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Facial landmarks, widely studied in human a�ective computing, are beginning

to gain interest in the animal domain. Specifically, landmark-based geometric

morphometric methods have been used to objectively assess facial expressions

in cats, focusing on pain recognition and the impact of breed-specific

morphology on facial signaling. These methods employed a 48-landmark

scheme grounded in cat facial anatomy. Manually annotating these landmarks,

however, is a labor-intensive process, deeming it impractical for generating

su�ciently large amounts of data for machine learning purposes and for use

in applied real-time contexts with cats. Our previous work introduced an AI

pipeline for automated landmark detection, which showed good performance

in standard machine learning metrics. Nonetheless, the e�ectiveness of fully

automated, end-to-end landmark-based systems for practical cat facial analysis

tasks remained underexplored. In this paper we develop AI pipelines for three

benchmark tasks using two previously collected datasets of cat faces. The tasks

include automated cat breed recognition, cephalic type recognition and pain

recognition. Our fully automated end-to-end pipelines reached accuracy of

75% and 66% in cephalic type and pain recognition respectively, suggesting that

landmark-based approaches hold promise for automated pain assessment and

morphological explorations.
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1 Introduction

Facial expressions are universally acknowledged as key indicators of emotional states
in mammals (1, 2). The link between facial expressions and emotions in humans has
received considerable attention in research (3, 4). All mammals are known to display facial
expressions (5). Analogously to humans, they are believed to communicate emotional
states. This leads to the increase in interest in the study of facial expressions in the context
of animal emotion and welfare studies (6–9).

Facial expressions and behavior also form an important part of animals’ non-
verbal communication. As such, it’s essential that they are easily noticeable and
interpretable by the receiver, implying that these signals must possess a degree of
universality in their display. Yet, morphological characteristics in domesticated, and
specifically in companion animals, may greatly vary due to selective breeding by
humans (10–12), potentially affecting the distinctness of their facial expressions (13).
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However, the impact of this morphological diversity on the visual
clarity of expressions and other forms of social signaling, as well
as on the behavior and communication of companion animals,
remains largely unstudied.

Although our understanding of facial visual signals, such as
those caused by facial expressions and their relationship to animals’
internal states, is quite limited, there has been some advancement
mainly focusing on pain expressions. One of the most prevalent
methods for pain assessment involves scoring by trained human
experts. Species-specific pain assessment tools, known as grimace
scales, focus on changes in an animal’s facial features, and together
with behavioral pain scales, they have been developed and validated
for nearly all commonly domesticated species (with the notable
exception of the dog, given their exceptional facial morphological
diversity). Originally developed for rodents, these grimace scales
have since been adapted for a range of mammalian species,
including rats (14), rabbits (15), horses (16), pigs (17), ferrets (18),
sheep (19, 20), and cats (21, 22).

In the context of studying facial appearance and visual signals,
domestic cats are a particularly interesting exemplar in several
aspects. First of all, cats display a wide variety of breed types
and morphological features (although not as extreme as dogs),
including a wide range of head shapes, from brachycephalic
(e.g., the Persian) to dolichocephalic (e.g., the Siamese) (23).
Additionally, the color of the coat, markings, and length of the
fur are other elements that could influence the evaluation of
facial expression in animals (24, 25), which potentially influence
the ability to detect changes in facial expression in cats. Thus,
they are a good initial exemplar for tackling the challenge of
facial morphological diversity, which will need to be addressed for
the more widespread use of AI in facial processing in animals.
At the species level, domestic cats also show a diverse array of
facial expressions, the majority of which have been systematically
captured by the Cat Facial Action Coding System (CatFACS),
linked to facial muscles (26). Changes in cats’ facial shape have
been linked to effective states such as fear, frustration, relaxed
engagement, and pain (21, 22, 27). The available methods for
cat pain assessment include three validated scales: the UNESP-
Botucatu multidimensional composite pain scale (MCPS) (28), the
Glasgow composite measure pain scale (CMPS) (29) and the Feline
Grimace Scale (FGS) (22). However, all of these methods rely on
the subjective judgments of humans, which may influence their
reliability and validity. This leads to the need for the development
of more objective methods for scoring and assessing pain, which are
less susceptible to human bias.

