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Background: The histopathological classification of T-cell lymphoma (TCL) 
in humans has distinctive mutational genotyping that suggests different 
lymphomagenesis. A similar concept is assumed to be observed in dogs with 
different TCL phenotypes.

Objective: This study aimed to identify the previously reported single-nucleotide 
polymorphisms (SNPs) in both human beings and dogs in canine TCLs and null-
cell lymphomas (NCLs) and to design compatible oligonucleotides from each 
variant based on the multiplex polymerase chain reaction.

Methods: Genomic DNA was extracted from 68 tumor specimens (62 TCLs and 
6 NCLs) and 5 buffy coat samples from dogs with TCL. Four TCL subtypes and 
NCL were analyzed in 44 SNPs from 21 genes using the MassARRAY.

Results: The greatest incidences of SNPs observed in all TCL subtypes and NCL 
ware SATB1 c.1259A  >  C, KIT c.1275A  >  G, SEL1L c.2040  +  200C  >  G, and TP53 
c.1024C  >  T, respectively. Some SNP locations were statistically significant 
associated with NCL, including MYC p.S75F (p  =  0.0003), TP53 p.I149N 
(p  =  0.030), PDCD1 p.F37LX (p  =  0.012), and POT1 p.R583* (p  =  0.012).

Conclusion: Each TCL histological subtype and NCL are likely to contain 
distinctive mutational genetic profiles, which might play a role in lymphoma 
gene-risk factors and might be useful for selecting therapeutic target drugs for 
each canine patient.
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Introduction

Canine lymphoma can be categorized into B-cell, T-cell, and null-cell (non-B, non-T-
cell) lymphomas (1). Regardless of the prevalence of TCL and rare NCLs, a frequent 
histopathological subtype of TCL is peripheral TCL, not otherwise specified (PTCL-NOS) 
(2). Other less common subtypes include T-zone lymphoma (TZL), enteropathy-
associated T-cell lymphoma (EATCL), and cutaneous T-cell lymphoma (CTCL) (3). 
CTCL can be either epitheliotropic (ECTCL) or non-epitheliotropic (NECTCL). Canine 
TCL often has a worse prognosis than B-cell lymphoma (4); however, each TCL subtype 
often shows a variable prognosis and disease outcome. TZL has a better prognosis because 
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of its indolent disease course (5). Based on the anatomic locations 
of TCL, patients with hepatosplenic and gastrointestinal 
lymphoma often have shorter survival times than those with 
certain forms of multicentric or cutaneous lymphoma (6–10). 
Moreover, the overall survival time of dogs with ECTCL is shorter 
than that of dogs with NECTCL (11). Due to their differences in 
prognosis, a unique therapy for each TCL subtype may be required. 
Many studies have suggested multidrug chemotherapy for TCL, 
such as a combination of mechlorethamine, vincristine, 
prednisone, and procarbazine (12); lomustine, vincristine, 
procarbazine, and prednisolone (13), or vincristine, 
L-asparaginase, doxorubicin, cyclophosphamide, actinomycin-D, 
procarbazine, prednisolone, and lomustine (14), to improve 
progression-free survival and overall survival time in lymphoma 
dogs. However, CHOP-based induction (vincristine, 
cyclophosphamide, doxorubicin, and prednisolone) is still 
preferred by veterinary oncologists, and lomustine-based 
protocols are used as rescue treatments (15).

