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sampling holds potential for 
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animals - a pilot study in South 
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Antimicrobial resistance (AMR) poses a significant global One Health challenge 
that causes increased mortality and a high financial burden. Animal production 
contributes to AMR, as more than half of antimicrobials are used in food-producing 
animals globally. There is a growing body of literature on AMR in food-producing 
animals in African countries, but the surveillance practices across countries vary 
considerably. This pilot study aims to explore the potential of wastewater and 
environmental surveillance (WES) of AMR and its extension to the veterinary field. 
Floor drainage swab (n  =  18, 3/abattoir) and wastewater (n  =  16, 2-3/abattoir) 
samples were collected from six South African abattoirs that handle various animal 
species, including cattle, sheep, pig, and poultry. The samples were tested for 
Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-producing 
Enterobacterales, Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-
resistant Enterococci (VRE), and Candida auris by using selective culturing and 
MALDI-TOF MS identification. The phenotype of all presumptive ESBL-producing 
Escherichia coli (n  =  60) and Klebsiella pneumoniae (n  =  24) isolates was confirmed 
with a disk diffusion test, and a subset (15 and 6 isolates, respectively), were 
further characterized by whole-genome sequencing. In total, 314 isolates (0–12 
isolates/sample) withstood MALDI-TOF MS, from which 37 species were identified, 
E. coli and K. pneumoniae among the most abundant. Most E. coli (n  =  48/60; 
80%) and all K. pneumoniae isolates were recovered from the floor drainage 
samples, while 21 presumptive carbapenem-resistant Acinetobacter spp. isolates 
were isolated equally from floor drainage and wastewater samples. MRSA, VRE, 
or C. auris were not found. All characterized E. coli and K. pneumoniae isolates 
represented ESBL-phenotype. Genomic analyses revealed multiple sequence 
types (ST) of E. coli (n  =  10) and K. pneumoniae (n  =  5), including STs associated 
with food-producing animals globally, such as E. coli ST48 and ST10 and K. 
pneumoniae ST101. Common beta-lactamases linked to food-producing animals, 
such as blaCTX-M-55 and blaCTX-M-15, were detected. The presence of food-production-
animal-associated ESBL-gene-carrying E. coli and K. pneumoniae in an abattoir 
environment and wastewater indicates the potential of WES in the surveillance 
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of AMR in food-producing animals. Furthermore, the results of this pilot study 
encourage studying the topic further with refined methodologies.

KEYWORDS

antimicrobial resistance, AMR surveillance, wastewater surveillance, food-producing 
animals, ESBL-producing enterobacterales

1 Introduction

Antimicrobial resistance (AMR) is a significant global health 
concern, threatening humans and animals. Multidrug-resistant 
bacteria can cause hard-to-treat infections and increased mortality 
due to limited treatment options (1). Furthermore, multidrug-resistant 
bacteria have been associated with a substantial economic burden 
because of high healthcare costs caused by prolonged hospital stays, 
usage of expensive last-resort antimicrobials, and resource-consuming 
screening and infection prevention measures (2, 3). In recent years, 
the impact of AMR has become more pronounced, with an estimated 
4.95 million deaths attributed to AMR in 2019 worldwide (4). The 
global burden of AMR is not evenly distributed; it will be particularly 
high in Africa, where the amount of annual AMR-attributable deaths 
is estimated to rise to 4.15 million by 2050 (4, 5).

The overuse and misuse of antimicrobials are the main drivers of 
AMR (1). Notably, the intensive use of antimicrobials in food-
producing animals is of particular concern, as more than half of all 
antimicrobials globally are used in this sector (6). Furthermore, it is 
common to compensate for poor sanitation or lack of infection 
prevention and control measures by using antimicrobials (6). In many 
African countries, antimicrobial usage in food-producing animals is 
high, especially considering tetracyclines, aminoglycosides, and 
penicillin (7). Antimicrobials are used for clinical treatment, 
prophylaxis, and, in some countries, also for growth promotion. 
Furthermore, a significant proportion of antimicrobials are 
administered to food-producing animals by animal owners themselves, 
without proper veterinary supervision and control of the usage (7, 8).