Geometric morphometric analysis is a powerful tool that has
been explored in the context of quantifying cat facial shape
changes (13, 30). It uses points (facial landmarks) positioned on
objects as proxies for shape. The landmark coordinates reflect
their reciprocal locations, with differences in such locations across
objects measuring the amount of shape variation. For instance,
Finka et al. (30) applied this approach to quantify cat facial
shape changes associated with pain. Images of 29 domestic short-
haired female cats undergoing ovariohysterectomy were manually
annotated using 48 landmarks specifically chosen for their
relationship with underlying facial musculature and their relevance
to cat-specific facial action units. A significant relationship was

found between pain-linked Principal Components related to facial
shape variation and the UNESP-Botucatu MCPS tool (28). In a
similar manner, this approach was extended by Finka et al. (13)
to explore the impact of cat breed and cephalic type variation on
the relative positioning of facial landmarks. Major variations in
baseline facial landmark configurations were identified within a
population of common domestic cat breeds and diverse cephalic
shapes. Variations in relative landmark positions were evident at
both the cephalic and breed levels and were identified across all
facial regions, including the ears, eyes, cheeks, mouth, and nose.
Furthermore, while facial landmarks were able to differentiate
between “pain” and “no pain” facial features in images of domestic
short-haired cats, the painful cats of this breed were not reliably
different from the neutral faces of other breeds.

These findings, which demonstrate that the geometric cat face
model contains important visual information relevant to pain but is
also potentially susceptible to “noise” caused by breed and cephalic
variation in baseline features, formed a starting point for using
machine learning (ML) techniques for automated recognition of
cat pain in our previous work (31, 32). For example, in (31), the
48 facial landmarks suggested in Finka et al. (13, 30) were used in
an ML model for cat pain recognition reaching above 72% on the
dataset of Finka et al. (30). As this dataset was limited to young,
adult female cats of a single breed and submitted to only one type
of postoperative pain condition, this approach was subsequently
extended to a more morphologically diverse dataset in Feighelstein
et al. (32), reaching an even higher accuracy of detection of 77%,
using the cat face model landmarks.

These results further indicated that the scheme of the 48
landmarks from Finka et al. (30) can contain useful visual signals
sufficient for accurate recognition of internal states such as pain (30,
32), or for comparative studies across cat breeds and cephalic
types (13). Feighelstein et al. (32) presented another interesting
application of the geometric cat face model for investigating the
explainability of pain recognitionmodels by looking at average heat
per landmark to understand more informative areas of the cat face
for the ML model in pain recognition.

However, the landmark method heavily relied on the time-
consuming and labor-intensive manual annotation of landmarks:
in the case of Martvel et al. (33), it took skilled and trained
annotators over 5.5 min to annotate one facial image, and our
wider experience indicates this is typical for this type of activity.
Martvel et al. (33, 34), developed an automated detector for cat
facial landmarks, having introduced the first available annotated
dataset with 48 landmarks: the Cat Facial Landmarks in the
Wild (CatFLW) dataset (34). The model for automated landmark
localization is based on a convolutional neural networks model and
uses a magnifying ensemble method. Its performance in terms of
normalized mean error (NME) was comparable and, in some cases,
outperformed other models of this type with respect to human
facial landmark localization. However, the question of whether the
developed detector is useful for practical applications of cat facial
analysis and whether automated landmark detection is sensitive
enough for such tasks has remained open.

This study systematically investigates automated landmark-
based approaches using three benchmark challenges related to
cat facial analysis, which have been previously explored in the
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FIGURE 1

Cat images with 48 facial landmarks, breed, and cephalic type. Images are taken from the public Oxford IIIT Cats dataset (https://www.kaggle.com/

datasets/imbikramsaha/cat-breeds).

literature (30–32): breed, cephalic type, and pain recognition. We
utilized the two datasets from these earlier studies to assess the
performance of various landmark-based automated pipelines on
these tasks. Additionally, we examined how their performance
was impacted when the precise but labor-intensive manual
landmarking process was substituted with a fully automated
detection system.

