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Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with 
diverse biological functions. It plays several key roles, including regulating the 
secretion of reproductive hormones and the reproductive cycle, enhancing the 
functionality of reproductive organs, improving the quality of sperm and eggs, 
and mitigating oxidative stress in the reproductive system. Melatonin effectively 
inhibits and scavenges excess free radicals while activating the antioxidant 
enzyme system and reduces the production of inflammatory factors and 
alleviates tissue damage caused by inflammation by regulating inflammatory 
pathways. Additionally, melatonin contributes to repairing the intestinal 
barrier and regulating the gut microbiota, thereby reducing bacterial and 
toxin permeation. The use of melatonin as an endogenous hormone in animal 
husbandry has garnered considerable attention because of its positive effects 
on animal production performance, reproductive outcomes, stress adaptation, 
disease treatment, and environmental sustainability. This review explores the 
characteristics and biological functions of melatonin, along with its current 
applications in animal production. Our findings may serve as a reference for the 
use of melatonin in animal farming and future developmental directions.
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1 Introduction

Antibiotics play a crucial role in animal husbandry by promoting growth and preventing 
diseases, but their misuse has led to a series of problems. Antibiotics overuse fosters bacterial 
resistance, reducing treatment efficacy in humans and animals (1). Furthermore, antibiotic 
residues in animal products entering the food chain pose health risks, disrupting environmental 
microbial balance and affecting ecosystem stability (2). Excessive antibiotic use also adversely 
impacts animal health, disrupts the gut microbiota balance, reduces digestive absorption, and 
prompts adverse drug reactions (3, 4). Subsequently, many nations have implemented stringent 
regulations governing antibiotic use in poultry and livestock production, prompting increased 
research focus on alternative and enhanced additives.

Melatonin is an amine hormone primarily secreted by the pineal gland in the brain, but it 
is also produced in other tissues such as the gastrointestinal tract, retina, skin, thymus, and 
immune cells (5). The melatonin secreted by the pineal gland plays a crucial role in regulating 
circadian rhythms, while extra-pineal melatonin possesses anti-inflammatory, antioxidant, 
and mitochondrial protective properties (6–10). Melatonin receptors—MT1, MT2, and 
MT3—are widely distributed throughout the human body and perform various physiological 
functions (11, 12). MT1 regulates the biological clock, MT2 controls periodic melatonin 
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activity, and MT3, part of the quinone reductase family, aids in 
detoxification. As members of the G protein-coupled receptor family 
on the cell surface, these receptors facilitate signal transduction, 
significantly influencing physiological and pathological cellular 
processes (13, 14).

Melatonin, through interactions with MT1 and MT2 receptors, 
modulates circadian rhythms, immune responses, antioxidation, 
neuroprotection, anti-aging, reproductive functions, and cell 
physiology (15–19). In humans, exogenous melatonin exhibits 
diverse effects, offering potential benefits in animal husbandry, 
including circadian regulation, health enhancement, stress 
reduction, and disease prevention (20). Despite the recognized roles 
of melatonin, current research has not fully explored its multifaceted 
effects across different animal species and production systems. The 
existing studies often focus on isolated functions of melatonin 
without considering its potential synergistic effects with other 
management practices. Furthermore, there is a lack of 
comprehensive reviews that integrate recent findings on melatonin’s 
impact on various aspects of animal production performance, 
reproductive outcomes, and stress adaptation. This review provides 
an overview of the physicochemical properties and biological 
functions of melatonin, highlighting the latest research findings on 
its potential to improve health and productivity in animal husbandry 
and laying the groundwork for prospective applications in 
animal production.

2 Structure and physicochemical 
properties of melatonin

Melatonin is an indoleamine compound with a molecular formula 
of C13H16N2O2, a relative molecular mass of 232.28, and a relative 
density of 1.175 g/cm3. It is sparingly soluble in water but readily 
soluble in propylene glycol and 2-hydroxypropyl-beta-cyclodextrin 
(21–23). Melatonin exists as a white crystalline powder with a melting 
point of approximately 116–118°C and a boiling point of 374.44°C. It 
has a relatively short half-life (30–50 min) and low oral bioavailability 
(9–33%) (24). Following intravenous or oral administration, 
melatonin is rapidly metabolized primarily by the liver and kidneys 
(25). Originally extracted from bovine brain pineal glands in 1917, the 
name “melatonin” stems from its ability to lighten frogs’ dark skin.

Melatonin is synthesized predominantly in the pineal gland in 
response to light exposure. Intrinsically photosensitive retinal 
ganglion cells receive light during the day and initiate a neural signal 
cascade via the retinohypothalamic tract. This neural pathway involves 
the suprachiasmatic nucleus, paraventricular nucleus, brainstem, 
spinal cord (T1–T3 levels), and superior cervical ganglion, 
culminating in the pineal gland. Synthesis begins when tryptophan is 
converted to 5-hydroxytryptophan by tryptophan hydroxylases. 
Subsequently, 5-hydroxytryptophan decarboxylase removes CO2 from 
5-hydroxytryptophan to produce 5-hydroxytryptamine, also known 
as serotonin. Serotonin is transformed into N-acetylserotonin through 
serotonin N-acetyl transferase, aided by acetyl coenzyme A. Finally, 
N-acetylserotonin O-methyltransferase (ASMT) catalyzes the 
methylation of N-acetylserotonin to melatonin (Figure 1) (17, 18). 
Melatonin synthesis typically commences after sunset as the pineal 
gland converts serotonin to melatonin, releasing it into the 
bloodstream and impacting various organs (Figure 1). In addition, 

mitochondria from various organs can produce melatonin for 
localized use (26).

3 Biological function of melatonin

3.1 Antioxidation

During metabolism, animals generate reactive oxygen species 
(ROS), including hydrogen peroxide, hydroxyl radicals, and 
superoxide anions. Elevated ROS levels under stress or disease 
conditions can inflict damage on proteins, lipids, and DNA, disrupt 
cell membranes, and compromise immune function (27). Melatonin, 
functioning as a robust antioxidant, effectively counters these 
detrimental effects by neutralizing free radicals and enhancing the 
production of antioxidant enzymes, such as superoxide dismutase 
(SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) (15, 28, 
29). Numerous animal studies have demonstrated the ability of 
melatonin to mitigate oxidative damage through the activation of 
specific signaling pathways (Table 1). In a mouse model of testicular 
lipotoxicity, melatonin suppressed ROS production by activating the 
sirtuin 1 (SIRT1) signaling pathway. This action reduces the 
endoplasmic reticulum stress response (p-IRE1, p-PERK, and ATF4) 
and protein expression linked to apoptosis (B-cell lymphoma 2 
[Bcl-2], Bcl-2-associated X [Bax], Caspase3, Caspase12, and CHOP), 
thereby alleviating oxidative damage in the testes (30). Similarly, 
melatonin exhibited protective effects against oxidative stress-induced 
damage in various animal models, including oocytes, renal tubular 
epithelial cells, brain cells, and myeloid cells (31–35). The protective 
mechanisms of melatonin involve the upregulation of key antioxidant 
response factors. For example, it activates the nuclear factor 
erythroid2-related factor 2 (Nrf2), reinforcing the cell’s antioxidant 
capability against oxidative stress (33, 36). Additionally, melatonin 
promotes reactions between glutathione (GSH), oxygen-free radicals, 
and other harmful oxidative substances, transforming them into 
harmless compounds (35). Moreover, it stabilizes mitochondrial 
membrane potential and enhances mitochondrial function, thereby 
mitigating mitochondrial dysfunction and apoptosis (37–39). In 
summary, melatonin counteracts oxidative stress-induced damage by 
scavenging reactive oxygen species, enhancing mitochondrial 
function, inhibiting lipid peroxidation, and preserving cell membrane 
fluidity, among other mechanisms.