The global emergence of AMR bacteria in animals, such as 
Extended-spectrum beta-lactamases (ESBL) carrying Enterobacterales, 
has been evident for years (9). The prevalence of multi-drug resistant 
E. coli in food-producing animals in South Africa is estimated to be high, 
but only a limited number of studies are available (7). While several 
African countries have taken steps to develop a national action plan for 
AMR (10), and research focusing on AMR in food-producing animals 
in African countries has become more commonplace, surveillance 
systems vary considerably between countries and remain scanty (7).

Implementation of AMR surveillance in the veterinary field – 
also in low-and middle-income countries (LMICs) – would provide 
important information regarding the global trends of AMR, guide 
the treatment choices, and help proactive intervention and 
management of AMR. The AMR surveillance system in food-
producing animals in the European Union (EU) is well-established 
and based on caecal samples collected in abattoirs (11). The 
geographical distribution of animals across the country encourages 
the centralization of surveillance efforts in abattoirs instead of farms. 
This reduces logistical challenges and enables the collection of an 
adequate sample size. Even when focusing the sampling process on 
abattoirs, obtaining samples from a large population remains 
laborious and resource-intensive. Wastewater-based surveillance 
offers a promising and resource-efficient approach for population-
level surveillance of AMR (12). Several studies have described 
antibiotic resistant bacteria in abattoir wastewater. However, the 
studies have focused on singular abattoirs, and there has been little 
to no remark on the surveillance potential of the samples as the focus 
has remained on the potential contamination risks that animal-origin 
wastewater can cause for the environment (13–15). Thus, wastewater 
as a population surveillance tool has been utilized mainly in human 
populations. Nevertheless, wastewater surveillance could offer a rapid 
and effective method for surveillance of AMR in food-producing 
animals by enabling the collection of samples without intervention 
to individual animals or carcasses and with minimal disturbance to 
the production line.

In this pilot study, we use a combination of selective culturing and 
molecular methods to study AMR microbes in floor drainages and 
wastewater of six South African abattoirs. We describe relevant AMR 
clones and genes in the abattoir environment and wastewater, known 
to be circulating in food-producing animals. Animals, particularly 
food-producing animals, play a significant part in the field of AMR, 
and new perspectives could help to improve global AMR surveillance 
in the veterinary sector. One of the main objectives of this study is to 
stimulate the discussion and increase research interest in wastewater 
and environmental surveillance (WES) of AMR and its extension to 
the veterinary field.

2 Materials and methods

2.1 Abattoirs

Six abattoirs located in the North West province of South Africa 
were included in the study. Two were cattle abattoirs (abattoirs 1 and 
2), two were mixed species abattoirs (cattle, sheep, pigs; abattoirs 3 
and 4), and two were poultry abattoirs (abattoirs 5 and 6) (Figure 1). 
All abattoirs source their animals from their own feedlots. Abattoir 1 

Abbreviations: AMR, Antimicrobial resistance; BPW, Buffered peptone water; ESBL, 

Extended-spectrum beta-lactamase; EU, European Union; EUCAST, European 

Committee of Antimicrobial Susceptibility Testing; LMICs, Low-and middle-income 

countries; MALDI-TOF MS, Matrix-assisted laser desorption ionization-time of 

flight mass spectrometry; MRSA, Methicillin-resistant Staphylococcus aureus; 

MLST, Multi-locus sequence types; ST, Sequence type; VRE, Vancomycin resistant 

Enterococcus; WES, Wastewater and environmental surveillance; WGS, Whole 

genome sequencing.
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also receives animals from farmers throughout the country, and 
abattoirs 3–6 from farmers across the North West Province of 
South Africa.

2.2 Sample collection, pre-handling, and 
shipping of the samples

Samples from the floor drainages (swabs, n = 18) and wastewater 
samples (n = 16) from the wastewater tanks were collected from each 
abattoir (Figure 1). All samples were obtained during one sampling 
day as follows.