Specific molecular signatures of PTCL-NOS in humans can 
be classified into TBX21 and GATA3 subgroups, which are T helpers 
(TH)1 and TH2-cell differentiation regulators, respectively (16). PTCL-
NOS-GATA3 frequently exhibited mutations of PTEN and TP53, with 
co-occurring amplifications of MYC and STAT3. For PTCL-NOS-
TBX21, mutations of DNA methylation regulator genes were noted in 
TET1, TET3, and DNMT3A (17). For human CTCL, specific genetic 
mutations were involved in T-cell activation (CD28 and RHOA), cell 
apoptosis (FAS), NF-κB pathways (NFKB2 and STAT5B), chromatin 
remodeling (DNMT3A and ARD1A), and DNA damage response 
(TP53 and CDKN2A) (18). Moreover, the loss-of-function mutation 
of PDCD1—the gene encoding an inhibitory receptor program death 
protein 1 (PD-1)—was driven by aggressive behavior in CTCL (19). 
For EATCL, the most frequently mutated genes were associated with 
the JAK–STAT pathway in SETD2, STAT5B, JAK1, JAK3, and STAT3 
(20–22). Hence, these findings are useful for selective potential 
therapeutic opportunities in each TCL subtype as a single agent or in 
combination with anti-neoplastic drugs. For example, the NF-κB 
inhibitor bortezomib and the PI3K-δ,λ inhibitor duvelisib were 
applied in clinical trials treating PTCL and CTCL, and the overall 
response rate ranged from 31 to 67% (23, 24).

In canine TCLs, Labadie et  al. reported SNPs in TZL using 
genome-wide association mapping (25). Several SNPs of hyaluronidase 
genes were associated with disease risk for TZL, including SPAM1K482R, 
HYALP1M463T, and HYAL4G454S, S434F, L378I. Another study investigated 
somatic mutations in a variable group of TCL with limited subtyping 
in Golden retrievers and Boxers using whole-exome sequencing (26). 
The common mutated genes in both breeds were noted on SATB1 
c.1259 A > G p.Q420R, while PTEN c.975 C > T p.L325 = was found in 
Boxer-TCLs (26, 27). Similar variants using RNA sequencing were 
found in two dogs with PTCL (27). Three somatic missense mutations 
were described in canine TCL, including MYC c.185C > T p.Ser62Phe, 
TP53 c.715G > A p.Arg239Trp, and MET c.3804C > G p.Asp1268Glu 
(28). Nonetheless, no study has examined novel SNPs associated with 
human TCL in dogs. Thus, our study aimed to investigate SNP 
genotyping patterns in canine PTCL, ECTCL, NECTCL, EATCL, and 
NCL based on the important gene-related lymphoma risks in human 
and canine TCLs (19, 29–31) and to obligate primer design for 
multiplex PCR, using the MassARRAY platform (Agena Bioscience, 
CA, United States).

Materials and methods

Study samples and immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) block archives were 
retrieved from the Department of Pathology, Faculty of Veterinary 
Science, Chulalongkorn University, between 2008 and 2021 and from 
three private veterinary labs (SQ Reference Lab, China; Vet Central 
Lab, Thailand; and Vet Clinical Center, Thailand) between 2020 and 
2021. Only patients who had not previously received chemotherapeutic 
drugs were enrolled in this study. According to physical examination, 
abdominal ultrasonography, and buffy-coated smears, all lymphoma 
dogs were in at least WHO clinical stage III (15). The selected cases 
included multicentric, cutaneous, and alimentary lymphomas that 
were recut into 3-μm thickness, stained with hematoxylin and eosin, 
and immunostained against CD3 (Peter F. Moore, United States), 
CD20 (ab27093, Abcam, United States), and CD79a (HM57, Abcam) 
or Pax5 (1EW, Leica, United Kingdom). Immunohistochemistry was 
performed as described elsewhere (30). Only lymphoma samples that 
had no immunoreactivity for B- and T-cell markers were further 
investigated with CD18 (histiocyte marker, Peter F. Moore), CD117 
(mast cell marker, MIB1, Dako), and MUM1 (plasma cell marker, 
ab133590, Abcam) to rule out the possibility of other hematopoietic 
lineages. Finally, cases that showed negative to specific leucocyte 
markers but positively immunostained with CD45 (common 
leucocyte antigen) were assigned as NCL.

