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Unconventional protein feeds, characterized by low nutritional value, high 
variability, and poor palatability, have limited their application in swine production. 
Fermentation technology holds the key to addressing these shortcomings. 
Given the ban on antibiotics in China, the inferior quality of imported pig 
breeds, and long-term dependence on imported soybean, the prospects for 
fermented unconventional protein feeds are promising. This paper delves 
into the common types of fermented unconventional protein feeds, factors 
influencing the fermentation process, the mechanisms by which they enhance 
swine health, and the challenges and prospects of fermented feeds, offering 
theoretical insights for the future development of the feed industry.
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Introduction

China is the largest pork producer globally and pigs hold a significant position in the 
national economy (1). An ancient Chinese saying, “Pigs and grain ensure the world’s peace,” 
underscores the importance of swine in China. However, the swine industry in China is 
currently facing several challenges, including the reliance on 90% imported foreign breeds, 
long-term dependency on imported soybean, and a government policy banning antibiotics. 
Most of the pigs raised in China are foreign breeds like “Duroc,” “Yorkshire,” and “Landrace,” 
which, despite their high reproductive rates and economic benefits, have inferior meat quality 
compared to indigenous Chinese breeds. The shortage of protein resources and the long-term 
reliance on imported soybean have limited the development of the livestock and aquaculture 
industries. In response, the Ministry of Agriculture and Rural Affairs of China formulated the 
“Plan for Reducing and Replacing Corn and Soybean Meal in Feed” in 2021, proposing 
comprehensive measures to explore new protein feed resources such as single-cell protein (2) 
and insect protein (3), thereby reducing dependence on imported soybeans. Intensive livestock 
production in China provides a high yield of pork to meet the food demands of the population, 
but it heavily relies on the extensive use of antibiotics. The use of antibiotics leads to the spread 
of antibiotic-resistant genes in the pig gut microbiota, which can be  transmitted to the 
environment and humans, causing antibiotic resistance in both animals and humans (4). In 
2019, the Ministry of Agriculture and Rural Affairs issued a notice to completely ban the use 
of antibiotics. In the face of the antibiotic ban, the Chinese feed industry needs excellent 
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alternatives, such as antimicrobial peptides (5, 6), essential oils, and 
other natural bioactive compounds (7), as well as prebiotics (8).

Facing these three challenges, which include long-term reliance 
on soybean imports, poor meat quality of foreign pig breeds, and 
prohibition of antibiotic use, fermented feed presents an effective 
solution. It offers numerous benefits, such as enhancing the nutritional 
value of unconventional feedstocks (9), boosting animal immune 
function (10), mitigating heat stress in animals (11), improving bone 
quality (12), reducing harmful gases in pig housing (13), promoting 
intestinal health (14), and elevating pork quality (15). To address the 
long-term reliance on imported soybean, developing alternative 
protein feed sources is crucial. Unconventional protein feed materials 
are diverse, agri-food waste originating in various industries can 
be  valorized for protein recovery and used in pig diets including 
shrimp meal, shrimp shell meal, crab meal, crab shell meal, meat and 
bone meal, meat meal, blood meal, fish meal, silkworm pupa meal 
(16). The most common unconventional protein feed resources 
include sesame meal, sunflower seed meal, and palm kernel meal, 
which are abundant in China, other countries or nearby production 
areas but generally suffer from poor palatability, low nutritional value, 
unbalanced nutrient composition, and the presence of various anti-
nutritional factors (17). These problems diminish the application of 
unconventional protein feed materials in pig production. Numerous 
studies have shown that fermentation can effectively address these 
problems (18). Thus, the use of fermented feed is an ideal path toward 
high-quality pork production in China (Figure 1).

Common types of fermented 
unconventional protein feeds

Protein feed is of paramount importance due to its significant role 
in the metabolic processes of animals (19). Fermented protein feeds 
are categorized into three types: plant-based, animal-based, and 
microbial protein feeds. High-quality conventional protein sources 
like soybean meal are characterized by a balanced amino acid profile 

and low fiber content (20). They also contain a wealth of nutrients and 
bioactive components such as polyphenols and phytoestrogens, which 
can enhance mitochondrial function and reduce oxidative stress in 
pigs (21). Soybean meal has become the critical source of plant protein 
for pigs. However, the scarcity of soybean meal resources directly leads 
to high production costs in the livestock industry. Thus, substituting 
soybean meal with unconventional protein feeds is an effective cost-
saving strategy. There are many processing technologies for developing 
unconventional protein feed resources, such as physical techniques 
(e.g., grinding, puffing), chemical treatment techniques (e.g., 
detoxification), and biotechnologies (e.g., enzymatic hydrolysis, 
microbial fermentation) to improve the palatability, digestibility, and 
storage stability of feed ingredients (22). Fermentation technology is 
relatively mild and highly effective, making it the primary choice for 
developing unconventional protein feed resources. The general 
outlook for the supply of the non-conventional products in China can 
be seen in Table 1. This article focuses exclusively on plant-based 
protein feeds and investigates representative unconventional 
raw materials.