In total, three swab (M40 Transystem Amies Agar Gel, Copan 
Diagnostics, Brescia, Italy) samples from three separate floor drainages 
and two to three grab samples of wastewater from the wastewater 
collection tank (333 mL each) were obtained from each abattoir 
during the sampling day. Samples were transported on ice to the 
Veterinary Public Health Laboratory, Faculty of Veterinary Science, 
University of Pretoria, Onderstepoort, South Africa. At the laboratory, 
swabs were aseptically enriched by incubation in 10 mL of Buffered 
Peptone Water (BPW) (Oxoid, Basingstoke, Hampshire, 
United Kingdom) at 37°C for 18–24 h. After incubation, the enriched 
samples were frozen at-70°C. Wastewater samples were pooled 
together at the laboratory and frozen at-70°C (Figure 1).

Frozen samples were packed on dry ice and air transported to 
the laboratory of the Food Hygiene and Environmental Health 
Department, Faculty of Veterinary Medicine, University of 

Helsinki, Finland, by a courier company (FedEx™). Samples were 
unpacked upon arrival and processed further within the same day.

2.3 Enrichment and culturing

The floor drainage samples were re-enriched by adding 1 mL 
of the sample into 9 mL of fresh BPW (Oxoid, Basingstoke, 
Hampshire, United  Kingdom) and incubated for 18–24 h at 
37°C. Wastewater samples were enriched by following the 
same protocol.

Five selective chromogenic agars were used for culturing of 
the samples: CHROMagar Orientation + ESBL-supplement 
(referred to as CHROMagar ESBL), CHROMagar mSuperCARBA, 
CHROMagar VRE, CHROMagar MRSA, and CHROMagar 
Candida Plus (CHROMagar, Paris, France). Bacteria belonging to 
ESKAPE-E (16) including, Enterococcus faecium, Methicillin-
resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter 
spp., and Escherichia coli, along with clinically relevant fungal 
pathogen Candida auris, were targeted from the selective 
agar plates.

All enriched samples (floor drainage samples and enriched 
wastewater) were spread on agar plates with a 10 μL loop. Raw, 
non-enriched wastewater samples were inoculated into 
CHROMagar ESBL, CHROMagar mSuperCARBA, and 
CHROMagar VRE (100 μL) or into CHROMagar MRSA and 

FIGURE 1

Illustrations of the sample collection and pre-handling of the samples. Arrows describing the workflow for floor drainage swab samples (green) and 
wastewater samples (pink). BPW, Buffered Peptone water. Figure created with BioRender.com.
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CHROMagar Candida Plus (333 μL). The culture of a larger volume 
(333 μL) on the latter two plates was based on previous experience. 
All plates were incubated at 37°C for 18–24 h, except the 
CHROMagar Candida Plus plates, which were incubated for up to 
72 h (Figure 2).

Single bacterial colonies were selected from each plate based 
on colony morphology according to the manufacturer’s 
instructions. Up to five colonies representing typical colony 
morphologies for each targeted microbe were collected from each 
selective agar. Each colony was subcultured and purified on the 
corresponding chromogenic agar using a 1 μL sterile loop and 
incubated aerobically at 37°C for 18–24 h (CHROMagar Candida 
Plus up to 72 h). Purified isolates were subcultured on bovine 
blood agar plates (Columbia Blood Agar Base, Oxoid Ltd., 
Basingstoke, United  Kingdom) and incubated aerobically for 
18–24 h at 37°C for further characterization (Figure 2).

2.4 Identification

Bacterial species were identified by Matrix-assisted laser 
desorption ionization-time of flight mass spectrometry (MALDI-TOF 

MS) based on the Bruker Microflex LT/SH (Version BDAL 2021–
05-26 T10:10:57.442) (Bruker Daltonics GmbH & Co. KG, Bremen, 
Germany). The criterion for MALDI-TOF MS bacterial identification 
was a score value of >2.0 which was considered high confidence, per 
the manufacturer’s instructions.

