
AUC (0.8983).

For the PT SVM clinical-radiomics models, the accuracy and 
AUC for the training and test sets are summarized in 
Supplementary Tables S20, S21. Among the BC settings, Method 4 
with BC16 had the highest test accuracy (0.9058) and AUC (0.9770). 

Method 2 with BC16 exhibited the lowest test accuracy (0.6983) and 
AUC (0.8574). Among the BW settings, Method 1 with BW256 
showed the highest test accuracy (0.7750), and Method 4 with BW16 
exhibited the highest test AUC (0.8905). Method 2 with BW32 and 
BW256 exhibited the lowest test accuracy (0.6892), and Method 1 with 
BW32 exhibited the lowest test AUC (0.8429).

For the PTLN SVM clinical-radiomics models, the accuracy and 
AUC for the training and test sets are presented in 
Supplementary Tables S22, S23. Among the BC settings, Method 4 
with BC32 showed the highest test accuracy (0.9050), and Method 4 
with BC16 showed the highest test AUC (0.9775). Method 2 with 
BC256 had the lowest test accuracy (0.7975) and AUC (0.9311). 
Among the BW settings, Method 4 with BW16 demonstrated the 
highest test accuracy (0.8567), and Method 1 with BW64 showed the 
highest test AUC (0.9565). Method 4 with BW256 exhibited the lowest 
test accuracy (0.7792), and Method 4 with BW128 exhibited the lowest 
test AUC (0.9134).

3.5 Performance comparison of PT and 
PTLN models

In the multinomial logistic regression models, the PT and PTLN 
models with the best AUC performance were compared. The PTLN 
model using Method 4 and BC32 showed a significantly higher AUC 
than the PT model using Method 4 and BW16 (AUC 0.9034 vs. 
0.8224) (Figure 2A).

Among the random forest models, the PT and PTLN models with 
the best AUC performance were compared. The PTLN model using 
Method 4 and BC32 demonstrated a significantly higher AUC than 
the PT model using Method 4 and BW16 (AUC 0.9231 vs. 0.7797) 
(Figure 2B).

In the SVM models, the PT and PTLN models with the best AUC 
performance were compared. The PTLN model using Method 3 and 
BW128 exhibited a significantly higher AUC than the PT model 
using Method 4 and BC32 (AUC 0.9483 vs. 0.8875) (Figure 2C).
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The PTLN models with the best AUC performance in the 
multinomial logistic regression, random forest, and SVM models 
were compared. The SVM model using Method 3 and BW128 
exhibited a significantly higher AUC than the random forest 
model using Method 4 and BC32 (AUC 0.9483 vs. 0.9231) 
(Figure 3A). The SVM model using Method 3 and BW128 showed 
a significantly higher AUC than the multinomial logistic regression 
model using Method 4 and BW16 (AUC 0.9483 vs. 0.9034) 
(Figure 3B). The random forest model using Method 4 and BC32 
exhibited a significantly higher AUC than the multinomial logistic 
regression model using Method 4 and BW16 (AUC 0.9231 vs. 
0.9034) (Figure 3C).

3.6 Performance comparison of PTLN 
clinical-radiomics models

PTLN clinical-radiomics models, which include radiological 
findings, were compared with PTLN models to investigate the effect 
of incorporating radiological findings.

Among the PTLN SVM models, those with the best AUC 
performance in the clinical-radiomics and radiomics models were 
compared. The clinical-radiomics SVM model with Method 4 and 
BC16 showed a significantly higher AUC than the radiomics SVM 
model with Method 3 and BW128 (AUC 0.9775 vs. 0.9483) 
(Figure 4A).

Among the PTLN random forest models, the models with the best 
AUC performance in the clinical-radiomics and radiomics models 
were also compared. The clinical-radiomics random forest model 
using Method 4 and BC32 exhibited a higher AUC than the radiomics 
random forest model using Methods 4 and BC32 (AUC 0.9419 vs. 
0.9231), although the difference was not significant (Figure 4B).

The PTLN clinical-radiomics models with the best AUC 
performance in random forest and SVM were compared. The SVM 
model with Method 4 and BC16 showed a significantly higher AUC 
than random forest model with Method 4 and BC32 (AUC 0.9775 vs. 
0.9419) (Figure 5).