Rapeseed meal

Rapeseed meal, a byproduct of oil extraction from rapeseed, 
contains a high crude protein content exceeding 35%. However, the 
presence of anti-nutritional factors such as glucosinolates, tannins, 
and phytic acid in rapeseed meal results in lower metabolizable energy 
and amino acid digestibility compared to soybean meal, and its high 
crude fiber content (23) limits its nutritional value in pig diets. 
Glucosinolates are a general term for glucose derivatives, and the 
content of glucosinolates in rapeseed meal is approximately 60 μmol/g 
(24). Glucosinolates can be  hydrolyzed by enzymes, and nitrile 
compounds are the most toxic class of substances in the degradation 
products of glucosinolates, which can cause liver and kidney damage 
in animals, and even death in severe cases (25). Glucosinolates and 
their degradation products can affect the absorption and utilization of 

FIGURE 1

The challenge for pig production and the advantages of fermented feed.
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nutrients in animals by reducing animal feed intake, damaging animal 
thyroid and visceral organs, and producing anti-nutritional effects 
(26). Various methods can eliminate anti-nutritional factors in 
rapeseed meal, including heat treatment and solvent extraction. 
However, these methods may degrade the protein quality and incur 
high costs (27). In contrast, fermentation is a cost-effective and milder 
approach that can effectively remove glucosinolates and other anti-
nutritional factors (28).

Among the anti-nutritional factors in rapeseed meal, tannins are 
generally considered unimportant. The tannins found in rapeseed 
meal are water-insoluble compounds located in the seed coat and have 
minimal impact on the nutritional value of the meal (29). In addition, 
moderate amounts of tannins can have beneficial effects on the 
productive performance and intestinal ecosystem of weaned piglets 
(30). Phytic acid, present at 4–6% in rapeseed meal, reduces the 
nutritional value of minerals such as zinc, calcium, and iron by 
binding with them, thus decreasing their bioavailability (31). 
Glucosinolates are the most toxic anti-nutritional factors in rapeseed 
meal, directly affecting animal thyroid function, reducing pig 
productivity, and consequently, pig immunity (32). Studies have 
shown that fermenting rapeseed meal with Lactobacillus acidophilus 
and Bacillus subtilis can reduce glucosinolate content from 36 μmol/g 
to 17 μmol/g (33). There are numerous reports on the degradation of 
phytic acid, detoxification of glucosinolates, and enhancement of the 
feed value of rapeseed meal through fermentation (34–36).

Cottonseed meal

Cottonseed meal, a byproduct of cottonseed oil extraction, is a 
protein feed resource with potential in China. It has a high crude 
protein content, approximately 44%. However, the presence of 
gossypol and low lysine levels (37) greatly limit its application in pig 
feed. Gossypol is the primary anti-nutritional factor in cottonseed 
meal, a natural phenolic compound derived from cotton, 
predominantly found in free and bound forms in the roots, stems, 
leaves, and seeds of cotton plants (38). It is noteworthy that bound 
gossypol exhibits non-toxic characteristics due to its limited 
absorption in the pig’s digestive tract, while free gossypol is primarily 
responsible for the anti-nutritional effects in cottonseed meal (39). 
Free gossypol can reduce the reproductive ability of male animals, 
while also decreasing the antioxidant capacity of animal livers, 
resulting in organ damage (38). Free gossypol forms chelates with 
proteins, amino acids, and phospholipids in cottonseed and cottonseed 
meal, especially binding easily with lysine, leading to a decrease in 
lysine utilization (40).