2.5 Antimicrobial susceptibility testing

The phenotype of all E. coli and K. pneumoniae isolates 
collected from CHROMagar ESBL was determined with a disk 
diffusion test according to the EUCAST (European Committee of 
Antimicrobial Susceptibility Testing) standard (17), with 
cefotaxime (5 μg) (Oxoid Ltd., Basingstoke, Hampshire, 
United Kingdom), ceftazidime (10 μg), cefoxitin (30 μg), cefepime 
(30 μg), and meropenem (10 μg) (Neo-Sensitabs, Rosco 
Diagnostica A/S, Taastrup, Denmark). The results were 
interpreted according to EUCAST epidemiological cut-off values 
(ECOFFs) (18). Synergism between third generation 
cephalosporins and clavulanic acid was also tested with a 
combination disk diffusion test, using cefotaxime 
30 μg + clavulanic acid 10 μg and ceftazidime 30 μg + clavulanic 

FIGURE 2

Illustrations of methodology used for bacterial isolation, identification, and characterization. Arrows describing the workflow for floor drainage swab 
samples (green), wastewater samples (pink), and bacterial isolates (gray). BPW, Buffered Peptone water. CHROMagar ESBL, CHROMagar Orientation + 
ESBL-supplement. MALDI-TOF MS, Matrix-assisted laser desorption ionization-time of flight mass spectrometry. Figure created with BioRender.com.
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acid 10 μg (Neo-Sensitabs, Rosco Diagnostica A/S, Taastrup, 
Denmark). E. coli ATCC 25922 was used as the quality 
control strain.

2.6 DNA extraction, whole genome 
sequencing (WGS), and bioinformatic 
analyses

A subset of E. coli (n = 15) and K. pneumoniae (n = 6) isolates 
from CHROMagar ESBL were subjected to whole genome 
sequencing (WGS) with the following criteria: 1 isolate of each 
species from each floor drainage and wastewater sample from 
each abattoir, where applicable. Strains were grown in Tryptone 
Soya Broth (Oxoid, Basingstoke, United Kingdom) at 37°C for 
16–18 h. DNA was extracted from cells harvested from 1 mL of 
culture by using QIAcube Connect instrument (QIAGEN, Hilden, 
Germany) with DNeasy Blood & Tissue kit (QIAGEN, Valencia, 
CA, United States). DNA quantity was measured using a Qubit 2.0 
fluorometer (Invitrogen, Life Technologies, Carlsbad, CA, 
United  States). The quality of DNA was assessed by using a 
NanoDrop ND-1000 spectrophotometer (Thermo Fischer 
Scientific, Wilmington, DE, United States) based on the 260/280 
ratio. Library preparation was performed with a NEBNext Ultra 
DNA Library Prep Kit for Illumina with 300 bp fragment length. 
Sequencing was performed with Illumina NovaSeq  6,000 
(outsourced to Novogene, Cambridge, United  Kingdom) with 
targeted genomic coverage of 100× and 2 × 150 bp read length.

All sequenced isolates were analyzed with Ridom SeqSphere+ 
software v7.7.5 (Ridom GmbH, Germany) (19). Quality analysis 
of the sequences was performed with FastQC v0.1.1.7 (20), and 
adapters were removed with Trimmomatic v0.36 (21). Raw reads 
were assembled with SKESA v2.3.0 using default settings (22). 
Quality trimming was performed with an average quality of ≥30 
and a window of 20 bases. Remapping and polishing were 
performed with the BWA-MEM mapping algorithm. Sequencing 
statistics are presented in Supplementary Table S1. Species 
identification was done with Mash Distance (23). Species of one 
isolate was confirmed with KmerFinder 3.2 (24–26) through the 
Center for Genomic Epidemiology web server (DTU, Denmark). 
Acquired AMR genes were identified from assembled genomes 
with NCBI AMRFinderPlus 3.2.3 (27), using 100% alignment 
and > 90% identity. ResFinder 4.5.0 was used through the Center 
for Genomic Epidemiology web server (DTU, Denmark) to 
determine the allelic variants of beta-lactamase genes (bla) (28, 
29). STs were analyzed by using multi-locus sequence typing 
(MLST) (30). The Warwick MLST scheme was chosen for E. coli 
isolates. E. coli isolates with novel STs were submitted to 
Enterobase (31). E. coli serotypes were identified with Center for 
Genomic Epidemiology SerotypeFinder (32) while virulence 
factors were searched for with VFDB (33). Plasmid replicons 
carried by the studied isolates were determined from assembled 
genomes with PladmidFinder 2.1 (29, 34), with an identity 
threshold of 95% and a minimum length of 60%. Phylogenetic 
analysis was conducted for all E. coli and K. pneumoniae isolates 
with core genome multilocus sequence typing (cgMLST) by 
comparing 2,513 and 2,358 alleles, pairwise ignoring missing 
values, respectively.