3.2 Immune regulation

Immune stimulation is a critical defense strategy against 
infections, inflammation, and tumors. The removal of the pineal gland 
leads to immune suppression by impairing melatonin synthesis, while 
oral melatonin supplementation promptly restores immune system 
functionality (40, 41). Melatonin replacement therapy enhances 
immune memory and antibody responses, maximizing immune 
system efficacy (42). This suggests the potential of melatonin in 
immune enhancement by reshaping thymus function and promoting 
T-cell generation, which is pivotal for combating microbial invasion 
and sustaining immune system integrity (43).

Melatonin exhibits anti-inflammatory effects through various 
mechanisms (44–46) (Table  2). It blocks the nuclear factor-κB 
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(NF-κB)/gasdermin D signaling pathway, reducing the expression of 
inflammatory genes (IL-1β, IL-6, and IFN-γ), inhibiting inflammasome 
activation (NLR family pyrin domain-containing 3 [NLRP3] and 
ASC), and mitigating the release of inflammatory cytokines. These 
actions alleviate lipopolysaccharide (LPS)-induced inflammation in 
adipose tissue (47). In spinal cord injury models, melatonin suppresses 
NLRP3 inflammasome activation by activating the Nrf2 pathway and 
reducing pro-inflammatory factor secretion (48). In acute kidney 
injury models, melatonin reduces pro-inflammatory cytokine 
expression (IL-1β, TNF-α, MCP-1, and IL-6), enhances mitochondrial 
biogenesis protein expression (PGC1α and Tfam), and increases 
mitochondrial uncoupling proteins, alleviating kidney damage (33). 
Additionally, melatonin has significant potential as an adjunctive 
treatment for sepsis. It protects organ function by reducing 
inflammation, oxidative stress, endoplasmic reticulum stress, and 
apoptosis, while maintaining mitochondrial function and modulating 
various physiological pathways (49–51). Furthermore, melatonin 
produced by the lungs acts as a barrier against severe acute respiratory 
syndrome coronavirus 2, triggering immune responses, antibody 
production, and thwarting the virus from entering epithelial cells (52). 
In summary, melatonin offers promising benefits in bolstering the 
immune system, with its roles in immune enhancement, anti-
inflammatory effects, and potential in combating specific diseases 
and infections.

3.3 Nerve protection

Melatonin plays a pivotal role in neuroprotection by maintaining 
neural function, preventing damage, fostering regeneration, and 
preventing neurodegenerative diseases (53). Moreover, melatonin 

regulates cell proliferation and neuronal differentiation in neural 
stem/progenitor cells, enhancing the maturity of neural precursor 
cells and the development of new neurons (54, 55). These 
neuroregulatory effects are particularly beneficial under conditions 
such as stress, anxiety, depression, and ischemic brain injury (56–
61) (Table 3). In mouse brain injury models, melatonin regulates 
energy utilization through the phosphorylated 5’AMP-activated 
kinase/phospho-cyclic adenosine monophosphate (cAMP) response 
element-binding signaling pathway. It diminishes the expression of 
pro-apoptotic factors (Bax, PARP-1, and Caspase3) and increases 
the expression of anti-apoptotic factors (Bcl-2), thereby shielding 
the brain from damage (34). Additionally, melatonin may attenuates 
age-related decline in brain function by improving lipid metabolism 
disturbances, restoring mitochondrial function, reducing neuronal 
damage, and moderating mechanisms associated with brain aging, 
regulated by core proteins (Mpst, Ccsap, Hdhd5, Rpl5, and Flna) 
(62). Furthermore, melatonin deficiency in endogenous secretions 
may disrupt mitochondrial homeostasis, releasing mitochondrial 
DNA (mtDNA) and triggering neuroinflammatory responses in the 
cytoplasm. Chronic inflammation, a hallmark of aging and 
neurodegenerative diseases, is mitigated by melatonin 
supplementation. In neurodegenerative disease mouse models, 
melatonin supplementation inhibits mtDNA release, preventing 
ROS damage, curtails neuroinflammatory pathway activation 
(cGAS/STING/IRF3), and reduces inflammatory cytokine 
production (IL-6, IL-18, IL-1β, IFN-α, and IFN-β). These actions 
mitigate the effects of brain aging and neurodegenerative 
pathologies (63). In summary, melatonin protects neurons, 
enhances neural function, and mitigates neurodegenerative 
alterations through diverse mechanisms implicated in 
neurodegenerative diseases.

FIGURE 1

The neuroanatomical pathway of light stimulation on the pineal gland and the melatonin metabolic pathway. ipRGC, intrinsically photosensitive retinal 
ganglion cell; RHT, retinohypothalamic tract; SCN, suprachiasmatic nucleus; PVN, paraventricular nucleus; SCG, superior cervical ganglion; PG, pineal 
gland.
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3.4 Anti-aging

Aging is a progressive change within biological organisms, 
characterized by mitochondrial dysfunction, immune system damage, 
oxidative stress, and other related changes (64). The anti-aging effects 
of melatonin are primarily reflected in its protective role on 
mitochondrial function and its ability to alleviate mitochondrial 
dysfunction and cellular aging (38, 65, 66) (Table 4). Melatonin is 
found at higher concentrations in mitochondria within cells, where it 
effectively scavenges free radicals and reduces oxidative damage. 
According to the free radical theory of aging, high levels of melatonin 
help slow the onset and progression of aging and related diseases (38). 
Long-term administration of melatonin to aged rats can protect 
mitochondrial cytochrome c and 2′,3′-cyclic nucleotide 
3′-phosphodiesterase levels by preventing the opening of the 
mitochondrial permeability transition pore, thereby enhancing 
mitochondrial function (67). Additionally, melatonin prevents 

mitochondrial dysfunction and cellular aging by limiting the oxidation 
of mitochondrial cardiolipin (68). Long-term intake of melatonin can 
also effectively prevent oxidative stress damage in the mitochondria 
of the heart and diaphragm in aging mice (69). Furthermore, 
exogenous melatonin administration has been shown to increase the 
expression of Bcl-2, glutathione peroxidase (GPx), and glutathione 
S-transferase (GST) in elderly rats, reduce the release of carbon 
monoxide (CO) and nitric oxide (NO), and lower the levels of 
cytochrome C, caspases, and lipid peroxidation (LPO), thereby 
contributing to melatonin’s anti-aging effects (65, 66).

Extensive data indicate a close relationship between oxidation and 
inflammation, as excessive oxidative stress can trigger inflammatory 
responses, with ROS being considered as effectors of inflammation 
(70, 71). Clinical data confirm that chronic inflammation promotes 
aging, with increased levels of chronic inflammation being referred to 
as inflammaging (72–75). Melatonin may also upregulate Nrf2 and 
downregulate NF-κB, thereby alleviating cellular-level inflammatory 

TABLE 1 The antioxidant effects of melatonin.

Function Target Model Dose of 
melatonin

Mode of action References

Antioxidation
10 μM copper and 100 μM 

Que. or EGCG
Redox system 1 mM

Melatonin decreases hydroxyl 

radical formation and DNA 

damage by chelating copper to 

prevent the formation of hydroxyl 

radical.

(29)

Antioxidation
Male mice testicular 

tissues
Lipotoxicity 10 mg/kg

Modulating the SIRT1 signaling 

pathway decreases p-Nrf2, MDA, 

and ROS.

(30)

Antioxidation Spermatogonia Lipotoxicity 1 μmol/L

Modulating the MT/SIRT1/

FoxO1 signaling pathway 

increases the activity of MnSOD 

and CAT, while decreasing Ac-

FoxO1/FoxO1 and ROS.

(30)

Antioxidation Mouse oocyte Deoxynivalenol 1 × 10−7 M Decreases GSH-Px, SOD, ROS. (31)

Antioxidation
Oocytes from aged female 

mice
Aging 30 mg/kg

Increasing the activity of G6PDH, 

NADPH, and GSH leads to a 

decrease in ROS.

(32)

Antioxidation
Mouse tubular epithelial 

cells
Acute kidney injury 1 mM

Modulating the Nrf2/Slc7a11 

signaling pathway increases the 

activity of GPX4, SOD, and GSH-

Px, while decreasing MDA.