3.7 Commonly selected radiomics features

The PTLN and PTLN clinical-radiomics models with the best 
performance were analyzed for commonly selected features and 
radiological findings. For the PTLN models, SVM Method 3 with 
BW128, and for the PTLN clinical-radiomics models, SVM Method 4 
with BC16, showed the best performance.

For PTLN models, commonly selected features among 100 times 
of bootstrapping in Method 3 with BW128 included elongation, 
LeastAxis Length, SurfaceVolumeRatio, LowGrayLevelZoneEmphasis 
for tumor segmentation and Maximum2DDiameterSlice, Kurtosis, 
and Minimum for lymph node segmentation.

For PTLN clinical-radiomics, commonly selected features among 
100 times of bootstrapping in Method 4 with BC16 included 
LeastAxisLength, SurfaceVolumeRatio, Kurtosis for tumor 
segmentation and Maximum2DDiameterSlice, and InterquartileRange 
for lymph node segmentation. Radiological findings commonly 
included growth patterns, obstruction, and fat stranding.

3.8 Comparison among adenocarcinoma, 
lymphoma, and spindle cell sarcoma in 
commonly selected radiomics features

Commonly selected radiomics features were compared among the 
tumor subtypes and are summarized in Table 2.

For Method 3, with BW128, the Elongation was significantly 
higher in spindle cell sarcomas than in other tumors. 
LeastAxisLength demonstrated a significantly higher value in 
spindle cell sarcoma and a significantly lower value in 
adenocarcinoma, whereas SurfaceVolumeRatio showed significantly 
higher values in lymphoma and significantly lower values in spindle 
cell sarcoma than in other tumors. LowGrayLevelZoneEmphasis 
was significantly lower in spindle cell sarcoma but not among 
tumors. In terms of lymph nodes, the Maximum2DDiameterSlice 
and Kurtosis exhibited significantly higher values for lymphoma 
and significantly lower values for spindle cell sarcoma than for 

FIGURE 3

Comparison between receiver-operating characteristics curves of the PTLN multinomial logistic regression, random forest, SVM models. (A) The SVM 
model using Method 3 and BW128 exhibited a significantly higher AUC than the random forest model using Method 4 and BC32 (AUC 0.9483 vs. 
0.9231). (B) The SVM model using Method 3 and BW128 showed a significantly higher AUC than the multinomial logistic regression model using 
Method 4 and BW16 (AUC 0.9483 vs. 0.9034). (C) The random forest model with Method 4 and BC32 exhibited a significantly higher AUC than the 
multinomial logistic regression model using Method 4 and BW16 (AUC 0.9231 vs. 0.9034).
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FIGURE 5

Comparison between receiver-operating characteristics curves of 
the PTLN clinical-radiomics SVM and random forest models. The 
SVM model with Method 4 and BC16 showed a significantly higher 
AUC than the random forest model with Method 4 and BC32 (AUC 
0.9775 vs. 0.9412).

other tumors. The minimum was significantly higher in 
adenocarcinomas than in other tumors.

For Method 4, with BC16, the LeastAxisLength showed a 
significantly higher value in spindle cell sarcoma and a significantly 
lower value in spindle cell sarcoma compared to other tumors. The 
SurfaceVolumeRatio was significantly higher in lymphomas and 
significantly lower in spindle cell sarcomas compared to other tumors. 
Kurtosis was higher in spindle cell sarcomas but was not significantly 
different among tumors. In terms of lymph nodes, the 

Maximum2DDiameterSlice showed a significantly higher value in 
lymphoma and a significantly lower value in spindle cell sarcoma than 
in other tumors. The InterauqartileRange exhibited significantly lower 
values for lymphoma and significantly higher values for spindle cell 
sarcoma as compared to other tumors.

3.9 Comparison among adenocarcinoma, 
lymphoma, and spindle cell sarcoma in 
commonly selected CT findings

All commonly selected radiologic findings showed significant 
differences among tumor types. Lymphomas demonstrated a higher 
prevalence of concentric growth, whereas spindle cell sarcomas 
showed a higher prevalence of eccentric growth than other tumors. 
Adenocarcinomas showed a higher proportion of obstruction and fat 
stranding than other tumors. Lymphomas exhibited a significantly 
higher prevalence of homogenous enhancement than other tumors. 
The results are summarized in Table 3.