Fermentation can effectively reduce the levels of free gossypol in 
cottonseed meal. Researchers have identified a strain with high free 
gossypol removal and enzymatic activity, which achieved a 
degradation rate of 93.46% for free gossypol in fermented cottonseed 
meal. This strain was identified as B. subtilis (41). The microbial 
fermentation method not only removes free gossypol from cottonseed 
meal but also degrades large protein molecules, thereby enhancing the 
nutritional value and palatability of cotton meal (42). Therefore, 
biofermentation is a cost-effective, efficient, and safe detoxification 
approach. Various microbial strains, such as Saccharomyces cerevisiae, 
Monascus purpureus, B. subtilis, and Lactobacillus reuteri, have been 
utilized to detoxify free gossypol in cottonseed meal (43, 44).

Peanut meal

Peanut meal, a byproduct of dehulled peanuts after pre-pressing 
and solvent extraction for oil, is rich in bioactive substances such as 
peptides and polysaccharides. These components endow peanut meal 
with various biological functions, including antioxidant, 
hepatoprotective, immunomodulatory, hypolipidemic, and 
antimicrobial activities (45). It contains 47–55% protein, but it is 
deficient in essential amino acids like lysine and threonine (46). 
Compared to soybean meal, peanut meal has a higher energy content, 
but its rough texture and poor taste make it less suitable for human 
consumption and animal feed. Additionally, it is susceptible to mold 
contamination (47).

Fermentation of peanut meal can enhance its nutritional content 
by increasing the levels of small molecule proteins, essential amino 
acids, and total acids, as well as producing growth factors (48). This 
process not only improves the nutritional quality but also removes 
anti-nutritional factors and, most importantly, detoxifies mycotoxins. 
The anti-nutritional factors present in peanut meal include phytic 
acid, trypsin inhibitors, lectins, and goitrin (49). Phytic acid, with a 
content of approximately 1.5%, is a major factor affecting the 
nutritional value of peanut meal (50). Phytic acid is highly acidic and 
itself non-toxic or of low toxicity, its strong chelating property reduces 
the bioavailability of various minerals such as iron, zinc, and calcium 
(51). Research has identified a strain of Zygosaccharomyces rouxii from 
fermented soy sauce that, when used in aerobic solid-state 
fermentation of peanut meal, demonstrated a detoxification rate of up 
to 97% for aflatoxin B1 (52). Additionally, the use of Bacillus 
licheniformis in fermenting peanut meal has been shown to increase 
not only the content of organic acids and other nutritional indicators 
but also the antioxidant activity and the balance of amino acids (53). 
Current research on fermented peanut meal is primarily focused on 
the detoxification of mycotoxins (54).

Palm kernel meal

Palm kernel meal, a byproduct of palm kernel oil extraction, is 
characterized by its abundant availability, high nutritional value of 
protein, low cost, and relatively low content of anti-nutritional factors 
(55). The protein content of palm kernel meal typically ranges from 
12 to 21%, with 50.3% carbohydrates and 16.7% crude fiber (56). 
Although its protein content is lower compared to high-quality 
protein sources like soybean meal, palm kernel meal is economically 

TABLE 1 The general outlook for the supply of non-conventional 
products in China.

Material Annual Production

Cottonseed meal 2022 4.093 million tons

Sunflower seed meal 2022 2.3 million tons

Rapeseed meal 2023 10.8 million tons

Peanut meal 2020 4.138 million tons

Peanut meal 2021 4.309 million tons

Peanut meal 2022 5.5 million tons
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priced, making it as an ideal alternative for soybean meal. Additionally, 
palm kernel meal has a high arginine content but low tryptophan 
levels. When the arginine content in feed significantly exceeds that of 
other amino acids, it can inhibit the digestibility of lysine. Therefore, 
supplementing feed with adequate lysine can help balance the feed 
formulation (57).

The feeding limitations of palm kernel meal are primarily due to 
the presence of β-mannans and fiber content. β-mannans are a type of 
arabinose polymer with β branches, which is not easily degraded in 
the animal digestive tract. It is partially soluble in water, forming a 
viscous substance that increases the viscosity of chyme, thereby 
hindering the digestion and absorption of nutrients (58). Palm kernel 
meal has a high crude fiber content, which leads to poor palatability 
of feed, resulting in reduced feed intake and metabolic capacity in 
animals, affecting the growth rate of animals, and is not suitable for 
formulating diets for piglets (59). β-mannans and fiber content are 
anti-nutritional factors that can be degraded through steam flashing 
pretreatment, multi-enzyme treatment, and microbial fermentation 
(60). Microbial fermentation is a common method used to reduce 
anti-nutritional factors and increase the utilization rate of palm kernel 
meal. Fermented palm kernel meal, obtained through microbial 
fermentation, can increase protein contents and decrease crude fiber 
and β-mannan content, thereby enhancing the benefits of animal 
husbandry (61). The high crude fiber content in palm kernel meal 
leads to poor palatability, mainly due to its high content of non-starch 
polysaccharides, which include 78% β-mannans, 12% cellulose, and 
3% xylan. Additionally, palm kernel meal contains anti-nutritional 
factors such as galactomannan and mannan, which can increase the 
viscosity of intestinal contents and reduce digestibility (62). Mannans 
in palm kernel meal account for approximately 39% of the dry matter 
content, with a high content of β-branches that are highly crystalline, 
insoluble in water, and difficult for animals to digest and absorb (63, 
64). Since animals lack enzymes to break down non-starch 
polysaccharides (NSP), fermentation is an effective way to degrade 
NSP (17).

