Skip to main content

ORIGINAL RESEARCH article

Front. Vet. Sci.
Sec. Animal Reproduction - Theriogenology
Volume 11 - 2024 | doi: 10.3389/fvets.2024.1437352
This article is part of the Research Topic Exploring 'Omic' Biomarkers in Animal Production and Reproduction View all 4 articles

Non-invasive monitoring of dairy cows' metabolic status during the transition period through milk mid-infrared spectroscopy

Provisionally accepted
  • 1 University of Padua, Padua, Veneto, Italy
  • 2 University of Bologna, Bologna, Italy

The final, formatted version of the article will be published soon.

    The incidence of metabolic diseases tends to be highest during the transition period (±3 weeks around parturition) in dairy cows due to physiological changes and the onset of lactation. Although blood profile testing allows for the monitoring of nutritional and metabolic status, conducting extensive analyses in the herd is costly and stressful for cows due to invasive procedures. Therefore, mid-infrared spectroscopy (MIR) could be seen as a valid alternative. In the present study, we used laboratory-determined reference blood data and milk spectra of 349 Holstein cows to i) identify the non-genetic factors affecting the variability of major blood traits in healthy cows and, subsequently, ii) test the predictive ability of milk MIR. Cows belonged to 14 Italian commercial farms and were sampled once between 5 and 38 days in milk. For β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), cholesterol, glucose, urea, total protein, albumin, globulin, minerals, aspartate aminotransferase, gamma-glutamyl transferase, creatine kinase, total bilirubin, and cortisol, the effects of parity, days in milk, and season were investigated using a linear model. The results indicate that all fixed effects significantly affected the hematic concentration of most of the traits. Regarding MIR, the most predictable traits were BHB, NEFA, and urea, with coefficients of determination equal to 0.57, 0.62, and 0.89, respectively. These values suggest that MIR predictions of BHB and NEFA are not sufficiently accurate for precise and punctual determination of the hematic concentration, however, still the spectrum of the milk can be exploited to identify cows at risk of negative energy balance and subclinical ketosis. Finally, the predictions can be useful for herd screening, decision-making, and genetic evaluation.

    Keywords: metabolite, Ketosis, Negative energy balance, mid-infrared spectroscopy, Reference interval

    Received: 23 May 2024; Accepted: 09 Sep 2024.

    Copyright: © 2024 Magro, Costa, Cavallini, Chiarin and De Marchi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Angela Costa, University of Bologna, Bologna, Italy

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.