2 Methods

2.1 Datasets

The dataset relating to cat pain was collected previously under
the ethical approvals of the Institutional Animal Research Ethical
Committee of the FMVZ-UNESP-Botucatu (protocol number of
20/2008) and the University of Lincoln, (UID: CoSREC252) as
per Finka et al. (30). The dataset relating to cat breeds was
collected previously under the ethical approvals of the Institutional
Animal Research Ethical Committee of the FMVZ-UNESP-
Botucatu (protocol number 20/2008). The use of this dataset and
the generation of the data were approved by the delegated authority
of Nottingham Trent University, Research Ethics Committee, as
per Finka et al. (13). The current protocol using these datasets was
reviewed by the Ethical Committee of the University of Haifa, and
no further approval was required. All experiments were performed
in accordance with relevant guidelines and regulations.

The images in both datasets were manually annotated with
48 facial landmarks. Examples of images with the annotation
structure are shown in Figure 1. Specific details of landmark
placements and their relevance to facial musculature and CatFACS
action units are provided in Finka et al. (13, 30). While images
themselves were not augmented, the ground truth and detected
landmarks underwent normalization and centering to enhance
the robustness of subsequent analyses. Normalization scales the
landmark coordinates so that they fall between 0 and 1, and
centering translates the landmarks so that their centroid (mean
position of all landmarks) coincides with the origin of the
coordinate system. Additional augmentation techniques on data
include shifting random landmarks, complete landmark shifting,
and rotations.

2.1.1 The Cat Breed Dataset

This dataset included 1,662 images of cat facial images
annotated across n = 18 common breeds. The images were sourced
from Oxford Pet Dataset (35) and Google images. The breeds
were further divided by Finka et al. (13) into three categorical
cephalic types: dolichocephalic, mesocephalic, and brachycephalic.
Dolichocephalic, or “long-headed” cats, have elongated faces with
lengths greater than the width. Mesocephalic, or “middle-headed”
cats have square-like faces with approximately equal width and
length of the face. Brachycephalic, or “short-headed” cats, have flat
faces, and the muzzle area is located closer to the eyes. Figure 2
presents average landmark annotations for the three cephalic types.
The distribution of images over the types and breeds is provided in
Table 1.

2.1.2 The Cat Pain Dataset

We used the dataset generated as part of a previous study by
Finka et al. (30). The raw data comprised of footage from 29 healthy
domestic short-haired female cats undergoing ovariohysterectomy
as described in Brondani et al. (28). Cats were recorded at different
time points corresponding to varying intensities of pain: pre-
surgery (between 18–24 h during the preoperative period), 1-
h post-surgery (between 30 min and 1 h after the end of the
surgery, and prior to administration of additional analgesics),
and post-rescue analgesia (approximately 4 h after postoperative
analgesia). The final dataset contains images from 26 cat individuals
with 232 images of “No Pain” (pre-surgery stage and post-rescue
analgesia stage), and 232 images of “Pain” (1-h post surgery),
overall 464 images.

2.2 The cat facial landmarks automated
detector

The cat facial landmark detector used here is presented in
Martvel et al. (33). This AI pipeline uses a magnifying method to
localize landmarks, taking an image as input and producing 48 cats’
facial landmarks. First, it localizes the face (so no preprocessing
of the image is required), then determines five regions of interest
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FIGURE 2

Average facial landmarks (annotated manually) for the three di�erent cephalic types (13).

TABLE 1 Number of samples for each cat cephalic type and breed.

Cephalic type Breed Number of
samples

Dolichocephalic Total 390

Abyssinian 100

Bengal 100

Egyptian Mau 89

Oriental Shorthair 101

Mesocephalic Total 705

Birman 100

Domestic longhair 99

Domestic shorthair 107

Maine coon 101

Norwegian forest Cat 88

Ragdoll 110

Russian blue 100

Brachycephalic Total 567

American shorthair 96

Bombay 45

Devon rex 96

Exotic shorthair 100

Persian 101

Scottish fold 31

British shorthair 98

(ears, eyes, and the whiskers area), and then localizes landmarks
in each of these regions. The model was trained on the Cat Facial
Landmarks in the Wild (CatFLW) dataset (34), which contains
2091 facial images of cats annotated with the 48 landmark scheme
from Finka et al. (30).