(33)

Antioxidation Male mice
Repetitive mild traumatic 

brain injury
20 mg/kg

Regulation of p-AMPK/p-CREB 

signaling pathways.

Decreases in ROS, iNOS, Cox-2.

(34)

Antioxidation Nucleus pulposus cells Oxidative stress 1 μM
Increase activity of SOD, GSH.

Decreases in ROS, MDA.
(35)

Antioxidation

Hippocampal dentate 

gyrus region of the 

postnatal day 7 rat brain

Oxidative stress 10 mg/kg

Regulating the SIRT1/Nrf2 

signaling pathways decreases 

Cox-2 and iNOS.

(36)

Que, quercetin; EGCG, (−)-epigallocatechin-3-gallate; SIRT1, silent information regulator sirtuin 1; p-Nrf2, phosphorylated nuclear factor erythroid 2-related factor 2; MDA, 
malondialdehyde; ROS, reactive oxygen species; MT, melatonin; FoxO1, forkhead box O1; MnSOD, manganese superoxide dismutase; CAT, Catalase; Ac-FoxO1, acetylated forkhead box O1; 
GSH-Px, glutathione peroxidase; SOD, superoxide dismutase; G6PDH, glucose-6-phosphate dehydrogenase; NADPH, nicotinamide adenine dinucleotide phosphate hydrogen; GSH, 
glutathione; Nrf2, nuclear factor erythroid 2-related factor 2; Slc7a11, solute carrier family 7a member 11; GPX4, glutathione peroxidase 4; p-AMPK, phosphorylated AMP-activated protein 
kinase; p-CREB, phosphorylated cAMP response element-binding protein; iNOS, inducible nitric oxide synthase; Cox-2, cyclooxygenase-2.
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processes (76, 77). Similarly, melatonin upregulates the expression of 
the anti-aging protein Klotho, stimulates the release of anti-
inflammatory cytokines (IL-4 and IL-10), and promotes the 
polarization of macrophages from a pro-inflammatory (M1) 
phenotype to an anti-inflammatory (M2) phenotype (78, 79). 
Additionally, melatonin inhibits various pro-inflammatory events, 
such as amyloid toxicity, NO release, cyclooxygenase-2 (Cox-2) and 
NLRP3 inflammasome activation, toll-like receptor 4 (TLR4) and 
mammalian target of rapamycin (mTOR) signaling, as well as the 
release of senescence-associated secretory phenotype cytokines. It also 
activates the protein deglycase 1 (DJ-1)/Nrf2 antioxidant signaling 
pathway and inhibits the p53/Bax apoptotic pathway (80, 81). 
Importantly, exogenous melatonin can increase levels of apurinic/
apyrimidinic endonuclease 1 (APE1) and 8-oxoguanine DNA 
glycosylase 1 (OGG1) in mice, facilitating DNA damage repair (82). 
Thus, melatonin demonstrates pharmacological regulation of aging 
and has been proposed as a molecule with potential anti-aging effects, 
with the possibility of extending lifespan through promoting 
healthy aging.

3.5 Other biological functions

In addition to its multifaceted roles, melatonin has various beneficial 
effects, including the regulation of blood sugar, reduction of blood lipids, 
restoration of intestinal barrier function, and modulation of gut 
microbiota composition. Importantly, melatonin exerts an extensive 
effect on glucose homeostasis (83). In diabetic rodent models, melatonin 
and insulin co-administration enhance the sensitivity of white adipose 
tissue to insulin and improve blood glucose control (84). Melatonin plays 
a dual role by regulating glucose metabolism and safeguarding pancreatic 
β-cells. In addition, studies have indicated its potential in mitigating 
apoptosis in pancreatic β-cells exposed to high glucose conditions, 
reducing the expression of aging-related proteins (β-Galactosidase). 
Moreover, melatonin augments endogenous antioxidant defenses (CAT 
and Mn-SOD), enhances insulin secretion in response to glucose 
stimulation, and mitigates cell apoptosis and stress-induced premature 
aging in pancreatic β-cells caused by glucotoxicity and lipotoxicity (85). 
These orchestrated actions extend β-cell lifespan and fortify their 
function, underscoring melatonin’s significance in glucose regulation.

TABLE 2 The immune regulation effect of melatonin.

Function Target Model Dose of 
melatonin

Mode of action Reference

Immune regulation Male mice Pinealectomy mice 40 mg/kg
Recovery of IL-2, IL-4, IL-6, IL-10, IL-17, 

and IFN-γ expression levels within 2 weeks.
(40)

Immune regulation Rat Ischemia/reperfusion 10 mg/kg

By inhibiting the TLR signaling pathway, the 

expression levels of MyD88, TNF-α, IL-6, 

and iNOS are reduced.

(44)

Immune regulation Male rat Colitis 10 mg/kg Reduce the activity of IL-1, TNF-α, and NO. (45)

Immune regulation
Human synovial 

fibroblasts
Rheumatoid arthritis 1 mM

Inhibition of TNF-α and IL-1β production 

by downregulating PI3K/AKT, ERK, NF-κB 

signaling pathways, and overexpression of 

miR-3150a-3p.

(46)

Immune regulation
Male mice white 

adipose tissue
Inflammation 20 mg/kg

Blockade of the NF-κB/GSDMD signaling 

pathway.

Decrease in NLRP3, IL-1β, IL-6, IFN-γ, ASC, 

Caspase1, and Caspase3.

(47)

Immune regulation Mice Spinal cord injury 30 mg/kg

Inhibiting the activation of NLRP3 

inflammasomes through the Nrf2/ARE 

signaling reduces the secretion of pro-

inflammatory factors (ASC, caspase-1, and 

IL-1β).

(48)

Immune regulation
Mouse tubular 

epithelial cells
Acute kidney injury 1 mM

Modulation Nrf2/Slc7a11 signaling pathway.

Inhibit the expression of pro-inflammatory 

cytokines IL-1β, TNF-α, MCP-1, and IL-6.

(33)

Immune regulation Male mice Sepsis-induced acute 

kidney injury

30 mg/kg By activating SIRT3, the deacetylation of 

TFAM at the K154 site is mediated, thereby 

enhancing mitophagic flux.

(50)

Immune regulation Mice Sepsis-induced acute lung 

injury

30 mg/kg Upregulate OPTN and ZO-1, downregulate 

STAT3 and TNF-α.
(51)

IL-2, interleukin-2; IL-4, interleukin-4; IL-6, interleukin-6; IL-10, interleukin-10; IL-17, interleukin-17; IFN-γ, interferon gamma; TLR, toll-like receptor; MyD88, myeloid differentiation 
primary response 88; TNF-α, tumor necrosis factor alpha; IL-1, interleukin-1; NO, nitric oxide; IL-1β, interleukin 1 beta; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; ERK, 
extracellular signal-regulated kinase; NF-κB, nuclear factor-kappaB; GSDMD, gasdermin D; NLRP3, NOD-like receptor family pyrin domain containing 3; ASC, apoptosis-associated speck-
like protein containing a CARD; ARE, antioxidant response element; MCP-1, monocyte chemoattractant protein-1; SIRT3, sirtuin 3; TFAM, transcription factor A, mitochondrial; OPTN, 
optineurin; ZO-1, zonula occludens-1; STAT3, signal transducer and activator of transcription 3.
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In diverse animal models, melatonin demonstrates an inhibitory 
effect on weight gain and phenotypes linked to visceral fat 
accumulation, particularly in models with high-fat and high-sugar 
diets (86). Melatonin significantly promotes fat cell lipolysis by 
increasing lipolysis-related gene and protein expressions, including 
hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), 
and perilipin 1, predominantly through the MT2 receptor (87).

Intestinal health is crucial for the overall well-being of animals. 
Melatonin exhibits a significant impact on intestinal damage by 
elevating the expression of intestinal tight junction proteins (ZO-1, 
Occludin, and Claudin-1), reducing intestinal permeability, and 
modulating gut microbiota composition by decreasing the abundance 
of Firmicutes and increasing the abundance of Bacteroidetes phyla (88). 
Overall, the broad application of melatonin across various domains 
signifies its pivotal role in regulating glucose and lipid metabolism, 
intestinal health, and the composition of the gut microbiota.