4 Discussion

Precision medicine allows the extraction of various types of 
clinical information on tumors and has, therefore, emerged as a 
crucial factor in modern oncology (13, 46). Radiomics is a widely 
accepted form of precision medicine that extracts quantitative 
features from clinical images and identifies disease characteristics 
that can be used as biomarkers (32). Ιt is commonly used in oncology 
for tumor diagnosis, prognosis, and tumor response (32, 47). For 
example, it plays an important role in tumor response, prediction, 
and evaluation of tumor reduction after chemoradiation (27–30). In 
recent decades, the interest in precision medicine and radiomics in 
veterinary medicine has markedly increased (48). The radiomics 
features of various tumors, including those of the lungs, liver, spleen, 

FIGURE 4

Comparison between receiver-operating characteristics curves of the PTLN clinical-radiomics SVM, random forest and PTLN SVM, random forest. 
(A) The clinical-radiomics SVM model with Method 4 and BC16 showed a significantly higher AUC than the radiomics SVM model with Method 3 and 
BW128 (AUC 0.9775 vs. 0.9483). (B) The clinical-radiomics random forest model with Method 4 and BC32 exhibited a higher AUC than the radiomics 
random forest model with Method 4 and BC32 (AUC 0.9419 vs. 0.9231), although the difference was not significant.
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and adrenal glands, have been investigated (34, 35, 49, 50). In human 
medicine, there have been many studies on radiomics or 
gastrointestinal tumor texture analysis. The application of radiomics 
in colorectal tumors, including the prediction of BRAF mutations, 
perineural invasion, lung metastasis, and response to chemoradiation, 
has been extensively studied (26, 51–55). A tumor classification 
model based on CT tumor texture analysis of gastric tumors showed 
adequate performance in terms of differentiating adenocarcinoma–
lymphoma and lymphoma–gastrointestinal stromal tumors but poor 
performance in differentiating adenocarcinoma–gastrointestinal 
stromal tumors (40).

This study tested the performance of multinomial logistic 
regression, random forest, and SVM models in various environments. 
Various environments included multiple-bin settings, contrast 
enhancement, and the inclusion or exclusion of intraluminal gas. 
We investigated whether the addition of radiologic features interpreted 
by radiologists affect the performance of radiomics models. Numerous 
models showed adequate performance; however, the SVM BC16 
model using tumor and mesenteric lymph node segmentation in post-
contrast images intraluminal gas excluded with radiologic findings 
showed the best tumor differentiation ability. Thus, this model May 
be ideal for applications in clinical settings.

In radiomics, four feature-selection methods exist: filter, wrapper, 
embedded, and dimension reduction (18). Filter methods utilize the 
most meaningful features by measuring direct associations between 
features and outcomes (1). Statistical analyses include (but are not 
limited to) Student’s t-test, correlation coefficient, analysis of variance, 
and chi-squared tests (56). CT texture analysis of canine splenic 
tumors uses the Mann–Whitney U test to select meaningful radiomic 
features (35). However, this method fails to consider collinearity 
among the selected features, and therefore can be unsuitable (1). The 
wrapper method utilizes machine-learning models to find optimal 
features by analyzing possible feature sets; however, it incurs a high 
computational cost (1). The embedded method selects features during 
the model-building process, and LASSO and ridge regression are 
commonly used (1). The dimension reduction method utilizes high-
dimensional features in different computational spaces to create a 
compact representation (1).

Training and test sets were required to validate the created model. 
The hold-out method uses a training set to create a model and a 
validation set to test model performance on new data (57). The K-fold 
cross-validation method divides the data into K-folds and uses K-1 
folds to train the model, while the remaining fold is used to validate 
the model (57). This study used the embedded and hold-out methods, 

TABLE 2 Comparison among commonly selected radiomics features.