To evaluate the effects of missense SATB1Q420P mutation on 
programmed death ligand 1 (PD-L1) and missense TP53I149N mutation 
on p53, five samples from each group (four SATB1 mutants and one 
SATB1 wild type vs. two TP53 mutants and three TP53 wild types) 
were immunolabeled against PD-L1 and p53, respectively. In brief, the 
tissue section was preheated by citrate buffer pH 6 at 95°C for 20 min 
and blocked endogenous peroxidase and non-specific binding protein 
by 0.3% (v/v) H2O2 for 30 min and 5% (w/v) bovine serum albumin 
for 20 min, respectively. Anti-CD45 antibody (Peter F. Moore) was 
incubated in a 1:10 dilution at room temperature (RT) for 1.5 h, while 
PD-L1 (1:100, clone 5D2) (32) and p53 (1: 500, PA5-27822, Invitrogen, 
United  States) were incubated at RT for 2 h. Envision mouse/
rabbit-HRP (Dako, Hilden, Germany) was used as a secondary 
antibody, and 3,3′-diaminobenzidine was used as a substrate. 
Histopathological diagnosis was made by a board-certified veterinary 
pathologist (TK) according to WHO classifications (3). Signalment 
and clinical history of all selected cases were recorded; however, most 
cases were lost due to a lack of treatment follow-up.

DNA extraction

A total of 70–100 μm FFPE tissue scrolls were collected into a 
sterile 1.5 mL microtube. The genomic DNA from each sample was 
then extracted using a DNeasy Blood and Tissue Kit (Qiagen, 
Germany). After deparaffinization with xylene and absolute ethanol, 
the sample was processed according to the manufacturer’s instructions. 
The DNA concentration of each sample was then measured with a 
NanoDrop Lite Spectrophotometer (Thermo Scientific, United States). 
The requirement of high-quality DNA for targeted SNP genotyping 
using the Agena Bioscience MassARRAY system is a 260/280 ratio of 
>1.8 and a concentration of >10 ng/μL.
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iPLEX genotyping process

The dog reference genomes were obtained from Dog10K_
Boxer_Tasha and UMICH_Zoey_3.1.1 MassARRAY was used for 
genotyping of the 44 targeted SNPs in 21 different genes, as shown 
in Table 1. The SNP locations were selected based on the previous 
studies (19, 26, 27, 29–31, 36). A primer pair for each location was 
designed by AgenaCx software (Agena Bioscience). First, multiplex 
PCR primers were amplified in the target regions by using a 5-uL 
reaction of 0.5 μL of 10X PCR buffer (Agena Bioscience), 2 mM 
MgCl2, 500 μM dNTPs, 0.5 μM of each amplification primer, and 
0.2 U DNA polymerase. Second, 1.7 U shrimp alkaline phosphatase 
(SAP, Agena Bioscience) and 0.17 μL of 10X SAP buffer were added 
to the first-step PCR product to dephosphorylate residual 
nucleotides. Third, the iPLEX extension reaction was composed of 
0.2 μL of 10X iPLEX buffer (Agena Bioscience), 0.2 μL of 10X dNTP/
ddNTP combination, 0.142 U iPLEX enzyme, and 0.5–1.57 μM 
extend primer mix. These three steps were carried out by T100 
thermal cycler (Bio-Rad, United States), and the cycling conditions 
were followed by Sirivisoot et al. (30). The final extension products 
were desalted and transferred onto a SpectroChip with an automated 
nano-dispenser. The different sizes of SNP variations were identified 
using a matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometer. Genotyping of each target site was presented as 
mass spectrum peaks using a MassARRAY analyzer. The percentage 
of determinate 44 variants (%call rate) for each sample must 
be achieved by ≥90%.

Statistical analysis

A total of 44 SNP locations were calculated for the correlation 
with anatomical forms and histological subtypes of TCL/NCL using 
the chi-square test by GraphPad Prism version 9.0 for macOS 
(GraphPad Software, United States).

Results

Patient information

The demographics of the 68 dogs are shown in Table  2. The 
median age of dogs with TCL/NCL was 8 years (ranging from 1 to 
15 years). Among the 35 purebred dogs, the most prevalent breeds 
were Golden retriever (28.57%, 10/35), Shih Tzu (14.29%, 5/35), 
Poodle (8.57%, 3/35), and Labrador retriever (8.57%, 3/35).