3 Results

3.1 Bacterial species identified in the 
abattoir floor drainage swabs, and 
wastewater and antimicrobial susceptibility

In total, 366 isolates were selected from the initial agar plates, with 
up to 12 isolates per sample. Among the isolates that withstood 
MALDI-TOF MS (n = 314/366), 286 were identified, revealing 37 
different bacterial species (Supplementary Table S2). Out of all 
identified species, E. coli (n = 60) and K. pneumoniae (n = 24) were the 
most abundant, both identified solely on CHROMagar 
ESBL. A. baumannii (n  = 16), Lysinibacillus xylanilyticus (n  = 22), 
Enterococcus gallinarum (n  = 22), and Myerozyma guilliermondii 
(n = 10) were the most abundant species identified on CHROMagar 
mSuperCARBA, CHROMagar MRSA, CHROMagar VRE, and 
CHROMagar CandidaPlus, respectively. MRSA, P. aeruginosa, 
Vancomycin-resistant Enterococcus (VRE), or C. auris were not 
identified. All identified species in different samples, abattoirs, and 
growth media are presented in Supplementary Table S2.

ESBL E. coli was detected in the floor drainage samples of five 
(83.3%) abattoirs, and in wastewater samples of two (33%) abattoirs, 
whereas K. pneumoniae was detected solely in the floor drainage 
samples of three (50%) abattoirs. Neither E. coli nor K. pneumoniae 
were detected in abattoir 4, which slaughters cattle, sheep, and pigs 
(Supplementary Table S2).

All E. coli (n = 60) and K. pneumoniae (n = 24) isolates exhibited 
resistance against cefotaxime and cefepime and were susceptible to 
cefoxitin, representing ESBL-phenotype. One E. coli isolate exhibited 
resistance against meropenem. Antimicrobial resistance profiles of the 
isolates are presented in Supplementary Table S3.

3.2 Multi-locus sequence types (MLST), 
antimicrobial resistance genes, 
phylogenetics, serotypes, and virulence 
factors

Ten different E. coli STs were identified. The most common E. coli 
STs were ST48 (n = 3/15, 20.0%) and ST14285 (n = 3/15, 20.0%). ST48 
was detected in three abattoirs, while ST14285 was detected in two 
abattoirs. Two of the isolates (n = 2/15, 13.3%) were ST1125, both 
detected in the same abattoir. The remaining STs, which included 
ST10, ST155, ST1688, ST349, ST58, ST7366, and ST9500 were 
represented by single isolates only. Furthermore, five K. pneumoniae 
STs were identified. The most common was ST661 (n = 2/6, 33.3%). 
Other STs (ST101, ST1271, ST2900, and ST551) were present in single 
isolates only (Figure 3).

The most common ESBL-genes among E. coli were blaCTX-M-55 
(n  = 9/15, 60.0%) and blaCTX-M-27 (n  = 3/15, 20.0%) while for 
K. pneumoniae, the most common ESBL-gene was blaCTX-M-15 (n = 3/6, 
50.0%). Two (n = 2/6, 33.3%) K. pneumoniae isolates possessed both 
blaCTX-M-14 and blaSHV-27 concurrently. ESBL-genes were not identified 
in one K. pneumoniae isolate. All isolates carried at least one other 
beta-lactamase gene, such as blaOXA-1 and blaEC. Additionally, isolates 
carried up to 11 AMR genes other than beta-lactamase. All 
K. pneumoniae isolates and nine (n  = 9/15, 60.0%) E. coli isolates 
harbored genes associated with tetracycline resistance (Figure 3). The 
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majority of the sequenced E. coli isolates (n = 12/15, 80.0%) and all 
K. pneumoniae isolates were multidrug resistant (i.e., possessed genes 
encoding resistance to three or more antimicrobial classes (35)). No 
colistin or carbapenem resistance encoding genes were identified 
(Figure 3).