Adenocarcinoma Lymphoma Spindle Cell 
Sarcoma

p-value

PTLN Model: 

Method 3 with 

BW128

Elongation 0.69 [0.42, 0.96] 0.68 [0.46, 0.91] 0.80 [0.56, 0.97]a* 0.013a

LeastAxisLength 19.31 [11.41, 27.61]a* 22.01 [11.52, 47.74] 38.00 [16.31, 87.35]b* 0.021a, <0.001b

SurfaceVolumeRatio 0.36 [0.23, 0.57] 0.38[0.13, 0.52]a* 0.21 [0.06, 0.40]b* 0.002a, <0.001b

LowGrayLevelZoneEmphasis 0.68 [0.33, 0.99] 0.56 [0.23, 0.99] 0.45 [0.20, 0.99]

Maximum2DDiameterSlice_LN 9.38 [6.53, 16.54] 26.12 [4.86, 48.31]a* 8.70 [3.54, 15.49]b* <0.001a, 0.003b

Kurtosis_LN 3.74 [2.76, 5.95] 5.95 [2.61, 8.88]a* 2.93 [1.97, 4.51]b* <0.001a, 0.007b

Minimum_LN −62.66 [−91, −46]a* −75.28 [−146, −35] −80.36 [−106, −59] 0.014a

PTLN Clinical-

Radiomics Model: 

Method 4 with 

BC16

LeastAxisLength 20.44 [14.79, 27.74]a* 21.99 [11.82, 44.84] 38.19 [17.26, 86.29]b* 0.029a, <0.001b

SurfaceVolumeRatio 0.35 [0.23, 0.45] 0.38 [0.14, 0.55]a* 0.20 [0.06, 0.37]b* <0.001a, b

Kurtosis 11.77 [2.34, 49.89] 15.73 [2.80, 67.14] 20.39 [2.47, 208.06]

Maximum2DDiameterSlice_LN 9.38 [6.77, 16.54] 26.12 [4.92, 48.37]a* 8.70 [3.41, 15.25]b* <0.001a, 0.048b

InterquartileRange_LN 27.06 [24, 70.75] 19.14 [11, 54]a* 36.48 [35, 89]b* <0.001a, b

All data are presented as mean and range [minimum, maximum]. p < 0.05 is considered statistically significant. *p < 0.05. PTLN Primary Tumor and Lymph Node, BC, Bin Count; BW, Bin 
Width; LN, Lymph Node.

TABLE 3 Comparison among commonly selected radiologic findings.

Adenocarcinoma Lymphoma Spindle Cell Sarcoma p-value

Growth pattern

Concentric 2/9 (22.2%) 10/14 (71.4%) 0/19 (0%)

<0.001Eccentric 1/9 (11.1%) 4/14 (28.6%) 14/19 (73.7%)

Mixed 6/9 (66.7%) 0/14 (0%) 5/19 (26.3%)

Obstruction
Present 4/9 (44.4%) 1/14 (7.1%) 2/19 (10.5%)

0.048
Absent 5/9 (55.6%) 13/14 (92.9%) 17/19 (89.5%)

Fat stranding
Present 6/9 (66.7%) 2/14 (14.3%) 4/19 (21.1%)

0.025
Absent 3/9 (33.3%) 12/14 (85.7%) 15/19 (78.9%)

p < 0.05 is considered statistically significant.
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LASSO with 0.3 hold-out ratio with 100 repetitions to select features 
and divide the training and test sets. LASSO is a commonly used 
method in human radiomics that theoretically provides maximum 
orthogonality between features and derives sparse results (1). 
Therefore, its use for feature selection is highly recommended for 
veterinary radiomics.

The PT models analyzed only tumor segmentation, whereas the 
PTLN models incorporated both tumor and mesenteric lymph node 
segmentations. The PTLN models showed superior performance 
compared to the PT models in all three types of radiomics models 
(multinomial logistic regression, random forest, and SVM). This 
indicated that the incorporation of lymph nodes strongly enhanced 
the performance of the radiomics models. Thus, for radiomics models 
differentiating small-intestinal tumors, mesenteric lymph nodes 
should be included in the dataset. The inclusion of lymph nodes is 
plausible, because radiologists consider lymph node morphology and 
size when interpreting small intestinal tumor types (41).