2.3 Machine learning models

We have formulated the following benchmark tasks to be
addressed:

1. Cat breed recognition: given a facial image of a cat, detect the cat’s
breed out of 18 classes (the full list of the 18 breeds is presented
in Table 1).

2. Cephalic type recognition: given a facial image of a cat, detect its
cephalic type out of 3 classes (dolichocephalic, mesocephalic or
brachycephalic, see Table 1).

3. Pain recognition: given a facial image of a cat, detect whether it
is in pain (binary “Pain”/“No pain” classification).

Figure 3 presents a high-level overview of the AI pipelines
studied.

For the first two tasks, the models were trained using the
Cat Breed Dataset. We tested a sequence of ML models with
increasing levels of complexity. Each model was used for both
the breed and cephalic type recognition classification tasks as
the input features are identical, and only the target features are
altered. Initially, we tested the Random Forest (RF) model (36)
with a grid-search hyperparameter tuning (picked manually) (37)
and bidirectional elimination for the feature selection (38).
Specifically, we used a mixture of cost-complexity and SAT-
based post-pruning on the trees in the RF model to obtain
better generalization (39, 40). Afterward, we tested the Tree-
Based Pipeline Optimization Tool (TPOT), a genetic algorithm-
based automatic ML library (41). TPOT produces a full ML
pipeline, including feature selection engineering, model selection,
model ensemble, and hyperparameter tuning. In an orthogonal
testing direction, we used the Scientist-Machine Equation Detector
(SciMED) symbolic regression model, which searches for an
analytical function between the input features and the target
feature (42). Next, we moved to the deep-learning realm as it
is known to be able to handle high-dimensional and complex
tasks (43–45), as the ones we deal with. To this end, we initially
developed our own neural network (NN) model using a manual
trial-and-error process. Namely, we obtain a feed-forward (i.e., fully
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FIGURE 3

AI Pipeline Overview. The input is a cat facial image, which can be annotated either manually or using an automated landmark detector. The

intermediate stage is 48 landmark coordinates, which are then fed to a machine learning model for classification. RF, Random Forest; TPOT,

Tree-Based Pipeline Optimization Tool; SciMed, Scientist-Machine Equation Detector; NN, neural network; AE, AutoEncoder.

connected) NN with three layers (96, 64, 32, and 18), separated
by dropout layers with p = 0.1 drop rate. The Adam optimizer
with a learning rate of 10−4 is used for the training procedure
with a batch size of 8. The cross-entropy loss was utilized given the
categorical nature of the problem, and the primarymetric formodel
evaluation during training was accuracy. To test a larger-scale NN
architecture scale, we tested AutoKeras (46), an automatic deep-
learning library that automatically searches for NN architectures
and training hyper-parameters. Following this promising direction,
we came to the conclusion that the input feature space is not
informative as the data represents locations in an image (in a
Cartesian coordinate system). As such, we decided to divide the
classification and input data representation tasks. We repeated the
TPOT and AutoKeras tests such that both were obtained as an
input a 16-dimensional input generated from a fully connected
AutoEncoder NN (47) (AE) with three layers for the encoder and
decoder parts (96, 64, 32, 16, 32, 64, and 96).

The third task was previously explored on the Cat Pain

Dataset in Feighelstein et al. (31), where manually annotated facial
landmarks were used. We aimed to study an end-to-end automated
pipeline, focusing specifically on how the pain recognition model
performance is affected when we replace manually annotated
landmarks with automatically detected ones. For a fair comparison,
we followed the same preprocessing scheme as Feighelstein et
al. (31). Namely, a preprocessing pipeline took as input images
annotated with 48 landmarks, produced a set of multi-region
vectors, and then introduced them into the classification model.
During the preprocessing phase, the landmarks were centered as
part of face alignment and vectorized based on the four facial
regions. We used the same structured, fully connected NN for
the classification as in the breed/type classification. The model is

trained during ten epochs, optimizing a cross-entropy loss function
using an Adam optimizer with a 0.1 learning rate and a batch
size of 32. On each epoch, the training set is normalized using
standard scaling and augmented. We again chose the model’s
hyperparameters that achieved the best (minimal) validation loss.