After exploring melatonin’s various biological functions such as 
antioxidation, immune modulation, and neuroprotection, it is evident 
that these functions could may enhance various aspects of animal 
husbandry. Melatonin’s abilities to mitigate oxidative stress, boost 
immune responses, protect neural tissues, and regulate metabolic 

processes provide a solid foundation for its application in animal 
production. Next, we will delve into how these biological functions 
can be translated into practical applications across different animal 
species, aimed at improving productivity, reproductive capabilities, 
and overall health and welfare of livestock.

4 Potentials of melatonin in animal 
production

4.1 Effect of melatonin on animal 
production performance

4.1.1 Poultry
Although the exact mechanisms underlying melatonin’s effects on 

poultry remain unclear, research suggests its potential impact on 
growth through various pathways, including the regulation of growth 
hormone (GH) secretion and metabolism. Melatonin influences the 
release and action of GH by promoting growth hormone-releasing 
hormone (GHRH) secretion and inhibiting somatostatin secretion 
(89, 90). Moreover, melatonin may modulate poultry growth by 

TABLE 3 The neuroprotective effects of melatonin.

Function Target Model Dose of 
melatonin

Mode of action References

Nerve protection Male mice Depression 10 mg/kg

Restore coat state and grooming 

behavior, while reducing 

corticosterone levels.

(58)

Nerve protection Male hamsters Neuronal remodeling 20 μg
Increasing Period1 and Bmal1 leads 

to neuronal remodeling.
(59)

Nerve protection
Alzheimer’s disease 

transgenic mice
Alzheimer’s disease 0.5 mg

Restoration of mitochondrial 

respiratory rates, membrane 

potential, and ATP levels.

(60)

Nerve protection Male rat Alzheimer’s disease 3 mg/kg

Improved memory impairment, 

decreased phosphorylation levels of 

tau at Ser199/Ser202 and Ser396/

Ser404, reduced expression of SMI31 

and MDA, and increased levels of 

SOD and GSH-Px.

(61)

Nerve protection Male mice
Repetitive mild traumatic 

brain injury
20 mg/kg

Regulation of p-AMPK/p-CREB 

signaling pathways.

Improved motor function, decreased 

levels of BACE-1, APP, and Aβ.

(34)

Nerve protection Male mice Aging 3 mg/kg

By modulating core proteins (Mpst, 

Ccsap, Hdhd5, RPL5, and Flna), 

melatonin alleviates lipid 

dysregulation, restores mitochondrial 

function, and reduces neuronal 

damage.

(62)

Nerve protection Transgenic mice Neurodegenerative diseases 5 μM

mtDNA, cGAS, IL-6, STING, IL-1β, 

IRF3, IL-18, pNF-κB, IFN-α, IFN-β, 

and Caspase1 levels decreased.

(63)

Period1, period circadian regulator 1; Bmal1, brain and muscle Arnt-like protein-1; Ser, serine; SMI31, non-phosphorylated neurofilament heavy polypeptide; BACE-1, beta-secretase 1; APP, 
amyloid precursor protein; Aβ, amyloid beta; Mpst, mercaptopyruvate sulfurtransferase; Ccsap, centriole, cilia and spindle-associated protein; Hdhd5, haloacid dehalogenase-like hydrolase 
domain-containing protein 5; RPL5, ribosomal protein L5; Flna, filamin A; mtDNA, mitochondrial DNA; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes; IRF3, 
interferon regulatory factor 3; IL-18, interleukin 18; IFN-α, interferon alpha; IFN-β, interferon beta.

https://doi.org/10.3389/fvets.2024.1444578
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhao et al. 10.3389/fvets.2024.1444578

Frontiers in Veterinary Science 07 frontiersin.org

regulating the expression of growth-related genes and cell proliferation 
and differentiation. Studies have revealed that melatonin, which binds 
to the melatonin receptor subtypes Mel1b and Mel1c in the pituitary 
gland, triggers pituitary-specific transcription factor-1 expression in 
the anterior pituitary cells, thus boosting growth hormone secretion 
and fostering growth (91). Importantly, melatonin-mediated green 
light induction can engage diverse signaling pathways. The Mel1b 
receptor acts via the adenylate cyclase/protein kinase A (PKA)/
extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, and the 
Mel1c receptor, regulated by ERK1/2, induces GH secretion in the 
chicken pituitary gland (92). Additionally, in vitro experiments 
demonstrated that exogenous melatonin augments chicken liver cell 
proliferation and insulin-like growth factor 1 (IGF-1) secretion (93). 
However, the effects of melatonin on poultry body weight vary across 

studies and have not been consistently reported. Some studies have 
revealed that melatonin can reduce poultry feed intake, enhance feed 
efficiency, and elevate body weight under certain conditions, though 
results vary based on environmental factors.

For instance, oral administration of melatonin to broilers under 
continuous 24-h lighting and hot, dry conditions resulted in increased 
live weight and average weight gain but reduced feed consumption 
(94). Similar findings have demonstrated reduced feed consumption 
in broilers treated with melatonin under different lighting conditions 
(95). Additionally, melatonin supplementation in heat-stressed quails 
increased the final body weight and liver weight, highlighting the 
potential benefits of improving poultry growth performance under 
heat-stress conditions (96). However, in broilers raised under suitable 
temperature and lighting conditions, melatonin supplementation had 

TABLE 4 The anti-aging effects of melatonin.

Function Target Model Dose of 
melatonin

Mode of action References

Anti-aging Male rat Aging 7 mg/kg

Preventing mPTP opening, inhibiting the release of 

cytochrome c and CNPase from mitochondria, and 

increasing Ca2+ content.

(67)

Anti-aging

Cardiac and 

diaphragmatic of male 

mice

Aging 10 mg/kg
Decreased LPO, with increased GSH and GRd 

activity.
(69)

Anti-aging
Wistar rats and SAMP8 

(senescence prone) mice
Aging 1 mg/kg and 10 mg/kg

Increase the expression of ATP, Bcl-2, GPx, and GST; 

decrease the release of NO and CO; reduce 

cytochrome c levels; and lower levels of 

subcutaneous fat, nucleic acid fragmentation, 

caspases, and LPO.

(65)

Anti-aging
Mice with LPS-induced 

DLB
Inflammation 500 mg/kg

Suppression of NLRP3 expression and IL-1β cleavage 

inhibits pyroptosis, the production of mitochondrial 

and cytosolic ROS, and NF-κB signaling.

(76)

Anti-aging Male Wistar rats Inflammation 5 mg/kg

Reduce the levels of IL-4, IL-10, TNF-α, O2
−, and 

H2O2 production; increase catalase and SOD; and 

inhibit NF-κB activation.

(77)

Anti-aging Rats Acute kidney injury 10 mg/kg

Regulate oxidative stress through the AKT/FOXO 

and Bax/Caspase-3 signaling pathways, inhibit 

apoptosis, lower serum levels of blood urea nitrogen 

and creatinine, upregulate Klotho protein, and 

reduce the phosphorylation ratios of AKT and 

FOXO.

(78)

Anti-aging
Bone marrow-derived 

macrophages
Acute lung injury 30 mg/kg

Promote the transition from M1 to M2 type, inhibit 

pyroptosis, suppress the NLRP3/GSDMD pathway, 

and reduce levels of MDA, LDH, and ROS.

(79)

Anti-aging Male albino rats Aging 10 mg/kg

Activate the DJ-1/Nrf2 signaling pathway, inhibit the 

p53/Bax apoptotic pathway, lower levels of p53, Bax, 

TNF-α, IFN-γ, IL-6, IL-8, and serum IgA, increase 

serum IgE, and elevate mRNA expression levels of 

DJ-1 and Nrf2.

(81)

Anti-aging Swiss albino male mice Aging 2 mg/L

Antigenotoxicity, antimutagenic activity, reduction 

of DNA damage, and increased levels of APE1 and 

OGG1 repair enzymes.