A total of 12 E. coli serotypes were identified. The most common 
E. coli serotype was O21:H51 (n = 3/15, 20.0%), followed by O139:H19 
(n  = 2/15, 13.3%). All E. coli serotypes are presented in 
Supplementary Table S4. None of the E. coli isolates harbored genes 
associated with Shiga toxin-production (stx). All identified virulence 
genes are presented in Supplementary Table S4. Phylogenetic analysis 
revealed closely related strains (<10 allele difference (36)) for E. coli 
and K. pneumoniae. E. coli isolates with ST14285 originating from the 
floor drainage and wastewater samples of poultry abattoirs (abattoirs 
5 and 6) were closely related. Furthermore, two E. coli isolates with 
ST1125 originating from floor drainage samples of a cattle abattoir 
were closely related. For K. pneumoniae, two isolates with ST611 
originating from the poultry abattoirs (abattoirs 5 and 6) were closely 

related. Minimum spanning tree presents the allelic differences 
between the E. coli (Figure 4A) and K. pneumoniae isolates (Figure 4B).

All isolates, except one E. coli isolate, were harboring at least two 
plasmid replicons. The most common plasmid replicon was IncFII, 
carried by 14 E. coli (93.3%) isolates and five (83.3%) K. pneumoniae 
isolates. All identified plasmid replicons are presented in 
Supplementary Table S4.

4 Discussion

In this pilot study, we describe key AMR pathogens, including 
ESBL-producing E. coli and K. pneumoniae, in the floor drainage and 
wastewater samples of the studied abattoirs. ESBL E. coli was detected 
in cattle, sheep, pig, and poultry abattoirs. ESBL E. coli was more 
frequently detected in floor drainages than in wastewater samples and 
was observed in five abattoirs. On the other hand, ESBL K. pneumoniae 
was less frequent and detected only in floor drainage samples in three 

FIGURE 3

Sequence types (ST), beta-lactamase genes, and resistance genes other than beta-lactamases for the whole-genome sequenced isolates of 
(A) Escherichia coli (n  =  15) and (B) Klebsiella pneumoniae (n  =  6). Filled squares indicate the presence of the resistance gene. Abattoirs 1–6 indicated 
with number. Isolate ID, Isolate identification code. FD1–3, Floor drainage sample 1–3. WE, enriched wastewater sample. WW, wastewater sample. ST, 
sequence type. *Species confirmed with KmerFinder 3.2. **The allelic variants of beta-lactamase genes (bla) identified with ResFinder 4.5.0. iTOL 
(https://itol.embl.de/) and Inkscape 1.3.2 were used for data visualization.
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abattoirs that slaughtered cattle or poultry. A previous study reported 
that ESBL E. coli is more common than ESBL K. pneumoniae in cattle 
(37). However, current data on ESBL K. pneumoniae in food-
producing animals remains scarce and sporadic compared to the 
plethora of studies investigating the presence of ESBL E. coli in food-
producing animals in many countries (38–45). A larger sample size, 
accompanied by statistical analysis, would be  needed to 
comprehensively rule out coincidence and show whether E. coli is 
truly more frequent than K. pneumoniae in abattoirs.

STs and enzyme types detected in abattoir floor drainages and 
wastewater were similar to those described in food-producing 
animals in the literature (39–45). We identified a great diversity of 
STs, in accordance with previous studies showing high variability 
among ESBL-producing E. coli and K. pneumoniae (39, 42). Here, 
E. coli showed multiple STs, including ST48, ST10, ST155, and 
ST58. These STs have been previously reported in food-producing 
animals in several African countries, including South  Africa, 
where ESBL E. coli ST10 was observed in pigs (39–45). A 
proportion of the detected E. coli STs, including ST48, ST10, 

ST349, and ST58, has also been occasionally reported in humans 
(46–49). K. pneumoniae showed five STs, including ST101 and 
ST661. ST101 and ST661 are linked to human disease outbreaks 
(50) and have also been reported in food-producing animals in 
Europe (51).