In addition to the aforementioned feed materials, there are also 
many unconventional protein feed resources that can be fermented to 
replace conventional ingredients, including kitchen waste, flaxseed 
cake, palm kernel meal, coconut cake, and single-cell protein sources 
such as yeast.

Factors affecting the fermentation 
process of unconventional protein 
feeds

Temperature

Quality of fermented feed is influenced by many factors, with the 
most common fermentation process control factors being temperature, 
duration, moisture, and inoculum volume. Among these influencing 
factors for specific substrates and microorganisms, temperature is the 
most critical factor (65). The growth and metabolism of 
microorganisms occur under the catalysis of multiple enzymes, with 
temperature being an essential condition for enzyme activity. The 
temperature factors in the fermentation of unconventional protein 
feeds under different substrates and microbial strains are detailed in 
Table 2.

Duration

Insufficient fermentation time may lead to failure to achieve the 
expected fermentation effect, while overly extended durations may 
result in excessive nutrient depletion and, in severe cases, autolysis of 
microorganisms, thereby increasing fermentation costs. The growth 
of microorganisms can be  divided into four phases: lag phase, 
exponential (log) growth phase, stationary phase, and death phase. 
Terminating the fermentation process during the stationary phase 
yields the highest microbial content in the final biofeed product (71). 
The duration factors in the fermentation of unconventional protein 
feeds with various substrates and microbial strains are detailed in 
Table 3.

Moisture

Water serves as the primary medium in fermentation, acting as 
both a solvent and a carrier. Insufficient moisture levels can inhibit the 
growth and reproduction of microorganisms, while excessive moisture 
can lead to difficulties in heat dissipation, causing excessively high 
temperatures within the biomass, which may result in the death of 
microbial colonies (72). The moisture content of unconventional 
protein feed fermented with different substrates and different strains 
is shown in Table 4.

Inoculum volume

Regarding the volume of microbial inoculum, in the case of 
aerobic fermentation, an excessively high inoculum volume may 
increase oxygen consumption, leading to a relative deficiency of 
oxygen supply. This can affect the normal growth and metabolism of 
microorganisms, resulting in waste of materials. Conversely, an 
insufficient inoculum volume can slow down microbial growth and 
reduce fermentation efficiency (73, 74). The inoculum volume factors 
in the fermentation of unconventional protein feeds with various 
substrates and microbial strains are detailed in Table 5.

Mechanisms of action of fermented 
unconventional protein feeds

Growth performance

Growth performance is a critical indicator for assessing the quality 
of fermented feeds. Numerous studies have demonstrated that 
fermented unconventional protein feeds can enhance the growth 
performance of pigs (18, 31, 36). The mechanism by which fermented 
unconventional protein feeds improve pig growth performance may 
be  attributed to their ability to increase feed intake and promote 
digestion and absorption.

The enhancement of feed intake in pigs by fermented 
unconventional protein feeds can be attributed to the production of 
organic acids and other appetite-stimulating substances during 
fermentation, particularly lactic acid produced by lactic acid bacteria, 
which increases feed intake in pigs (75, 76). Once these organic acids 
enter the gut, they can regulate the central nervous system via the 
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gut-brain axis, thereby promoting appetite (9). Additionally, organic 
acids can acidify the gut and stimulate saliva secretion in pigs. The 
digestive enzymes in saliva, along with proteases produced by B. subtilis 
and other probiotics in the fermented feed, can break down the 
nutritional components in the feed, facilitating digestion and 
absorption (34). It is important to note that the choice of microbial 
strains is a key determinant of the quality of fermented feed. Different 
combinations of probiotics can produce varying proteolytic enzymes, 
affecting the absorption and digestion of nutrients (77). Therefore, from 
the perspective of growth performance, mixed-strain fermentation is 
more effective than single-strain fermentation. During fermentation, 
the increased activity of proteases and cellulases from probiotics leads 

to an increase in crude protein content and a decrease in ash, fiber, and 
dry matter, enhancing the nutritional value of protein feed and naturally 
improving pig growth performance (78). Unconventional protein feeds 
typically contain anti-nutritional factors such as non-starch 
polysaccharides, and fermentation can remove these factors and 
enhance nutritional value, thereby improving pig growth performance.