(82)

mPTP, mitochondrial permeability transition pore; CNPase, 2′,3′-cyclic nucleotide 3′-phosphodiesterase; LPO, lipid peroxidation; GRd, glutathione reductase; Bcl-2, B-cell lymphoma 2; GPx, 
glutathione peroxidase; GST, glutathione S-transferase; CO, carbon monoxide; O2

−, superoxide anion; H2O2, hydrogen peroxide; FOXO, forkhead box O; Bax, Bcl-2-associated X; LDH, lactate 
dehydrogenase; DJ-1, protein deglycase 1; IL-8, interleukin-8; IgA, immunoglobulin A; IgE, immunoglobulin E; APE1, apurinic/apyrimidinic endonuclease 1; OGG1, 8-oxoguanine DNA 
glycosylase 1.
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a minimal effect on body weight and feed consumption, except for a 
reduction in the incidence of sudden death syndrome (97). Further 
investigations are warranted to elucidate the specific mechanisms 
underlying the effects of melatonin on poultry welfare and 
productivity. Nevertheless, its potential positive effects warrant 
continued attention and exploration.

4.1.2 Swine
Research on the impact of melatonin on pig production 

performance is limited, but evidence suggests that melatonin may 
have negligible effects in this context. However, melatonin is lipophilic 
and can traverse various subcellular compartments, promoting muscle 
development through multiple mechanisms (98). Exogenous 
melatonin supplementation stimulates fat breakdown and metabolism 
while promoting the differentiation of white adipocytes into brown 
adipocytes, thereby reducing fat content (99–101). In vitro experiments 
show that melatonin significantly promotes adipogenic differentiation 
of preadipocytes by increasing the expression of CCAAT/enhancer 
binding protein α (C/EBPα) and peroxisome proliferator-activated 
receptor γ (PPARγ) (102). Other studies reported that melatonin 
reduces fat content by promoting lipid metabolism in porcine oocytes 
(103). Importantly, melatonin promotes intramuscular fat breakdown 
by activating the PKA/ERK1/2 signaling pathway, enhancing 
mitochondrial biogenesis and mitochondrial respiration, and 
inhibiting preadipocyte proliferation in pig muscles (104). In weaned 
piglets, melatonin supplementation did not significantly affect growth 
performance but increased longissimus dorsi muscle weight and eye 
muscle area. Additionally, melatonin enhanced the expression of genes 
related to cell differentiation and muscle fiber development (PAX7, 
MYOG, MYHC IIA, MYHC IIB, IGF-1, and IGFBP5), modulated lipid 
metabolism (upregulating COX6A, COX5B, and CPT2, and 
downregulating PPARG, ACC, and FABP4), and activated 
mitochondrial function in muscle, thereby reducing fat deposition in 
muscle (105).

Melatonin also positively affects the intestinal health of pigs by 
regulating intestinal motility, expression of barrier integrity-related 
genes, and influencing absorption function and gut microbiota. 
Melatonin increased Actinobacteria abundance and decreased 
Selenomonadales abundance, enhancing piglet growth (106). 
Moreover, in in vitro embryo culture, exogenous melatonin 
enhances embryo development quality, reduces oxidative stress, 
enhances DNA integrity, and improves in vitro embryo development 
efficiency, especially during the maturation and fertilization stages 
(107). Although melatonin positively influences muscle 
development and fat metabolism in pigs, its impact on growth 
performance remains limited and requires further study for lean 
pig cultivation.

4.1.3 Ruminants
Supplementing pregnant ewes with melatonin significantly 

enhances twin lamb survival rates, particularly during prolonged 
labor, enhancing their hypoxia tolerance (108). Melatonin 
supplementation also positively affects the health and growth 
performance of ewes and lambs (109, 110). It improves fetal oxygen 
supply, increases birth weight, enhances twin lamb vitality, elevates 
immunoglobulin G concentrations in the colostrum, enhances 
colostrum quality, and increases milk production, subsequently 
benefiting lamb growth (111, 112).

Similarly, postpartum ewes treated with melatonin exhibited 
increased weaning weight, average daily gain, and higher milk fat 
content, whereas milk protein and lactose remained unaffected (113). 
However, direct melatonin implantation in lambs does not 
significantly affect the growth rate (114). Nonetheless, melatonin 
implantation in lambs enhances muscle fiber and adipocyte cross-
sectional areas, along with related indicators such as red blood cell 
count, testosterone, growth hormone, and immunoglobulin 
A. Transcriptome and microbiome analyses suggest that melatonin 
promotes lamb growth and development by modulating cell apoptosis 
signaling pathways and the gut microbiota (115).

Conversely, melatonin supplementation in pregnant and 
postpartum cows does not significantly affect calf weight, 
morphometric measurements, growth, metabolic factors, or 
subsequent bull reproductive characteristics. Although melatonin may 
influence milk yield and fat percentage, these differences are not 
significant (116). Nonetheless, research indicates the potential of 
melatonin to improve dairy herd parameters, increase milk nutritional 
value, elevate lactose and protein contents, and reduce somatic cell 
counts in milk (117). In summary, melatonin generally does not affect 
the growth performance of adult ruminants but may positively 
influence newborn calves and lambs.

4.2 Effect of melatonin on reproductive 
performance of animals

4.2.1 Poultry
Melatonin influences poultry through various pathways, 

enhancing reproductive function and breeding performance. In male 
poultry, melatonin promotes the proliferation of chicken testicular 
supporting cells by activating the ERK/inhibin alpha subunit signaling 
pathway and increasing the expression of cell proliferation-associated 
genes and proteins (PCNA and CCND1) (118). Furthermore, 
melatonin mitigates oxidative stress-induced apoptosis in rooster 
testicular interstitial cells by activating the protein kinase B (AKT)/
Nrf2 signaling pathway, thereby reducing apoptosis (119). It also 
alleviates glyphosate (GLY)-induced damage to chicken testicular 
interstitial cells and seminiferous tubule structure, as well as declines 
in sperm quality, by mitigating mitochondrial dynamics imbalance 
and inhibiting mitochondrial autophagy. This improves 
GLY-suppressed testicular hormone synthesis (120). Additionally, 
melatonin supplementation to frozen–thawed rooster semen 
significantly enhances post-thaw sperm motility, plasma membrane 
integrity, and mitochondrial activity. It also maintains sperm integrity 
and function by reducing LPO and DNA fragmentation (121, 122).

In female poultry, in vitro experiments indicated that melatonin, 
through receptor activation, regulates the mTOR signaling pathway, 
upregulating cell cycle-related proteins (cyclin D1) and anti-apoptotic 
proteins (Bcl-2) and downregulating the pro-apoptotic protein 
Caspase3 and autophagy-related proteins (Beclin1 and LC3-II), which 
promotes the proliferation of chicken granulosa cells (123). In vivo 
experiments with laying hens demonstrated that exogenous melatonin 
increases melatonin receptor expression in the ovaries by activating 
the mTOR signaling pathway. This upregulates the expression of 
downstream components of mTOR, S6 kinase, and 4E-binding protein 
1, leading to enhanced follicle growth, extended physiological peak of 
egg production, and increased egg-laying rate (124). Specifically, 
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supplementation with 10 mg melatonin in chickens at 360 and 
550 days of age resulted in an 8.38 and 7.93% increase in egg-laying 
rates, respectively. This improvement in egg production is associated 
with elevated serum oestradiol-17β and reduced gonadotropin-
inhibitory hormone receptors in the ovaries (125). These findings 
underscore the critical role of melatonin in poultry reproductive 
performance, providing essential scientific evidence for enhancing egg 
production in poultry.

4.2.2 Swine
Melatonin plays crucial roles in oocyte maturation and embryonic 

development by enhancing these processes through multiple 
mechanisms. It upregulates the expression of genes related to lipid 
synthesis (ACACA, FASN, PPARγ, and SREBF1) and promotes the 
expression of lipolytic genes (ATGL, CGI-58, HSL, and PLIN2), 
thereby increasing fatty acid oxidation and improving mitochondrial 
biogenesis (peroxisome proliferator-activated receptor gamma 
co-activator 1 alpha [PGC-1α], TFAM, and PRDX2) to provide the 
energy required for oocyte development (103).