As a validation method for the first and second tasks
(carried out on the Cat Breed Dataset), we used 5-fold cross-
validation. For the third task, which was carried out in a
different (balanced) Cat Pain Dataset, we used the stricter leave-
one-subject-out cross-validation with no subject overlap (48).
Due to the relatively low numbers of cats (n = 27 after
dataset balancing) in the dataset, following this method is more
appropriate (8, 49). By separating the subjects used for training,
validation, and testing, respectively, we enforce generalization
to unseen subjects and ensure that no specific features of an
individual are used for classification. For evaluation of the
facial landmark detector performance, the normalized mean error
(NME) (50) and normalized root mean squared error (NRMSE)
metrics using the inter-ocular distance (the distance between
the outer corners of the eyes) were used to measure average
detector errors. Additionally, to inspect how well breeds and
cephalic types are separated when using manual vs. automatically
detected landmarks, we used the t-distributed stochastic neighbor
embedding (t-SNE) (51) transformation to visualize the high-
dimensional data in two dimensions. This transformation provides
a visual and more intuitive representation of the model’s learned
feature space. Finally, each of the models was tested with
manually annotated landmarks and with automatically detected
landmarks using the detection pipeline from (33) described
above. The model’s performance was measured using accuracy
and F1-score.
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TABLE 2 Average normalized mean error (NME) and normalized root

mean squared error (NRMSE) for di�erent cephalic types and breeds (in %).

Cephalic
type

Breed NME (%) NRMSE
(%)

Dolichocephalic Type average 13.49 14.02

Abyssinian 9.49 11.20

Bengal 9.78 10.99

Egyptian Mau 9.55 11.73

Oriental shorthair 25.92 22.76

Mesocephalic Type average 9.16 9.89

Birman 9.56 10.12

Domestic longhair 8.34 8.86

Domestic shorthair 8.24 9.29

Maine coon 10.03 10.69

Norwegian forest cat 9.95 10.84

Ragdoll 9.58 10.12

Russian blue 8.57 9.46

Brachycephalic Type average 11.27 11.07

American shorthair 8.82 9.30

Bombay 9.93 10.57

Devon rex 20.68 18.79

Exotic shorthair 10.11 9.30

Persian 10.92 10.38

Scottish fold 10.59 10.81

British shorthair 7.87 8.18

3 Results

3.1 Landmark detection

Table 2 presents the average normalized mean error (NME)
and normalized root mean squared error (NRMSE) measurements
on the automatic detection of facial landmarks as compared
to manual annotations. The largest error is observed for the
dolichocephalic breeds and the smallest—for the mesocephalic
ones. In terms of breeds, the “easiest” breed (with minimal
error) for landmark detection is the (brachycephalic) British
Shorthair, and the “hardest” breed (with maximal error) is the
(dolichocephalic) Oriental Shorthair.

3.2 Breed and cephalic type recognition

Figures 4, 5 present the t-SNE visualization of the 18 breeds and
3 cephalic types, respectively, using both manual and automatically
detected landmarks. The visualization shows the possibility for a
better potential separation between breeds and types when using
the former; it also shows a better separation between cephalic types
than between breeds when using automatically detected landmarks.

Table 3 presents a comparison of the performance of pipelines
in the first two tasks, using different architectures, with the best
being AE+AutoKeras in both. Tables 4, 5 present the metrics in a
break-down to breeds and types using AE+AutoKeras model.

3.3 Pain recognition

Table 6 presents the performance of the pain recognition
pipeline for manual and automatically detected landmarks.
Performance for the latter is lower, reaching only 66% accuracy,
with the former performing with 73%.