Based on the anatomical locations, 21 cases were multicentric, 39 
cases were cutaneous, and 8 cases were alimentary. According to 
histopathological and immunophenotyping results of 68 cases, there 
were 18 PTCLs, 21 ECTCLs, 15 NECTCLs, 8 EATCLs type I, and 6 
cases of NCL (CD3-, CD20-, CD79a-, CD117-, CD18-, MUM1-, and 
C45+) (Figure 1). Among four aberrant TCL cases (CD3+, CD20+, 
and Pax5-), one dog had nodal PTCL, and three dogs had ECTCL. For 

1 https://www.ensembl.org

two biphenotypic TCLs (CD3+, CD20+, and Pax5+), one case had 
nodal PTCL and the other case had EATCL.

iPLEX genotyping results

Each lymphoma dog had a different mutational genotyping 
profile, even though they had a similar TCL subtype (Figure 2). The 
highest genetic variations frequently observed in all TCL/NCL 
subtypes were SATB1 c.1259A > C p.Gln420Pro (89.71%, 61/68), KIT 
rs22299980 p.Thr425 = (89.39%, 59/66), SEL1L c.2040 + 200C > G 
(82.35%, 56/68), and TP53 c.1024C>T p.Gln342Ter (80.39%, 41/51). 
When comparing each SNP across anatomic locations, some SNP 
variants were frequently observed in specific forms, regardless of 
statistical significance. For instance, the SNPs mainly found in 
cutaneous TCL were TP53 c.640_641insT (53.85%, p = 0.08). SEL1L 
c.1248 + 56G > C was noted in 50% of intestinal TCL (p = 0.16). 
SNORD3A 14:11463068 G > A was regularly mutated in nodal TCL 
(40%, p = 0.12).

Each SNP location was analyzed to determine the association 
among five histological subtypes by chi-square test. MYC c.224C > T 
(p.Ser75Phe, p = 0.0003), TP53 c.446 T > A (p.Ile149Asn, p = 0.030), 
PDCD1 c.108_109insCT (p.Phe37LeufsTer35, p = 0.012), and POT1 
c.1747C > T (p.Arg583Ter, p = 0.012) were significantly mutated in 
NCLs (Figure 3).

All primer pairs of each SNP location had amplification efficiency 
in multiplex PCR of more than 90%, except for TP53 c.1024C > T, 
TRAF3 c.942_949dup (p.Leu317ProfsTer9), PTEN c.975C > T 
(p.Leu325=), and TRAF3 rs851689319 (p.Lys284Ter), which had 75% 
(51/68), 79% (54/68), 81% (55/68), and 90% (61/68), respectively.

To distinguish a germline from a somatic mutational profile, the 
authors selected five archival-matched buffy coat samples from 
PTCL dogs (dog no.7–10 and dog no.14) to assess this SNPs panel 
compared to TCL specimens. Somatic SNPs were uniquely varied 
in each dog, as shown in Figure 4. The frequent somatic mutation 
was seen in TP53Q342*(4 out of 4 dogs), while other somatic variants, 
for instance, MET, TP53, and RHOA were found in 20% (1 out of 
5 dogs).

This study investigated the effect of SATB1Q420P on PD-L1 
expression in canine neoplastic T-cells. Four cases of mutant and one 
case of wild-type SATB1 were immunolocalized for PD-L1. In four 
mutant dogs, neoplastic T lymphocytes expressed strong cytoplasmic 
intensity against PD-L1 compared to the wild type 
(Supplementary Figure S1). Therefore, T-cell anergy and exhaustion 
might be one of the lymphomageneses in dogs that are related to 
SATB1 mutation.

Two NCLs having TP53I149N were evaluated for their p53 
expression status. Interestingly, both dogs with TP53I149N had a loss of 
p53 expression (<1% of positive nuclei) when compared to three dogs 
with wild-typed TP53, which showed weak and heterogenous intensity 
of positive cells <10% (Supplementary Figure S2).