Additionally, melatonin improves the developmental rate and 
number of blastocyst cells in pig embryos, thereby promoting 
embryonic development (126, 127). Supplementing sows with 
melatonin in late pregnancy can yield multiple benefits, including 
increased litter size, enhanced birth survival rate, and higher weight, 
weaning weight, and survival rate of piglets. These effects may 
be achieved through the Nrf2 signaling pathway and upregulation of 
antioxidant genes [MGST1, GSTM3, and GSTA4 (128)].

Melatonin also improves oocyte maturation and embryonic 
development by activating the sonic hedgehog (Shh) signaling 
pathway and upregulating the expression of related genes (SHH, 
PTHC1, SMO, and GLI1) (129). It promotes oocyte maturation by 
reducing granulosa cell apoptosis and stimulating estrogen synthesis 
(130, 131). In early pregnancy, melatonin improves the interaction 
between the uterus and conceptus by regulating SIRT1 and promoting 
the proliferation and migration of porcine trophoblast cells (132).

Moreover, melatonin regulates reproductive performance by 
modulating the release and synthesis of gonadotropin-releasing 
hormone and luteinizing hormone (LH) (133). It can counteract 
fungal toxins and toxic compounds, preventing oocyte maturation 
failure caused by ROS, improving the development of cloned embryos, 
and enhancing cloning efficiency (134–136). However, the 
effectiveness of melatonin in addressing seasonal breeding issues 
remains limited (137). In conclusion, melatonin promotes oocyte 
maturation and embryonic development, increases litter size and 
survival rates, and has antioxidant and protective characteristics, 
thereby playing a vital role in pig reproduction.

4.2.3 Ruminants
Studies have demonstrated the significant enhancement of 

developmental ability in in vitro matured (IVM) cattle oocytes and 
embryos with melatonin (138). Specifically, melatonin aids in the 
recovery of meiosis during IVM of cattle oocytes without stimulating 
nuclear maturation processes, resulting in a higher proportion of 
blastocyst formation, both in the oocytes of adult cows and 
prepubertal donors (139).

Furthermore, melatonin improves embryo quality by augmenting 
the number of inner cell mass (ICM) cells and the ratio of ICM cells 
to total cells, indicating its positive influence on embryo differentiation 

and quality (140). Research has also revealed the expression of ASMT 
and the melatonin receptor MTNR1A in cattle oocytes and cumulus 
cells, with MTNR1B expressed exclusively in oocytes. Additionally, 10 
and 50 ng/mL of melatonin significantly enhanced nuclear maturation 
and cumulus cell expansion and induced alterations in mitochondrial 
distribution patterns and ROS levels (141).

Importantly, melatonin also enhances the quality of thawed bull 
semen by increasing the average motion parameters, subpopulation 
structure, survival rate, and acrosomal integrity (142). In artificial 
insemination, melatonin improves the pregnancy rate and 
progesterone levels in female cattle, enhances uterine blood flow, and 
promotes placental development (143–145). For low-reproductive-
season water buffaloes, melatonin injections significantly increase the 
ovulation rate, ovulation follicle diameter, and pregnancy rate (146).

Research involving melatonin implants in bulls revealed that the 
melatonin group exhibited higher hormone levels (FSH, LH, and 
testosterone) and melatonin concentrations than the control group. 
Simultaneously, bulls in the melatonin group showed improved sexual 
behavior scores, scrotal circumference, and testicular parameters 
(147). In summary, melatonin plays a crucial role in enhancing the 
reproductive protection and performance of ruminants, positively 
impacting the development and quality of oocytes and sperm, thereby 
facilitating the successful progression of the reproductive process.

4.3 Effects of melatonin on oxidative stress 
in animals

4.3.1 Poultry
Poultry faces various oxidative stressors, such as ROS, peroxides, 

heavy metal ions, environmental pollutants, and heat stress, during 
rearing, which can adversely impact their health and productivity 
(148, 149). Melatonin serves as a protective antioxidant by neutralizing 
free radicals and reducing oxidative damage. A study demonstrated 
that injecting melatonin (500 mg/kg) into chicks increased melatonin 
content in tissues, including the intestine, kidney, liver, and red blood 
cells, by 75–1,300% compared to the control group. Furthermore, 
melatonin increased GSH-Px activity in these tissues by 22–134% 
(150). In laying hens, melatonin mitigates ovarian oxidative stress by 
modulating the SIRT1-P53/forkhead box O1 (FoxO1) pathway (21).

Additionally, the study found that melatonin can alleviate 
oxidative damage in chicken Leydig cells by activating the AKT–Nrf2 
signaling pathway, resulting in increased antioxidant enzyme activity 
(119). Furthermore, melatonin significantly mitigates mycotoxin-
induced oxidative stress in broiler chickens, reducing tissue damage 
markers (AST, ALT, and LPO) while increasing concentrations of 
antioxidant enzymes (SOD and CAT) in the serum. A 30% increase 
in the bursa weight of the Fabricius was also observed (151). Therefore, 
melatonin, as an antioxidant, holds significant potential in poultry 
farming, offering effective protective measures to improve poultry 
health. Nevertheless, further research is imperative to elucidate the 
mechanisms of the antioxidant action of melatonin in poultry, 
optimize application methods and dosages, and fully harness its 
potential benefits.

4.3.2 Swine
The reproductive performance of boars closely correlates with 

their reproductive development and semen quality, which is frequently 
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jeopardized by oxidative stress. Melatonin mitigates oxidative stress 
and cell apoptosis induced by tetrabromobisphenol A, reducing the 
disruption of the phosphatase and tensin homolog of chromosome 10/
phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway and 
suppressing excessive ROS generation. Under oxidative stress 
conditions, it enhances antioxidant capacity by activating kelch-like 
ECH-associated protein 1/Nrf2 signaling, cell cycle, and lysosomal 
pathways. Additionally, melatonin increases the expression of heat 
shock protein 90 and stabilizes hypoxia-inducible factor-1α, effectively 
alleviating oxidative stress and cell apoptosis in support cells of boars 
induced by heat stress and chloroquine (152–154).

Melatonin also protects porcine oocytes from oxidative stress by 
maintaining cell morphology, reducing apoptosis, and delaying 
mitochondrial dysfunction (155). Melatonin also alleviates oxidative 
stress in porcine oocytes exposed to ochratoxin A, aflatoxin B1, heat 
stress, and other damaging factors by increasing antioxidant (GSH) 
levels, reducing apoptosis (SIRT1 and AKT2), and promoting cellular 
autophagy (by upregulating Bcl-2 and downregulating Bax, Atg7, Lc3, 
LC3B, and Caspase3) (156–159).

Pig embryo development is susceptible to various oxidative stress 
factors in the environment, including maternal factors, diet, drugs, 
diseases, and infections. Melatonin alleviates oxidative stress during 
in vitro embryonic development by activating the Nrf2/ARE signaling 
pathway and upregulating the expression of apoptosis-related genes 
(MT2, Nrf2, UCHL, HO-1, SOD1, and Bcl-2) (127). Additionally, 
melatonin reduces ROS production by promoting mitochondrial 
biogenesis (upregulating SIRT1 and PGC-1α), thereby rescuing early 
pig embryo development damage caused by pesticides such as 
rotenone (160).

In studies involving ischemia–reperfusion injury and allograft 
transplantation of porcine organs, melatonin significantly delayed the 
onset of rejection reactions, prolonged graft survival, and reduced 
oxidative stress (malondialdehyde [MDA] and 4-HDA) and 
inflammatory marker levels (pMAP and ITIH4) (161). Therefore, 
melatonin holds potential therapeutic value in transplantation. In 
conclusion, melatonin plays a crucial role in pig reproductive function, 
semen quality, embryo development, and the transplantation rejection 
response by inhibiting oxidative stress and promoting 
antioxidant capabilities.