4 Discussion

The facial landmark scheme of 48 landmarks, systematically
developed based on cat facial anatomy in Finka et al. (30), has
demonstrated its utility in several applications. That includes
geometric morphometric methods for accurately quantifying
changes in cat facial features (13, 30), landmark-based AI models
for pain recognition (31, 32) and enhancing the explainability of
deep learning models related to facial analysis of cats (32).

The annotation process is, however, extremely laborious and
time-consuming. According to Martvel et al. (33), it takes skilled
and trained annotators over 5.5min to annotate each image. For the
Cat Breed Dataset alone, this translates to more than 161 hours of
manual annotation work for a relatively small dataset, underscoring
the pressing need for automation of this process.

Automated localization of facial landmarks, also known as
fiducial points (52), is a cornerstone of the field of automated
human facial analysis. It has numerous applications for face
alignment, feature extraction, facial expression recognition, head
pose estimation, eye gaze tracking, facial unit recognition, and
many more tasks (53–57); which has been addressed by a growing
body of work. In the human domain, affective computing is a
well-developed discipline, integrating aspects of facial expression
analysis and gesture recognition with advanced, real-time emotion
recognition platforms such as Noldus Face Reader, Microsoft
Azure Cognitive Services, Affectiva AFFDEX, and Emotient
FACET. Moreover, AI automatic pain estimation applications
for assessing human pain from facial expressions have already
been integrated into clinical settings for non-verbal patients.
An example is PainChek (58), which uses facial landmarking
techniques and has already been applied for patients with dementia
and infants (59, 60).

The question arises: how close are we to developing mobile
applications like “CatPainChek” or “Cat Google Translate” that
can accurately interpret cats’ affective states? To address this, it’s
crucial to scrutinize the methodologies used in creating AI models
for recognizing human affective states. Human face and gesture
analysis has existed as a research area since the 1970s, and a vast
number of datasets and manual annotations of facial expressions
and emotional states were available to boost the development of
AI algorithms and models. These datasets contained annotations
of millions of frames and, in many cases, were created using
actors. For instance, the Actor Study Database, published in
Seuss et al. (61), contains 68 minutes of high-quality videos of
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FIGURE 4

T-distributed stochastic neighbor embedding (t-SNE) distributions for breed recognition: manual landmarks (left) and automatically detected

landmarks (right).

FIGURE 5

T-distributed stochastic neighbor embedding (t-SNE) distributions for cephalic type recognition: manual landmarks (left) and automatically detected

landmarks (right).

facial expressions performed by 21 actors, whose tasks ranged
from displaying specific Action Units and their combinations
at different intensities to enactment of a variety of emotion
scenarios. Clearly, compiling datasets of cat body language and
facial expressions tied to their emotional and welfare states is
significantly more complex than it is for humans since cats
obviously cannot serve as “actors” nor can we be totally confident
about their emotional state, although scientific frameworks for

inferring different emotional states in non-human animals are
being developed (62). These include whole subject and contextual
evaluation in addition to facial analysis. Indeed, pain is perhaps
comparatively the easier affective state that we can both ethically
and practically operationalize with certainty compared to other,
more complex feline emotional states.

The development of automated facial analysis techniques
for animals is just beginning to emerge. Broomé et al. (49)
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TABLE 3 Comparison of model performance for manual and automatic landmarks for the tasks of cephalic type and breed recognition.

Task Model Manual Automatic

Accuracy F1-score Accuracy F1-score

Cephalic type RF 0.72 0.71 0.66 0.64

TPOT 0.78 0.76 0.73 0.70

SciMED 0.59 0.61 0.54 0.58

NN 0.82 0.79 0.78 0.75

AutoKeras 0.82 0.80 0.79 0.75

AE + TPOT 0.82 0.80 0.79 0.74

AE + AutoKeras 0.82 0.80 0.79 0.75

Breed RF 0.54 0.52 0.38 0.34

TPOT 0.62 0.61 0.43 0.42

SciMED 0.55 0.55 0.42 0.40

NN 0.68 0.67 0.47 0.45

AutoKeras 0.69 0.67 0.48 0.46

AE + TPOT 0.70 0.68 0.47 0.44

AE + AutoKeras 0.70 0.68 0.48 0.45

RF, Random Forest; TPOT, Tree-Based Pipeline Optimization Tool; SciMed, Scientist-Machine Equation Detector; NN, neural network; AE, AutoEncoder.