Discussion

In total, 44 targeted SNP panels were designed and evaluated 
using the MassARRAY in 68 FFPE specimens of canine TCLs and 
NCLs. The overall pathways of the targeted genes in this study are 
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TABLE 1 A total of 44 specified single nucleotide polymorphisms (SNPs) were selected and investigated in canine T-cell and null-cell lymphomas.

Genes SNPs Locations Mutations Existing 
variants

References

KIT c.1275A > G 13:47131711 Thr425= rs22299980 (30, 33)

PTEN c.975C > T 26:37346711 Leu325= – (26, 27, 30)

ENSCAFG00000024436 (HYALP6) c.1317A > G 14:11444847 Leu439= – (25, 30)

LMNB1 c.1184C > T 11:14831257 Ser395Leu – (30, 34)

MET c.3804C > G 14:55094583 Asp1268Glu – (28, 30)

MVB12A c.361G > A 20:45281784 Asp121Asn – (30, 34)

MYC c.224C > T 13:25171460 Ser75Phe – (28, 30)

SATB1 c.1259A > C 23:24686804 Gln420Pro – (26, 27, 30)

TP53 c.709C > T 5:32702350 Arg237Trp rs852661628 (28–30)

c.1024C > T 5:32701110 Gln342Ter –

c.311_312insA 5:32703552 Thr105AspfsTer47 –

c.446 T > A 5:32702916 Ile149Asn –

c.640_641insT 5:32702418 Gly214ValfsTer3 –

PDCD1 c.136G > T 25:51833128 Glu46Ter – (31)

c.233A > G 25:51833031 Lys78Arg –

c.108_109insCT 25:51833155 Phe37LeufsTer35 –

POT1 c.850C > T 14:10733311 Arg284Cys – (30, 35)

c.927del 14:10733387 Phe309LeufsTer3 –

c.1747C > T 14:10752708 Arg583Ter –

c.1928 T > C 14:10756216 Phe643Ser –

TRAF3 c.850A > T 8:70295454 Lys284Ter rs851689319 (30, 35)

c.906del 8:70295509 Ile302MetfsTer21 –

c.908dup 8:70295512 Arg304GlufsTer9 –

c.942_949dup 8:70295553 Leu317ProfsTer9 –

c.968_971del 8:70300522 Ile323ThrfsTer7 –

c.1652del 8:70302097 Asp551ValfsTer9 –

c.1434_1445del 8:70301879 Met478_Tyr482delinsIle –

c.1591_1592insTC 8:70302037 Ala531ValfsTer14 –

c.1339del 8:70301784 Thr447ArgfsTer14 –

c.1195del 8:70301640 Leu399TrpfsTer20 –

STAT3 c.1919A > T 9:20069778 Tyr640Phe – (19)

RHOA c.350A > T 20:39804089 Asn117Ile – (19)

c.351C > G 20:39804090 Asn117Lys –

c.351C > A Asn117Lys –

SPAM1 c.1445A > T 14:11388961 Lys482Met – (25, 30)

c.1445A > G Lys482Arg rs851582160

c.1445A > C Lys482Thr –

FLT3 c.10 + 1601A > C 25:11645948 Intron variant – (30, 33)

c.10 + 1830A > G 25:11646177 Intron variant –

c.10 + 13857G > C 25:11658204 Intron variant –

ZNHIT6 c.-14G > C 6:64984982 5’UTR variant – (30, 34)

(Continued)
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shown in Figure  5. Most variants were observed in TCL/NCL 
subtypes except for MYCS75F, LMNB1S395L, or STAT3Y640F which were 
absent in PTCL. The highest frequency of genetic mutations in canine 
TCL was found at SATB1Q420P and KITT425=, respectively, and similar 
locations were reported in canine nodal B-cell lymphomas (30). 