4.3.3 Ruminants
Melatonin effectively mitigates mycotoxin-induced oxidative 

stress and apoptosis in granulosa cells by inhibiting the p38 
mitogen-activated protein kinase (MAPK) signaling pathway. This 
is accompanied by a reduction in the Bax/Bcl-2 ratio and increased 
levels of antioxidant enzymes (SOD and GSH-Px) (162). Similarly, 
melatonin protects bovine oocyte maturation and preimplantation 
embryo development from exposure to the herbicide paraquat by 
inhibiting the activation of the p38 MAPK signaling pathway. 
Melatonin restores abnormal levels of chromatin protein 
trimethylation of histone H3 lysine 4 and histone H3 lysine 9, 
regulates the expression of redox-related genes (such as decreasing 
thioredoxin-interacting protein [Txnip] and increasing Trx 
expression), and inhibits the expression of proapoptotic proteins 
(Caspase3 and Bax) (163, 164).

Furthermore, melatonin acts by activating the SIRT1/FoxO1 
signaling pathway, reducing ROS levels and Ca2+ concentration, 

releasing cytochrome C, and increasing mitochondrial membrane 
potential (ΔΨm). It also promotes mitochondrial autophagy, 
alleviating oxidative stress-induced apoptosis and mitochondrial 
damage in bovine ovarian granulosa cells (165). Melatonin also 
protects cattle embryos from oxidative stress caused by hydrogen 
peroxide (H2O2) during in vitro culture, enhances the 
developmental quality of fertilized eggs, lowers intracellular ROS 
levels, and prevents mitochondrial dysfunction in zygotes (166, 
167). Finally, melatonin alleviates heat stress in cattle exposed to 
high temperatures (168, 169). These findings underscore the 
critical role of melatonin in protecting ruminants from 
oxidative damage.

4.4 Effects of melatonin on animal 
immunity

4.4.1 Poultry
In poultry farming, various environmental stressors, such as 

toxins, drugs, viruses, and diseases, are encountered daily. These 
factors can compromise immunity and impede the development of 
immune organs, ultimately resulting in immune dysfunction in 
poultry (170). Melatonin exerts several immunomodulatory effects in 
poultry, enhancing immune system function and resilience. A study 
demonstrated that supplementing the diet of young chickens with 
melatonin effectively alleviated duodenal inflammation induced by 
LPS. This effect is primarily achieved by inhibiting the TLR4 signaling 
pathway, reducing epithelial cell apoptosis, decreasing the expression 
of inflammatory cytokines (TNF-ɑ, IL-6, IL-4, and Caspase3), and 
improving the intestinal immune barrier function (mucin 2 [MUC2] 
and immunoglobulin A) (171). During embryonic development in 
broiler chickens, melatonin supplementation enhances the intestinal 
immune barrier by increasing goblet cell numbers and upregulating 
MUC2 expression (172).

Moreover, in vitro experiments have demonstrated that melatonin 
promotes T lymphocytes in poultry peripheral blood, with minimal 
impact on B lymphocytes (173, 174). Green light with longer 
wavelengths stimulates photoreceptors in poultry retinas, influencing 
melatonin synthesis and release from the pineal gland. Compared to 
other light sources, green light stimulation increases the proliferation 
of B lymphocytes in the bursa of Fabricius by 16.49–30.83%. Green 
light also significantly upregulates the expression of the melatonin 
receptor subtypes Mel1a, Mel1b, and Mel1c (175, 176). Additionally, 
green light enhances the proliferation of T lymphocytes in the spleen 
by 2.46–6.83% by triggering the cAMP/PKA and phospholipase C/
protein kinase C signaling pathways (177).

However, melatonin may produce varying effects on different 
types of immune cells and immune responses (174). Some studies 
have indicated that melatonin alone does not significantly affect 
lymphocyte proliferation in the chicken thymus, spleen, or bursa of 
Fabricius (178). Conversely, melatonin directly inhibits activated 
chicken lymphocytes in vitro through phytohemagglutinin 
stimulation, which may contribute to cell stimulation (179). In 
summary, the immunomodulatory effects of melatonin on poultry are 
multifaceted. It enhances poultry immune system function by 
inhibiting inflammatory responses, improving intestinal immune 
barrier function, and promoting lymphocyte proliferation. However, 
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further research is required to better understand the specific 
mechanisms underlying the role of melatonin in immune modulation 
in poultry.

4.4.2 Swine
Melatonin holds promise for immune regulation in pigs, 

particularly in immune challenges such as infections and 
inflammation. The immature gastrointestinal immune system of 
weaned piglets is susceptible to pathogenic infections such as 
enterotoxigenic E. coli (ETEC). ETEC infection affects the serotonin 
pathway in piglet macrophages, leading to reduced melatonin 
production. However, melatonin treatment can modify macrophage 
function, enhancing antimicrobial and bactericidal activities while 
reducing cell death. Additionally, melatonin pretreatment improves 
the ability of porcine macrophages to clear ETEC bacteria (180).

In a pig model of acute pancreatitis, melatonin therapy showed 
potential benefits, including reduced pancreatic acinar cell necrosis, 
adipose tissue necrosis, and edema, thereby improving pig adaptability 
and health scores (181). Furthermore, during early pregnancy, 
melatonin promotes the proliferation and migration of porcine 
trophectoderm and endometrial luminal epithelial cells via the SIRT1/
PI3K/MAPK signaling pathway. Further, it also prevents pregnancy-
related complications by reducing the production of pro-inflammatory 
factors and endoplasmic reticulum stress-sensitive proteins induced 
by LPS and tunicamycin (132). In summary, melatonin plays a crucial 
role in the immune regulation and health maintenance of pigs through 
various mechanisms under different physiological and pathological 
conditions. These findings offer valuable insights into its potential 
applications in pig farming.

4.4.3 Ruminants
Melatonin exhibits promising potential in mitigating bovine 

mastitis, a prevalent inflammatory disease caused by bacterial 
infections that significantly impact dairy production and quality 
(182). Its multifaceted effects include the reduction of oxidative stress, 
inhibition of pro-inflammatory factors, and modulation of NF-κB 
signal transducers and activators of transcription (STATs), positioning 
it as a valuable candidate for alleviating bovine mastitis (183). In 
bovine mammary epithelial cells challenged with LPS-induced 
inflammation, melatonin mitigates the inflammatory response by 
inhibiting the cluster of differentiation 14/TLR4 signaling pathway. 
Specifically, it decreases the expression of pro-inflammatory cytokines 
(TNF-α, IL-1β, IL-6, and GM-CSF), chemokines (CCL2 and CCL5), 
and positive acute-phase proteins, while augmenting the expression 
of anti-inflammatory cytokines (IL-1Ra) and negative APP fibrinogen 
(184). Furthermore, melatonin inhibits Staphylococcus aureus-induced 
mastitis through the microRNA-16b/Yes-associated protein 1 
pathway (185).

Melatonin enhances endometrial receptivity by reducing IL-6 
levels and mitigating ammonia-induced inflammation and cell 
apoptosis by inhibiting the TLR4/NF-κB signaling pathway (186). 
In endometritis, melatonin effectively reduces the production of 
pro-inflammatory factors (IL-1β, IL-6, and TNF-α) in endometrial 
epithelial cells by inhibiting the activation of the NLRP3 
inflammasome (187). Additionally, by activating membrane 
receptors MT1 and MT2, melatonin exerts anti-inflammatory 
effects on ovine epididymal epithelial cells by reducing the 

expression levels of pro-inflammatory cytokines and Cox-2 (188). 
Similar studies have found that melatonin, by activating membrane 
receptors MT1 and MT2 and activating the PI3K/AKT pathway, 
inhibits the LPS-induced inflammatory response in ovine 
endometrial epithelial cells (189). Furthermore, melatonin enhances 
sheep antibody titers against A1 and C strains of Dichelobacter 
nodosus and the efficacy of the bovine viral diarrhea virus vaccine 
(190, 191). In summary, melatonin exerts anti-inflammatory and 
antiviral potential in ruminants and may offer a novel strategy for 
preventing bovine mastitis, potentially serving as an alternative to 
antibiotics in the treatment of this disease. Further research is 
warranted to explore the full therapeutic potential of melatonin in 
ruminant health management.