Common models used in radiomics include linear discriminant 
analysis, multinomial logistic regression, support vector machines, 
and random forest (21–24). The CT texture analysis of canine hepatic 
and splenic tumors uses discriminant analysis for model building (34, 
35). A study investigating pulmonary parenchymal texture changes in 
canine pulmonary thromboembolism used an SVM model for 
classification (58). This study used multinomial logistic regression, 
random forest, and SVM for model building. In the PTLN models, the 
performances of multinomial logistic regression, random forest, and 
SVM models were compared. SVM models utilize a decision boundary 
to classify the data and predict where the unclassified data fit (21). The 
multinomial logistic regression model estimates the association 
between independent and dependent variables using the logarithm of 
odds of an event as a linear combination (24, 59). The random forest 
model constructs decision trees using different bootstrap data for 
classification (22). The SVM models showed superior performance 
compared to the other two models. Because the SVM model showed 
the best performance, its application in the classification of canine 
small intestinal tumors is recommended.

The incorporation of clinical findings into radiomics models has 
been investigated in human radiomics. Several studies have 
highlighted the importance of clinically combined radiomics models 
for different tumors. A radiomics study differentiating pneumonia-
like cancer from the pulmonary inflammatory region reported that 
age, necrosis, and pleural attachment were effective factors for 
classification (60). In models predicting the response to neoadjuvant 
chemoradiotherapy followed by total mesorectal excision of rectal 
tumors, a model with clinical magnetic resonance imaging and 
radiomics features performed better than a model with clinical 
features alone (61). Similar results were reported in a gastrointestinal 
radiomics study. A CT radiomics study of gastrointestinal stromal 
tumors also showed that a radiomics model with clinical information 
performed better (38). Similar to human medicine, this study 
incorporated radiologic findings into radiomics models and compared 
them to radiomics models without radiologic findings. Both the SVM 
and random forest models showed better performance when 
combined with radiologic findings; however, only the SVM model 
exhibited a significant difference between the clinical and radiomics 
models. Considering the improvement in model performance, 
combining radiologic findings with radiomics features when building 
a model is recommended.

Commonly selected features in the PTLN model with the best 
performance included Elongation, LeastAxisLength, 
SurfaceVolumeRatio, LowGrayLevelZoneEmphasis for pre-contrast 
tumors, Maximum2DDiameterSlice, Kurtosis, and Minimum for 
pre-contrast lymph nodes. The Elongation indicates the extent to 
which the length of a volume is greater than its width (62). The 
LeastAxisLength represents the axis along which the object is least 
extended, and the SurfaceVolumeRatio indicates how similar the 
object is to a sphere, with a lower surface volume ratio indicating a 
spherical shape (62). The LowGrayLevelZoneEmphasis measures the 
distribution of lower gray-level zones, with higher values indicating a 
larger proportion of lower gray-level zones (62). The 
Maximum2DDiameterSlice represents the greatest Euclidean distance 
between surface mesh vertices in the row-column plane (62). Kurtosis 
measures the extent to which the intensity distribution peaks, with the 
minimum representing the lowest intensity present in an object (62). 
According to these features, spindle cell sarcomas were longer, larger 
in size, and less sphere-like. By contrast, adenocarcinomas were 
smaller, and lymphomas resembled spheres to a greater extent than 
other tumors. Although no significant differences were noted, spindle 
cell sarcomas had a lower proportion of low-gray-level zones. Spindle 
cell sarcomas are well known to be larger than other tumors, whereas 
adenocarcinomas are smaller (41). Although tumor size in 
conventional CT findings and radiomics features matched well, 
spindle cell sarcomas showed a lower proportion of low-gray level 
zones, which was unexpected because spindle cell sarcomas tend to 
exhibit a large cystic portion (41). Such a disparity May be due to the 
difference between the low gray level that the radiologist perceives and 
that distinguished by radiomics. Lymph node size was larger in 
lymphomas and smaller in spindle cell sarcomas. Lymph nodes in 
lymphoma displayed a more peaked distribution, whereas in spindle 
cell sarcoma, they exhibited a flatter peak. The minimum value was 
higher for adenocarcinomas. Intestinal lymphoma often shows 
prominent lymph node metastases with an enlarged size, and this 
characteristic was represented in radiomics. The higher kurtosis of 
lymph nodes in lymphoma indicated that more pixels were close to 
the mean, which May reflect the homogenous attenuation of lymph 
nodes in lymphoma. The radiomics features of lymph nodes in spindle 
cell sarcomas are cumbersome to interpret because most mesenteric 
lymph nodes in spindle cell sarcomas did not show lymphadenopathy. 
These lymph nodes could represent the radiomics features of normal 
mesenteric lymph nodes rather than the metastatic lymph nodes of 
spindle cell sarcoma.