However, the significance of the KIT mutation was synonymous, 
causing a low impact on carcinogenesis. The variants in hyaluronidase 
(SPAM1 and ENSCAFG00000024436/HYALP6) and thyroid hormone 
regulation (DIO2) genes reported in canine TZL (25) were also 
detected in other histologic TCLs, including PTCL, ECTCL, 
NECTCL, EATCL, and NCL. Low molecular weight hyaluronan (a 
byproduct of ligand activation) has pro-inflammatory and 
pro-oncogenic effects that might be associated with cell proliferation, 
angiogenesis, and metastasis (37, 38). Moreover, three intron variants 
of SEL1L were present in 34–82% of the TCL/NCL subtypes. Intron 
mutations impact as a genetic modifier. SEL1L is an unfolded protein 
response gene that is stimulated during the accumulation of unfolded 
and misfolded proteins in endoplasmic reticulum stress and plays a 
role in the protein degradation pathway through the ubiquitin-
proteosome system (39). In one study, downregulation of SEL1L 
significantly decreased the expression of TIMP and PTEN involving 
tumor invasion in human pancreatic cancer (40). Hence, the effect 
pathway of SEL1L, the mutation function of hyaluronidase genes, and 
hyaluronan expression levels need further investigation to confirm 
their contribution to lymphoma pathogenesis in dogs.

Mutations of PTEN and SATB1 were frequently found in 12–25% 
of canine TCL (26, 27). In a recent study, a missense mutation of 
SATB1Q420P was noted in TCL and NCL, whereas a synonymous 
mutation of PTENL325= was exhibited in one PTCL (5%), three 
ECTCLs (18%), and one EATCL (12%). SATB1, a global chromatin 
organizer, is dysregulated in human cutaneous TCL by promoting the 
expression of TH-2 cytokines (IL-5 and IL-9), which were appropriate 
for the tumor microenvironment (41). SATB1 also demonstrated an 
inhibitory effect on PD-L1 expression in T lymphocytes (42). A low 
SATB1 mRNA expression level was related to an unfavorable 
prognosis in human mycosis fungoides and revealed decreased 
eosinophil infiltration, increased large-cell transformation, a high 
Ki-67 index, and elevated PD-1 expression (43). The SNPs of MYCS75F, 
MET (c.3804C > G, p.Asp1268Glu), and TP53 (c.709C > T, 
p.Arg237Trp; c.1024C > T, p.Gln342Ter; c.311_312insA, 
p.Thr105AspfsTer47; c.446 T > A, p.Ile149Asn; and c.640_641insT, 
p.Gly214ValfsTer3) from previous publications (19, 28, 29) were also 
observed in the current study. TP53Q342* (80.39%) and METD1268E 
(69.7%) were highly mutated in canine TCLs/NCLs. The oncogenic 
MET gene was upregulated in human PTCL and EATCL, and its 
gain-of-function contributed to T-cell lymphomagenesis (44, 45); 
therefore, it may play an important role in dogs as well.

Even though POT1 and TRAF3 polymorphisms were not 
described in four cases of canine TCL (35), we included them in our 
genotyping panel due to their detection in preliminary samples. A 

TABLE 1 (Continued)

Genes SNPs Locations Mutations Existing 
variants

References

DIO2 c.-128-3748 T > G 8:52321507 Intron variant – (25, 30)

SEL1L c.2040 + 200C > G 8:53336337 Intron variant –

c.1248 + 56G > C 8:53344119 Intron variant –

c.777 + 1,097 T > C 8:53354569 Intron variant –

SNORD3A G > A 14:11463068 Upstream gene variant –

ENSCAFG00000053717 G > A 14:11491220 Upstream gene variant –

FIGURE 1

Nodal null-cell lymphoma. (A) The nuclei of neoplastic cells are large 
>2× of a red blood cell, finely stipple to vesiculate chromatin, and 
contain 1–2 prominent nucleoli with a scant amount of cytoplasm. 
H&E. Bar  =  10  μm. The neoplastic cells show cytoplasmic 
immunolabeling with CD45 (B) and are negative for CD20 (C), 
CD79a (D), CD3 (E), CD18 (F), CD117 (G), and MUM1 (H). IHC. 
Bar  =  10  μm.
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FIGURE 2