Genes belonging to the CTX-M-group were the most common 
ESBLs in the abattoir samples, with blaCTX-M-55 being the most prevalent 
among E. coli isolates, observed across five abattoirs. Globally, blaCTX-

M-55 is the most common and widely distributed CTX-M-enzyme in 
E. coli isolates from food-producing animals (52). Previous studies 
have shown that the majority of ESBL E. coli isolated from dairy cattle 
in South Africa harbored CTX-M genes (53), but data on blaCTX-M-55 
from Africa, including South Africa, is scanty. However, blaCTX-M-55 has 
been reported in ESBL E. coli from cattle in Nigeria (40). Interestingly, 
we detected blaCTX-M-55 in E. coli ST10, ST48, and ST58, consistent with 
previous studies showing that blaCTX-M-55 is prevalent in clones 
associated with animals (52). Another prevalent ESBL gene in food-
producing animals is blaCTX-M-15 (40–42). In this study, blaCTX-M-15 was 
detected in an E. coli isolate from a cattle abattoir and in three 

FIGURE 4

A minimum spanning tree of core genome multilocus sequence typing (cgMLST) of (A) ESBL-producing Escherichia coli isolates (n  =  15) and 
(B) Klebsiella pneumoniae isolates (n  =  6) from abattoir floor drainages and wastewater. Each circle represents one or multiple identical sequences. The 
numbers between the circles indicates the allele differences. Colors indicate sequence type. Text inside the circles indicate the isolate identification 
number, and text and figure next to the circles indicate the abattoir, sample type, and animal species handled in the abattoir. Clusters are indicated with 
gray circles. cgMLST for Escherichia coli isolates was based on 2,513 columns, pairwise ignoring missing values. CgMLST for Klebsiella pneumoniae 
isolates was based on 2,365 columns, pairwise ignoring missing values. ST, sequence type.
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K. pneumoniae isolates originating from three abattoirs slaughtering 
cattle or poultry.

We detected genetically closely related bacterial strains (<10 allele 
difference (36)) between two poultry abattoirs. This observation 
suggests that abattoir samples mirror the microbiota of the food-
producing animals. In the pyramidal poultry production system, birds 
in multiple production-level farms originate from the same hatchery 
and parental flock (54). It has been shown that ESBL E. coli may 
transfer to the production-level birds from the parental flock or the 
hatchery environment, and as a result, birds in multiple production-
level farms can share similar microbiota (55, 56). As we did not collect 
samples simultaneously from the animals and abattoir environment 
and wastewater, we are not able to comprehensively prove that the 
isolates originated from the animals. However, it is difficult to 
constitute an alternative explanation for the clonality of the strains in 
two different abattoirs.

We recognize the various limitations of this pilot study. Here, 
simultaneous samples from the abattoirs and animals were not 
collected. Hence, we can only assume, but not conclusively prove, that 
the described isolates originated from the animals. Moreover, 
we identified species, such as Pseudomonas spp. and Vagococcus spp., 
that are less likely associated with the animals and more plausible with 
environmental sources. The fundamental challenge that wastewater 
surveillance studies still aim to answer is defining to what extent the 
samples represent the microbes originating from the studied host and 
how much noise microbes from the environment or sewage network 
biofilms are causing (57).