4.5 Application of melatonin in aquatic 
animal production

The inclusion of melatonin in the diet of Cherax destructor 
significantly improved weight gain, specific growth rate, and digestive 
enzyme activity. It also enhanced the activity of antioxidant enzymes, 
reduced oxidative stress, and improved immune parameters. The 
optimal dosage for dietary melatonin supplementation falls within the 
range of 75–81 mg/kg (192). In Asian sea bass, melatonin treatment 
increased body weight and survival rates, lowered blood glucose 
levels, and enhanced testosterone levels, promoting overall growth 
and health (193). However, dietary melatonin supplementation 
significantly reduced the growth performance of juvenile golden 
pompanos (194).

Melatonin facilitated fish oocyte maturation, increased antioxidant 
enzyme activity, reduced oxidative stress markers, and inhibited 
apoptosis (195, 196). In the ovaries of common carp, melatonin 
accelerated oocyte growth, alleviated oxidative stress, and exhibited 
stage-dependent effects on the reproductive cycle. It stimulated 
gonadal activity during the reproductive preparation stage and exerted 
anti-gonadal effects before and during spawning (197). Moreover, the 
addition of melatonin to the cryoprotective medium improved the 
post-thaw sperm quality of fish (198).

In aquatic animals, melatonin plays a crucial role in regulating 
Na+/K+-ATPase function, particularly during recovery and stress 
responses under hypoxic conditions (199). Melatonin improves the 
oxidative status of fish liver cells by activating the ERK/Akt and 
NF-κB/Nrf2 signaling pathways, thereby regulating heat shock factor 
expression. This protection prevents damage, reduces oxidative 
markers such as MDA levels, and inhibits the expression of 
pro-inflammatory cytokines (IL-1β, IL-6, IL-10, and TNF-α), 
ultimately mitigating stress-induced damage and inflammation 
(200, 201).

Melatonin exerts multiple protective effects on fish health under 
various environmental conditions. It effectively mitigates the damage 
and toxic effects of harmful substances such as 2,2,4,4-tetra-
brominated diphenyl ether, lead, imidacloprid (a pesticide), 
polystyrene microplastics, and radiation by modulating different 
pathways, including the miR-140-5p/TLR4/NF-κB pathway, AMPK/
SIRT1/PGC-1α axis, miR-17-5p/TXNIP axis, and peptidoglycan/P38 
MAPK pathway. These findings underscore the significant protective 
role of melatonin in the health of aquatic organisms by reducing 
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inflammation, oxidative stress, mitochondrial dysfunction, and 
apoptosis, providing robust support for biological well-being under 
environmental toxin exposure (202–209). In summary, melatonin 
significantly enhances the growth, health, and reproductive success of 
various aquatic species. Its protective effects against oxidative stress, 
inflammation, and environmental toxins highlight its potential as a 
valuable supplement in aquaculture.

4.6 Potential effect of melatonin on meat 
quality

Several studies have demonstrated melatonin’s significant efficacy 
in mitigating muscle atrophy (210). In the eyelid skin of elderly 
individuals, melatonin downregulates the age-promoting mechanistic 
target of rapamycin complex 1 (mTORC1) pathway and matrix 
metalloproteinase-1 (MMP-1) expression, while promoting the 
expression of transmembrane collagen 17A1 (COL17A1) and 
mitochondrial markers (such as TFAM, MTCO-1, and VDAC/porin). 
This modulation leads to increased elastin content and enhanced 
structural organization of elastin (211). Additionally, melatonin 
maintains the normal structure, weight, muscle fiber count, and 
function of aging muscles. It also enhances lactate production, 
prevents mitochondrial damage and the formation of tubular 
aggregates, reduces the percentage of apoptotic cells in aging muscles, 
and restores the frailty index (212, 213).

In animal production, meat is a significant product and a 
primary source of income for farmers. However, consumer 
acceptance of meat products is largely influenced by their quality. 
Notably, melatonin has also shown positive effects on the quality of 
meat across various animal species. In broiler chicken incubation, 
monochromatic green light stimulation increases melatonin 
secretion, promoting GH activity and the IGF-1 axis. This activation 
is crucial for stimulating muscle satellite cell proliferation, muscle 
fiber formation, and overall muscle development, involving the 
gene expression of paired box 7 (PAX7) and myogenic regulatory 
factors. These factors contribute to the improvement of broiler 
growth and meat quality (214).

In pigs, melatonin supplementation enhances the cross-sectional 
area of weaned piglet muscle fibers and the weight of the longest back 
and eye muscle areas. Additionally, it reduces the triglyceride levels in 
the longest back and loin muscles. Melatonin further promotes muscle 
fiber development (upregulating PAX7, MTOG, and IGF-1) and 
reduces fat deposition in muscles (downregulating PPARγ, ACC, and 
FABP4) by modulating gene expression. Moreover, melatonin 
suppresses intramuscular fat cell proliferation by activating the 
MT2-mediated PKA/ERK1/2 signaling pathway (104, 105).

In ruminants, melatonin has limited effects on the carcass quality 
of cashmere goats and does not adversely impact meat production, 
composition, or quality (215). Studies have detected melatonin in 
meat, with chicken eggs showing the highest levels. Melatonin extends 
the shelf life of meat, preserving its quality and taste (216). Therefore, 
the consumption of these foods by humans and animals may offer 
potential health benefits. Although research on the role of melatonin 
in meat quality is not extensive, it shows promise in enhancing poultry 
and pork quality and extending shelf life.

5 General discussion

Following the prohibition on the use of antibiotics as feed 
additives, the search for alternative methods to sustain animal health 
and enhance production efficiency has become imperative. Although 
research on the impact of melatonin on animal production 
performance is limited, studies have revealed its moderately favorable 
effects on growth rate, weight gain, and feed conversion efficiency. The 
primary advantages of melatonin lie in its ability to enhance 
reproductive performance, exert antioxidative and immunoregulatory 
effects, improve disease resistance, and contribute to the overall health 
of animals.

In poultry, leveraging melatonin through green light exposure has 
shown promise in stimulating melatonin secretion and benefiting 
poultry health. In animal production, melatonin is typically 
considered a component of supplementary healthcare and health 
management rather than a primary means to boost production 
performance. However, a comprehensive understanding of the diverse 
biological activities of melatonin and its structural–functional 
relationship remains incomplete. Further exploration is required to 
determine the extent of the applicability of melatonin and the optimal 
conditions for its use, considering potential variations in responses 
across different animal species and growth stages.

Moreover, investigating the interactions between melatonin and 
other feed components is crucial to comprehending its synergistic 
effects with various ingredients and optimize feed formulations 
more efficiently. The primary limitation of this review lies in the 
existing heterogeneity across studies, encompassing variations in 
methodology, animal species, and environmental conditions. The 
scarcity of research specifically dedicated to melatonin’s impact on 
animal production further adds complexity, limiting the ability to 
draw universally applicable conclusions. Additionally, the 
concentration of current research in the medical domain, 
particularly in humans and mice, poses challenges in directly 
extrapolating findings to the diverse contexts of animal farming. 
However, with mounting interest in the potential use of melatonin 
in animal production, future research holds promise for providing 
more robust scientific evidence to support its widespread 
application and alignment with the needs of the animal 
farming industry.

6 Conclusions and perspectives

Overall, melatonin exhibits specific biological characteristics and 
physiological functions in animal farming, with the potential to serve 
as an alternative to antibiotics. The outcomes of our review underscore 
the need for targeted research efforts to unlock the full potential of 
melatonin in enhancing animal well-being and farm productivity. 
Looking ahead, researchers should focus on elucidating the 
mechanisms underlying melatonin’s effects, exploring optimal 
administration methods, and assessing its long-term impacts on 
different aspects of animal health and performance. By addressing 
these research gaps, we can harness the capabilities of melatonin to 
their fullest extent, paving the way for sustainable and effective 
practices in animal production.
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