The digestive and absorptive efficacy of fermented feed is primarily 
due to the breakdown of large molecules into smaller ones during 
fermentation. The particle size and surface area of each substrate differ, 
affecting the permeability of microorganisms, with smaller molecules 
being more easily absorbed and digested by pigs. In the case of protein 
feeds, fermentation can increase the content of soluble protein and 

TABLE 2 Temperature factors in the fermentation of unconventional protein feeds with various substrates and microbial strains.

Substrate Strain Temperature Fermentation effect Reference

Rapeseed meal Bacillus subtilis 45°C Significant increase in acid detergent fiber (36)

Palm kernel meal
Photosynthetic bacteria, LAB, nitrogen-fixing 

bacteria, yeast and Bacillus sp.
30–31°C Reduction in ash content (61)

Cottonseed meal
Saccharomyces cerevisiae, Bacillus subtilis, 

Lactobacillus plantarum
30°C Decrease in pH (66)

Flaxseed meal Bacillus subtilis 37°C Increase in gross energy (67)

Feather Bacillus strains 37°C Increase in methionine (68)

Rapeseed meal Lactic acid bacteria 38°C Increase in villus height of weaned piglets (69)

Blood cells Aspergillus niger and Aspergillus oryzae 34°C Reduction in feed-to-gain ratio of weaned piglets (70)

TABLE 3 Duration factors in the fermentation of unconventional protein feeds with different substrates and microbial strains.

Substrate Strain Time Fermentation effect Reference

Rapeseed meal Bacillus subtilis (CICC21095) 48 h Significant increase in neutral detergent fiber (36)

Palm kernel meal
Photosynthetic bacteria, LAB, nitrogen-fixing 

bacteria, yeast and Bacillus sp.
30 days Increase in crude protein (61)

Cottonseed meal
Saccharomyces cerevisiae, Bacillus subtilis, and 

Lactobacillus plantarum
7 days Increase in lactic acid bacteria (66)

Flaxseed meal Bacillus subtilis 14 days Decrease in crude fat (67)

Feather Bacillus strains 2 days Increase in lysine (68)

Rapeseed meal Lactic acid bacteria 4 days Increase in weaning weight of piglets (69)

Blood cells Aspergillus niger and Aspergillus oryzae 116 h Increase in average daily gain (ADG) of weaned piglets (66)

TABLE 4 Factors of moisture in the fermentation of unconventional protein feeds with different substrates and microbial strains.

Substrate Strain Moisture Fermentation effect Reference

Rapeseed meal Bacillus subtilis Material to water ratio of 1:0.9 Significant increase in crude protein (36)

Flaxseed meal Bacillus subtilis Material to water ratio of 1:0.6 Decrease in crude ash (67)

Feather Bacillus strains Material to water ratio of 1:1 Increase in crude protein (68)

TABLE 5 Factors of inoculum volume in the fermentation of unconventional protein feeds with different substrates and microbial strains.

Substrate Strain Inoculation amount Fermentation effect Reference

Feather Bacillus strains 1.0 × 106 CFU/g Increase in IgA levels of fattening pigs (68)

Palm kernel 

expeller

Rhizopus oligosporus 1.0 × 106 spores per mL Under this inoculation condition, the biomass of black 

soldier fly larvae increased by 34%

(60)

Peanut meal Bacillus licheniformis 1.0 × 109 CFU/mL Increase in the in vitro digestibility rate of peanut meal (53)

Peanut meal Zygosaccharomyces rouxii 1.0 × 109 CFU/mL Significant decrease in aflatoxin B1 (52)
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produce new peptides smaller than 25 kDa. It also breaks down large 
protein molecules into fragments with folded and porous surface 
structures, reducing the hydrophobicity and antigenicity of feed 
ingredients, thereby improving the properties of protein in the feed (79). 
Since young animals have underdeveloped digestive organs, the use of 
fermented feed can disrupt the physical structure of the feed. Therefore, 
the promotional effect of fermented feed on the growth performance and 
nutrient utilization rate in young animals is more pronounced (80, 81).