Revision and improvement of methodological factors are also 
necessary. Here, wastewater was collected as grab samples, whereas 
composite samples collected with passive collectors could be  less 
susceptible to the effects of changes in wastewater flow rates (58). 
Freezing the samples before culturing may have also influenced the 
bacterial composition. Hence, handling and analyzing the samples 
locally would reduce the potential effects of pre-handling, freezing, 
and shipping. The enrichment protocols could be further optimized 
for each targeted microbe. For example, this study used BPW, whereas, 
for MRSA, Müeller-Hinton broth with 6.5% sodium chloride could 
be more suitable (59). Noteworthy, the quantitation of the bacteria is 
not possible from the enriched samples, and using only selective 
culturing does not enable defining the overall resistance rate as the 
ratio between resistant and susceptible isolates cannot be evaluated. 
In the EU, the phenotypical resistance rates in indicator E. coli in food-
producing animals are monitored (60). A similar methodology could 
be potentially utilized in WES, but the data should be interlinked with 
similar data from food-producing animals to interpret the results. In 
EU surveillance, the broth microdilution method is used to determine 
the antimicrobial susceptibility of food-producing animal isolates and 
congruent methods should be used if the phenotypical susceptibility 
results are compared between animals and WES. There is no recurrent 
surveillance data from South Africa to interlink the data from this 
study, and we used a disk diffusion test only to confirm the phenotype 
of the isolates. To address the gaps in this study and diminish some of 
the challenges associated with WES, such as associating the detected 
microbes with the host, we suggest that WES could be further studied 
in countries where routine AMR surveillance in food-producing 
animals exists. Alternatively, long-term studies could be structured to 
obtain simultaneous samples from the animals and abattoir 
environment and wastewater.

In the future, it should be  acknowledged that commercial 
selective culture media come with relatively high expenses, 
limiting their introduction to recurrent surveillance. Therefore, 
other options could be considered. For example, MacConkey with 
cefotaxime is less expensive and is already a validated method in 
the EU for monitoring ESBL-and AmpC-producing E. coli in meat 
and cecal samples of animals (60). Genotypic data, such as STs and 
resistance gene profiles are valuable from an epidemiological 
standpoint. WGS and new, continuously evolving DNA sequencing 
technologies can extract valuable data from complex WES 
samples, but PCR-based methods could also provide relevant 
information if the resources do not enable the use of 
these technologies.

The abattoir structures should be evaluated thoroughly, and a 
comprehensive study comparing samples from different locations 
should be  conducted to identify optimal sampling points in 
abattoirs and to minimize the risk of disruption of human-origin 
microbiota. Abattoir wastewater tanks consist of wastewater 
originating from various sources, including water used during the 
slaughter process and cleaning, but, depending on the abattoirs, 
may also include wastewater from staff premises. Here, the results 
suggest focusing the sampling at the beginning of the pipeline, i.e., 
in floor drainages, instead of wastewater tanks. A previous study 
showing a higher proportion of host-associated microbes at the 
beginning of the pipeline (61) also supports this observation. 
Moreover, the abundance of microbes originating from animals is 
likely higher on the dirty processing side, i.e., barn, stunning, and 
skinning, which would advocate for focusing the sampling in 
this area.

Animals, particularly food-producing animals, have a significant 
role in AMR. AMR surveillance of food-producing animals has 
substantial relevance for public health as it helps to understand the 
dynamics of AMR pathogens and their transmission between animals, 
humans, and the environment. Collecting a representative number of 
samples is laborious and expensive, and limited resources are one of 
the main challenges in AMR surveillance of food-producing animals. 
New perspectives could help to improve global AMR surveillance in 
this sector. Wastewater surveillance of AMR is not yet well-established, 
but wastewater is still an underutilized resource in many sectors. This 
pilot study shows that clones of AMR bacteria known to be circulating 
in the animals can be  detected by WES and advocates for future 
discussion and research related to WES in the veterinary sector. 
Interpreting the results could be more straightforward by optimizing 
the methodology, for example, by studying non-enriched samples, 
using various protocols for enrichment depending on the targeted 
microbes, and culturing the samples directly after collection. 
Replicating this study with an optimized methodology, including 
samples collected simultaneously from the animals or comparing into 
previously collected samples from the same country, could provide 
substantial information about the feasibility of abattoir WES for AMR 
surveillance of food-producing animals. WES could offer a less 
resource-consuming methodology for AMR surveillance of food-
producing animals, which would cause minimal disturbance for the 
abattoir production line with no intervention with animals or 
carcasses. Hence, the sampling is more flexible, and there is no need 
to synchronize the sampling with the speed of the production line. 
Furthermore, this approach could help implement AMR surveillance 
of food-producing animals, also in LMICs.
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