review state-of-the-art studies in the field. Critical to this is
the need for valid benchmarks, which are commonly available
in human domains. In machine learning research, benchmarks
typically consist of well-defined datasets, evaluation metrics, and
specific tasks or challenges. Benchmarks are crucial in research as
they facilitate the objective comparison of different approaches,
promoting transparency and reproducibility in scientific findings.
For instance, in the human domain, there are numerous benchmark
datasets [such as the Cohn-Kanade dataset (63), the Toronto
face database (64), the Actor Study Database (61) and many
more]. This lack of similar datasets for animals is a significant
hindrance to progress in the field but is not insurmountable with
appropriate investment. Species-specific benchmarking resources
can promote comparison between approaches and systematize the
field. Another issue discussed in Broome et al. is considerations
of ethics and privacy, especially when producing datasets with
animal participants where emotional states and especially pain
are induced. This often makes it difficult to make datasets
publicly accessible.

The contributions of the current study address this gap in
several dimensions. First of all, we evaluated the usefulness of the
automated detector of cat facial landmarks on three non-trivial
machine learning tasks: breed, cephalic type, and pain recognition.
As anticipated, substituting manually identified landmarks with
their automatically detected equivalents led to a decrease in
performance across all tasks. The key question is to what extent
this reduction in accuracy is an acceptable trade-off for achieving
complete automation. The pain recognition task presented a 7%
drop in accuracy and 9% drop in F1-score. The cephalic type task
presented only 5% drop in F1-score for the best model. The breed
recognition task turned out to be the most sensitive in this context,
showing a drop in 23% in F1-score for the best model. It should

be noted that since the type and breed recognition tasks used
unbalanced datasets, F1-score is the more informative metric for
performance in this case.

Going deeper into the break-down to breeds, Table 4 shows
that the largest drop in performance (moving from manual to
automatic) is observed in Americal Short Hair (40%), Scottish
Fold (36%) and Maine Coon (31%). The smallest drop occurs in
Bengal (7%); however, the performance of the model is very low
for both. The breed recognition task turns out to be extremely
difficult for landmark-based models even when using manual
landmarks: the best model reaches 68% in F1-score. As illustrated
in Figure 6, this difficulty arises from the subtle differences in
facial landmarks within certain breeds like the British Shorthair
and Ragdoll. Despite belonging to distinct cephalic types, these
breeds exhibit very similar geometric structures [this could be
due to the two-dimensional geometric information not sufficiently
factoring in muzzle length; it could also be introduced by labeling
“errors” due to the breed and type labeling methodology used in
Finka et al. (13)]. Other breeds, however, such as the Scottish Fold
and Maine Coon, have distinct visual characteristics that set them
apart, contributing to the relatively higher accuracy observed in
their classification. Landmark-based approaches seem not to be the
optimal choice for breed classification.Moving to black-boxmodels
has the price of losing explainability; however, such approaches
seem more promising for this type of task. For instance, Ráduly et
al. (65) reach very high accuracy in dog breed classification using
deep learning techniques (although their dataset is much larger
than the one used in this study).

Our models are much more successful with the cephalic
type classification task, on the other hand, which presents
small differences between manual and automated landmarks
and has a high performance of 80% in F1-score. Scrutinizing
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TABLE 4 Accuracy and F1-score metrics for various breeds using

AE+AutoKeras model.