Landscape of single-nucleotide polymorphisms in canine T-cell and null-cell lymphomas. Genomic analysis of 21 mutated genes was harbored in 68 
dogs with 4  T-cell lymphoma variants: peripheral T-cell lymphoma (PTCL), epitheliotropic cutaneous T-cell lymphoma (ECTCL), non-epitheliotropic 
cutaneous T-cell lymphoma (NECTCL), enteropathy-associated T-cell lymphoma (EATCL), and null-cell lymphoma (NCL). *No call indicates a failure to 
detect either a wild-type or mutant peak.

total of 4 variants of POT1 and 10 variants of TRAF3 were identified 
in 7–41% and 4–29% of all TCL/NCL specimens, respectively. A 
tumor necrosis factor receptor-associated factor 3 (TRAF3) serves as 
a tumor suppressor in B-cell lymphoma; nevertheless, it is required for 
the cell proliferation of anaplastic large T-cell lymphoma by activating 

the PI3K/AKT and JAK/STAT pathways (46). Another study of 
mutations affecting the protection of telomere 1 (POT1) explained that 
POT1 inhibition in CTCL induced telomere fragility, replication fork 
stalling, and telomere elongation, which led to defective telomere 
replication during tumorigenesis (47). Thus, a significant mechanism 

TABLE 2 Demographic information of 68 dogs with each T-cell lymphoma subtype and null-cell lymphoma.

PTCL (n  =  18) ECTCL (n  =  21) NECTCL (n  =  15) EATCL (n  =  8) NCL (n  =  6)

Dog breed

 Purebred 11 10 6 5 3

 Mixed 3 6 4 – 3

 Unknown 4 5 5 3 –

Gender

 Male 5 9 4 4 3

 Mc 2 1 1 1 1

 Female 5 3 4 1 1

 Fs 2 4 2 – 1

 Unknown 4 4 4 2 –

 Mean age in years (age range) 6.8 (2–15) 8.1 (3–14) 6.6 (1–15) 10.5 (8–13) 9.2 (6–15)

EATCL, enteropathy-associated T-cell lymphoma; ECTCL, epitheliotropic cutaneous T-cell lymphoma; Fs, sprayed female; Mc, castrated male; NCL, null-cell lymphoma; NECTCL, non-
epitheliotropic cutaneous T-cell lymphoma; PTCL, peripheral T-cell lymphoma.
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FIGURE 3

Cluster plots present mass spectra from each lymphoma dog in four single nucleotide polymorphisms significantly associated with the null-cell 
lymphoma subtype. (A) MYC c.224C  >  T (p  =  0.0003), (B) TP53 c.446  T  >  A (p  =  0.03), (C) PDCD1 c.108_109insCT (p  =  0.012), and (D) POT1 c.1747C  >  T 
(p  =  0.012) were generally seen in NCL comparing to other subtypes (red oval). Blue triangle  =  wild type; green square; and yellow inverted 
triangle  =  mutant; red circle  =  no call; EATCL, enteropathy associated T-cell lymphoma; ECTCL, epitheliotropic cutaneous T-cell lymphoma; NCL, null-
cell lymphoma; NECTCL, non-epitheliotropic cutaneous T-cell lymphoma; PTCL, peripheral T-cell lymphoma.
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FIGURE 4

Bar chart illustrates SNP detection as germline or somatic in five canine TCLs.

FIGURE 5

Potential pathways of 21 targeted genes contribute to lymphoma development.
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of lymphoma development in dogs caused by TRAF3 and POT1 
mutations pivotally requires further study.