Immune function

Immune function plays a crucial role in pigs, particularly in weaned 
piglets, who are prone to diarrhea. Influencing factors such as stress 
from environmental changes, loss of maternal antibodies from sow’s 
milk, immature immune systems, and an underdeveloped intestinal 
structure contribute to post-weaning diarrhea and other health issues 
(82). Weaning stress leads to poor nutrient absorption and reduced net 
absorption of electrolytes and fluids in the gut, resulting in piglet 
diarrhea (83). Diarrhea can cause increasing mortality of piglets and 
lead to a huge economic losses. Therefore, enhancing the immune 
function of pigs is essential. Many manufacturers use zinc oxide to 
prevent diarrhea in piglets, but most of the zinc oxide in feed is excreted 
rather than metabolized, leading to high concentrations of zinc in feces 
and causing environmental pollution with heavy metals (84).

Fermented feed can also improve the immune function of pigs at 
different stages, effectively preventing diarrhea in piglets. The 
mechanism behind this is the action of probiotics. Ideal probiotics 
used in fermentation should be resistant to gastric acid and bile salts, 
have the ability to colonize the gut, and possess the capability to 
combat pathogenic microorganisms (85). Probiotics can produce 
bacteriocins that inhibit the growth of harmful bacteria, activate pig 
macrophages, and promote the secretion of pig immunoglobulins and 
immune factors, such as interleukin IL-6, IL-8, tumor necrosis factor, 
interferons, etc., thereby enhancing the animal’s immune system. 
Moreover, a rich population of beneficial bacteria in the gut, along 
with their metabolites (lactic acid, succinic acid, short-chain fatty 
acids, etc.), provides an acidic environment that prevents the 
colonization of harmful microorganisms like E. coli and Salmonella. 
This also supplies an increased energy source for the gastrointestinal 
epithelium, promotes the development of intestinal villi, and 
strengthens the gut barrier function (86).

Intestinal health

Intestinal health in pigs is closely intertwined with immune 
function, given that the gut is the largest immune organ in mammals 
and often referred to as the body’s “second brain” (87). For instance, 
immune responses during the weaning period in piglets can influence 
intestinal inflammation (88). As previously mentioned, probiotics, 
when consumed in adequate amounts, are live microorganisms that 
confer health benefits by inhibiting or eliminating pathogenic bacteria 
in the gut, strengthening the intestinal epithelial barrier, and 
modulating host immune responses (89). The intestinal epithelial 
barrier consists of a layer of epithelial cells that form tight structures 
through interactions of surface proteins, creating a barrier that blocks 
harmful substances and regulates the transport of nutrients. This 

barrier prevents the invasion of pathogenic microorganisms and food 
antigens, thereby maintaining consistent intestinal homeostasis (90).

Diarrhea is a prominent symptom of intestinal dysfunction, often 
reflecting the gut’s inability to maintain water and electrolyte balance. 
Weaning stress in piglets can lead to poor nutrient absorption and 
reduced net absorption of electrolytes and fluids in the gut, resulting in 
diarrhea (82). Diarrhea in weaned piglets is a significant concern in the 
livestock industry. Some solutions, such as porcine plasma powder, have 
been proposed. This product helps maintain intestinal barrier function 
and reduce gut inflammation when piglets transition from liquid milk 
to solid feed (91). An alternative, cost-effective solution is the 
fermentation of unconventional protein sources. Diarrhea in piglets has 
a multifactorial etiology, influenced by physiological, environmental, 
and management factors. The most common causes are pathogens, 
including bacteria like E. coli and Salmonella, viruses such as porcine 
epidemic diarrhea virus (PEDV), and parasites like nematodes and 
protozoa. A low pH value, an important quality indicator of fermented 
feed, helps inhibit the growth of harmful microorganisms and prevent 
spoilage (78). Probiotics from fermentation can suppress the 
proliferation of harmful bacteria by acidifying the gut environment and 
lowering the pH. Amino acids, in addition to serving as substrates for 
protein synthesis, also provide various beneficial effects for piglets, 
including maintaining proper intestinal integrity, permeability, and 
epithelial cell renewal, reducing morphological damage, and mitigating 
inflammation and oxidative stress (92). However, a high protein content 
in post-weaning piglet feed can increase the incidence of diarrhea, as it 
may active the allergic reactions and gut microbiota imbalance, with 
undigested proteins potentially turning into toxic substances in the 
hindgut (93). Fermentation reduces anti-nutritional factors and 
produces small molecular proteins like soluble proteins, improving 
amino acid digestibility and effectively preventing diarrhea (20). 
Insufficient fat absorption in weaned piglets can also lead to diarrhea. 
Factors such as carbon chain length and the ratio of unsaturated to 
saturated fatty acids can affect the abundance of bacteria in the piglet 
gut, potentially causing insufficient fat absorption and exacerbating 
diarrhea, as well as slowing down animal growth (94). Probiotics can 
regulate the absorption and metabolism of fatty acids in piglets. 
Fermentation can break down long-chain fatty acids into short-chain 
fatty acids, reducing carbon chain length and thus improving the 
utilization rate of fatty acid absorption (95). Studies have shown that 
feeding piglets with B. licheniformis fermented feed can have similar 
effects to antibiotic treatment in alleviating diarrhea (96).