Breed Manual Automatic

Accuracy F1-
score

Accuracy F1-
score

Abyssinian 0.86 0.86 0.63 0.58

Bengal 0.51 0.48 0.42 0.41

Birman 0.60 0.57 0.37 0.33

Bombay 0.78 0.77 0.50 0.50

British
shorthair

0.69 0.65 0.51 0.45

Egyptian Mau 0.74 0.72 0.54 0.52

Maine coon 0.92 0.91 0.63 0.60

Persian 0.51 0.51 0.38 0.36

Ragdoll 0.67 0.64 0.43 0.41

Russian blue 0.56 0.53 0.41 0.37

American
shorthair

0.94 0.94 0.58 0.54

Domestic
longhair

0.61 0.58 0.40 0.39

Devon rex 0.52 0.49 0.34 0.30

Domestic
shorthair

0.89 0.86 0.61 0.57

Exotic
shorthair

0.90 0.87 0.65 0.63

Norwegian
forest cat

0.52 0.50 0.40 0.37

Oriental
shorthair

0.54 0.53 0.34 0.30

Scottish fold 0.87 0.86 0.55 0.50

Average 0.70 0.68 0.48 0.45

TABLE 5 Accuracy and F1-score metrics for various cephalic types.

Manual Automatic

Accuracy F1-
score

Accuracy F1-
score

Dolichocephalic 0.79 0.78 0.78 0.76

Mesocephalic 0.81 0.79 0.78 0.73

Brachycephalic 0.86 0.83 0.81 0.77

Average 0.82 0.80 0.79 0.75

TABLE 6 Pain recognition model performance metrics.

Manual Automatic

Accuracy F1-score Accuracy F1-score

0.73 0.76 0.66 0.67

the breakdown to the types on Table 5, the best performance
is for the brachycephalic type, which also exhibits the largest
drop in accuracy when moving to automated landmarks. This

could be explained by the illustration in Figure 2, which shows
the brachycephalic average landmarks have the most distinctive
structure out of the three types.

The considerable differences in performance both in landmark
detection and classification among various breeds (even within one
cephalic type) and cephalic types can potentially be partly attributed
to the unbalanced representation of each category in our existing
datasets. Based on the results of Sexton et al. (24), we can also
assume that the color of the coat and markings are other elements
that influence the evaluation of landmark detection. It’s plausible
that training our automated detector on specific cephalic types
or breeds could enhance its accuracy for those particular groups.
However, the cat pain datasets currently available lack a diverse
range of breeds and cephalic types. A valuable avenue for future
research would be to enlarge these datasets and investigate the
potential of models tailored to specific breeds and types within
“pain” and “no pain” classifications.

This study has created landmark-based benchmark challenges
for cat facial analysis by providing datasets, annotations, and
benchmark models as a point of reference. Our aim is for these
benchmarks to act as a foundational resource, enabling researchers
to improve these results and develop new methods for analyzing
cat facial expressions. In particular, it is important to highlight the
difficulty in landmark detection of dolichocephalic breeds such as
the Oriental short hair. The morphological traits of these breeds
are quite extreme, and future datasets should aim to include more
samples from these breeds.

In this context, another recent study by Steagall et al. (66)
should be mentioned, which provided a deep learning pipeline for
cat pain recognition based on facial landmarks. The study used
an alternative reduced scheme of 37 landmarks, developing also
an automated detector for them. Their pipeline is significantly
outperformed by the current pipeline in terms of landmarks
detection accuracy (their pipeline reaching only 16.76% NRMSE
at best on aligned faces and worse on non-aligned, compared to
the results in Table 2 on non-aligned images), while using fewer
landmarks. However, it further highlights the utility of automated
cat facial landmark detection and the importance of systematizing
this emerging field. It is important to recognize, furthermore, that
the creation of multiple landmark schemes that are difficult to
compare poses a significant challenge to the systematic progression
of the field. Future advancements in landmarking techniques
should aim to build upon existing frameworks, leveraging the
progress already made in this area.

5 Conclusions

In this paper we systematically explored the usefulness of the
automated cat facial landmark detector introduced in Martvel et al.
(33) for three tasks related to facial analysis: breed, cephalic type
and pain recognition. The breed recognition pipeline performed
below chance level, indicating that deep learning approaches
are a better fit for this task. Our fully automated end-to-end
pipelines reached accuracy of 75% and 66% in cephalic type
and pain recognition respectively, suggesting that landmark-based
approaches hold promise for automated pain assessment and
morphological explorations.
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FIGURE 6

Comparison of breed-averaged normalized manual facial landmarks for British Shorthair, Ragdoll, and Scottish Fold.
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