Commonly selected features in the PTLN clinical-radiomics 
model with the best performance included LeastAxisLength, 
SurfaceVolumeRatio, Kurtosis for post-contrast tumors and 
Maximum2DDiameterSlice, and InterquartileRange for post-contrast 
lymph nodes. InterquartileRange represents the spread of the middle 
half of the data, and the higher value indicates that the central data 
portion is spread further (62). According to these features, spindle cell 
sarcomas had a larger size, whereas adenocarcinomas have a smaller 
size than other tumors. Spindle cell sarcomas were less spherical, 
whereas lymphomas were more similar to a sphere. Although not 
statistically significant, spindle cell sarcomas showed higher kurtosis 
than lymphomas. This contrasts with conventional CT interpretations 
because lymphomas generally show homogenous enhancement, 
whereas spindle cell sarcomas exhibit heterogeneous enhancement 
(41). Lymph nodes in lymphomas were larger and had smaller 
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interquartile ranges than those in other tumors. The smaller 
interquartile range could be attributed to homogenous lymph nodes, 
because the central pixel portion was less spread apart. Similar to the 
PTLN model, radiomics features in the lymph nodes of spindle cell 
sarcoma should be  interpreted with caution because these lymph 
nodes could represent normal rather than metastatic lymph nodes of 
spindle cell sarcoma.

Growth pattern, obstruction, and fat stranding were selected as 
features in the PTLN clinical radiomics model with the best 
performance. Statistically, the three tumors exhibited different 
growth patterns. Adenocarcinomas showed a mixed pattern, whereas 
lymphomas exhibited a concentric pattern. In most cases, spindle 
cell sarcomas demonstrated an eccentric pattern. Obstruction was 
less likely to occur in lymphoma and spindle cell sarcomas. Fat 
stranding was more likely to occur in adenocarcinomas. Tumor 
growth patterns and the presence or absence of obstruction are key 
characteristics of differentiating intestinal tumors; therefore, it is not 
surprising that the radiomics model utilized such findings for model 
building (41, 42). Fat stranding was an unexpected selection because 
previous studies reported a low prevalence of adenocarcinoma (41, 
42). However, in this study, the prevalence of adenocarcinoma was 
higher than that reported in previous studies, which May explain 
why fat stranding was selected for the PTLN clinical-
radiomics model.

This study has few limitations. These include the small number 
of tumors for radiomics model building, absence of histopathologic 
examination of mesenteric lymph nodes for definitive diagnosis, 
possibility of mesenteric lymph nodes representing normal lymph 
nodes instead of metastatic lymph nodes of spindle cell sarcoma, 
and subjectivity of interpretation of tumor radiologic findings. The 
amount of data is a critical factor in radiomics model building, and 
42 cases May be  insufficient for adequate model development. 
Further inclusion of intestinal tumors would improve the radiomics 
model reliability. Additionally, although lymph nodes assessed for 
lymphadenopathy were deemed likely to be metastases of primary 
intestinal tumors, they were not definitively diagnosed as 
metastases of intestinal tumors via histopathological examination. 
Some cases May have involved reactive lymphadenopathy, and the 
radiomic features of such lymph nodes May have not reflected the 
intestinal tumor type. In addition, most mesenteric lymph nodes 
in spindle cell sarcomas did not exhibit lymphadenopathy. 
Therefore, it was difficult to interpret the lymph node radiomics 
features in spindle cell sarcoma. Furthermore, due to the 
retrospective nature and varying patient weights, CT acquisition 
parameters and time required for contrast administration 
completion were not harmonized. Contrast enhancement intensity 
would directly affect the HU, therefore impacting radiomics feature 
analysis. Lastly, the radiologic assessment incorporated into PTLN 
clinical radiomics was subjective and could differ depending on 
the radiologist.

In conclusion, this study demonstrated that the clinical SVM 
radiomics model of BC16 in post-contrast CT with segmented tumors 
and mesenteric lymph nodes, but without intraluminal gas, showed 
the best performance. The inclusion of mesenteric lymph nodes and 
radiologic findings greatly enhanced the performance of radiomics 
models. Therefore, the incorporation of mesenteric lymph node 
segmentation and radiologic findings to build a PTLN clinical-
radiomics model is recommended for better model performance.
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