Intestinal health in sows is a critical issue in the swine industry 
that should not be overlooked, as the gut microbiota is linked to the 
reproductive capacity of pregnant sows (97). The maternal gut 
microbiota can also be transmitted to offspring via the placenta or 
milk (98), thereby affecting the intestinal health of piglets. Variations 
in dietary nutrients can alter the composition and function of the gut 
microbiota in animals (99), which in turn is susceptible to temperature 
fluctuations (100). Lactation in sows is a period of high metabolic 
load, making them more sensitive to environmental temperatures. 
Sows subjected to heat stress often reduce their feed intake, leading to 
negative energy balance, loss of body condition, and reproductive 
issues such as anestrus, extended weaning-to-estrus interval, reduced 
farrowing rate, decreased litter size, and lowered milk production 
(101). These factors can negatively impact the growth and weaning 
weight of nursing piglets. To address heat stress problems in sows, 
plant extracts and fermented feed are proposed as the green and safe 
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methods (102). Fermented feed can mitigate the problems caused by 
heat stress by modulating the intestinal health of sows. Short-chain 
fatty acids (SCFAs) can provide about 15% of the maintenance energy 
requirements for growing pigs and up to 30% for pregnant sows (103, 
104). The fermentation of dietary carbohydrates primarily produces 
SCFAs (acetic, propionic, and butyric acids) and lactic acid as the 
main metabolic products, depending on the fermentable substrates 
and microbial ecology available in the gut (105). By altering the 
substrate entering the colon, the composition of SCFAs produced by 
the gut can be  regulated. Fermentation processing can lead to 
increased production of SCFAs in the gut. An increase in SCFA 
concentrations, particularly butyric acid, improves intestinal mucosal 
health and the immune system in pigs (106). Therefore, fermented 
feed has a vital positive impact on the intestinal health of sows.

Meat quality

The demand from Chinese livestock enterprises has primarily 
focused on foreign pig breeds like Duroc, Yorkshire, and Landrace due 
to their high reproductive performance and good economic benefits. 
However, compared to local pig breeds, the meat quality of these 
foreign white pigs is inferior, struggling to meet the evolving Chinese 
consumer demand from “achieving adequate” to “eating well” (107). 
Feeding fermented feed can effectively improve the meat quality of 
both pork and chicken, thus satisfying the current consumer demand 
for high-quality meat (81, 108, 109).

The mechanisms by which fermented unconventional protein feed 
improves pork quality include, but are not limited to, the following 
three points:

 1 Fermented feed enhances pork quality by improving the 
antioxidant capacity in pigs. Studies have shown that an 
increase in the proportion of monounsaturated fatty acids and 
a decrease in polyunsaturated fatty acids in pork are positively 
correlated with the improvement of antioxidant capacity (110). 
There are numerous reports on the improvement of antioxidant 
capacity in pigs by fermented feed (14, 34, 96, 98), mainly due 
to the presence of probiotics that enhance antioxidant functions 
(111), thereby increasing the tenderness of pork.

 2 Fermented feed can lower the pH value in the pig’s digestive 
tract, which in turn can reduce the pH of pork. The pH value 
of pork affects its water-holding capacity and meat color; a 
higher pH may lead to lighter meat color and increased water 
loss. The pH value of pork is related to the rate and amount of 
lactic acid formation in the muscle post-slaughter (112). The 
use of fermented feed can improve meat quality by producing 
lactic acid, butyric acid, and other substances.