Some SNP locations in RHOA, STAT3, and PDCD1 were 
frequently described in human TCLs; however, no study has 
investigated them in dogs with TCL. RHOA encodes a small 
GTPase that switches signal transduction cascades and promotes 
cytoskeleton organization, cell migration, and the cell cycle (48). 
The missense mutations of RHOA p.Asn117Lys and p.Asn117Ile 
were specifically altered in human CTCLs (36); therefore, 
we selected these variants and investigated them in four canine 
TCL/NCL subtypes. Surprisingly, RHOAN117I, N117K was found in all 
TCL subtypes with the highest frequency in EATCL (4/8, 50%), 
NCL (3/6, 50%), and ECTCL (10/21, 47%). Another SNP, STAT3 
p.Tyr640Phe, was recently discovered to be mutated in human 
NK-cell lymphoma and CTCL (19, 49). STAT3 is a transcription 
factor that plays a key role in many cellular processes, including 
cell growth and apoptosis. Unlike in humans, STAT3Y640F was 
rarely observed in canine TCLs/NCLs; it was found in four cases 
of CTCL (11%), one case of EATCL (12%), and one NCL (16%). 
Three SNP locations of missense (p.Lys78Arg), stop gained 
(p.Glu46Ter), and frameshift (p.Phe37LeufsTer35) variants of 
PDCD1 were found to be loss-of-function mutations in human 
PTCLs (31). In addition, PD-1 deletions were related to a worse 
prognosis because they could revoke T-cell exhaustion and drive 
aggressive behavior in CTCL (19). In dogs, PDCD1E46*, K78R, F37LX 
was detected in NCL (4/6, 66%) and NECTCL (5/15, 33%). 
Besides, the lack of complete clinical information in the current 
study concealed the association between the PDCD1 mutation 
and prognosis. Thus, a prospective study of these SNPs affecting 
clinical stage, survival time, and disease progression is required 
to confirm their significance in prognosis.

Our study demonstrated that each canine patient with a specific 
subtype of TCL showed a different targeted SNP genotype. Hence, 
specific target therapy based on the SNP information may 
be advantageous in dogs with a certain type of lymphoma to increase 
treatment efficiency concurrent with chemotherapy. A study of CTCL 
in mice illustrated that methyltransferase inhibitors could restore 
SATB1 function in the Sézary cell line (50), and the usage of this target 
drug possibly abrogates malignant expansion in CTCL dogs. A STAT3 
mutation could cause constitutive activation and might be a possible 
STAT3 inhibitor target. Napabucasin, a novel STAT3 inhibitor, has 
shown promising effects in inducing intrinsic and extrinsic apoptosis 
and downregulating the expression of STAT3 target genes against 
neoplastic B-cell lineages (51). Furthermore, napabucasin displayed a 
synergistic effect when administered with doxorubicin in vitro and in 
vivo experiments and may provide therapeutic implications in human 
B-cell lymphoma. Immunotherapy of PD-1 is an attractive cancer 
target. In human clinical trials, PD-1 blockage demonstrated 
substantial therapeutic activity to treat relapsed/refractory Hodgkin’s 
lymphoma as a single agent and advanced NK/TCL concurrent with 
chemotherapy (52, 53). The effectiveness of novel targeted drugs, 
particularly somatic SNPs, for treating canine lymphoma is 
necessitated in preclinical studies.

A small sample size of EATCL and NCL in the present study 
affected the estimated prevalence of each SNP between the two 
groups. Moreover, the lack of medical records for each patient 
hindered the valuable significance of SNPs and prognostic indicators. 
Another recently critical concern was FFPE-induced mutational 

artifacts, predominantly excessive T > C mutations, that may 
be affected in this study.

In conclusion, the MassARRAY platform revealed diverse 
mutational profiles, exhibiting significant variations across 
different TCL/NCL subtypes and their anatomical locations. 
Mutations in SATB1, KIT, SEL1L, and TP53 are frequently 
observed. Somatic mutations, particularly in TP53, are detected, 
implying a potential disparity between germline and somatic 
mutational patterns, although this analysis requires further 
validation in a larger number of cases and their contribution if they 
are cancer-associated mutations in dogs.
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