 3 The quality of pork is regulated by the gut microbiota (113), 
and fermented feed can improve gut health (14, 78), thereby 
regulating the quality of pork.

Challenges and prospects

Despite the numerous advantages of fermented unconventional 
protein feeds, several challenges remain. First, contamination by 
adventitious microorganisms during the fermentation process is a 

concern; contamination can lead to the scrapping of a batch of feed, 
resulting in economic losses. The complexity of microorganisms may 
result in the production of toxic metabolites during fermentation, 
which can adversely affect livestock and poultry. Mycotoxins are toxic 
secondary metabolites produced by fungi during their growth and 
metabolism processes (48). For example, Aspergillus flavus produces 
aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) after oxidative stress 
stimulation from the external environment, while Fusarium produces 
zearalenone (ZEA) (114). Mold contamination in fermented feed 
mainly comes from secondary fermentation of feed during the 
retrieval process. The contamination details usually involve air coming 
into contact with the outer surface of the feed during retrieval, 
entering the feed, causing suppressed aerobic microorganisms (molds 
and yeasts, etc.) to revive, reproduce, and proliferate, with the 
temperature in the environment rising, further promoting microbial 
growth, accelerating feed decay (115). Moldy fermented feed often 
emits a musty odor, affecting animals’ feed intake, while molds 
consume valuable feed nutrients such as vitamins and amino acids, 
converting energy into water and CO2. Molds also secrete enzymes 
that can break down feed, significantly reducing its nutritional value. 
The quality of protein in fermented feed decreases, especially with a 
noticeable decrease in arginine and lysine content (45). Furthermore, 
mycotoxins can disrupt the physiological function of animals’ 
digestive tract, affecting the digestion and absorption of nutrients in 
the gastrointestinal tract, reducing animals’ productivity, endangering 
their health, especially liver function (52).

What’s more, the challenges of fermented feed include: Second, 
the safety of microbial strains is crucial, and the sourcing of strains 
must adhere to standardized protocols. Third, while fermented 
unconventional protein feeds can enhance nutritional value, the 
specific mechanisms are not yet fully understood. Fourth, there is a 
notion that mixed-strain fermentation may be more effective than 
single-strain fermentation, making the selection and identification of 
dominant strains in mixed fermentation particularly important; 
however, data in this area are scarce. Fifth, the issue of pelletization is 
continually debated; pelletization may kill probiotics due to high 
temperatures, while not pelletizing can lead to excessive moisture 
affecting feed transportation and nutrient utilization in animals (7). 
Sixth, improper storage methods can cause feed spoilage and 
increase costs.

Although fermentation of unconventional protein feeds faces 
many challenges, there are still several promising trends are worth to 
exploring in the future. Firstly, the development of a phased 
fermentation process that combines anaerobic and aerobic stages is an 
emerging trend. Secondly, fermented unconventional protein feeds 
play a significant role in the effective utilization of agricultural waste, 
greatly benefiting the rational use and development of regional feed 
resources. The question of how to develop regional feeds deserves 
attention. Thirdly, the use of liquid fermented feed signifies a 
transformation and upgrading in the pig farming industry. However, 
the practice of liquid feeding is still in its infancy, particularly 
regarding cost issues, making it an excellent subject for research. 
Fourthly, establishing a nutritional database for fermented feeds is 
particularly important and requires substantial investment in human 
and material resources to advance this work. Fifthly, replacing single 
fermented feeds with complete fermented feeds or concentrated 
fermented feeds is a trend that enterprises and research institutions 
should pay attention to. Lastly, strengthening scientific and 
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technological innovation, precisely selecting efficient fermentation 
strains, and breeding strains through intelligent technology are 
essential. The development of fermented feeds requires not only the 
participation of professionals in animal nutrition and the fermentation 
industry but also the involvement of elites from other industries, such 
as artificial intelligence.

Conclusion

Confronted with the challenges of soybean import dependency, 
inferior meat quality of imported pig breeds, and the prohibition of 
antibiotic use by the Ministry of Agriculture and Rural Affairs, 
fermentation technology emerges as a breakthrough for these issues. 
The rational development of unconventional protein feeds is crucial, 
and the fermentation of these raw materials holds broad application 
prospects. This paper discusses the common types of unconventional 
protein feeds, the fermentation processes of unconventional protein 
feeds, and the mechanisms by which fermented unconventional 
protein feeds enhance pig growth performance, immune function, and 
intestinal health. It summarizes the challenges faced and future trends, 
providing a theoretical basis for the development of protein 
feed resources.
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