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Facial expressions are essential for communication and emotional expression

across species. Despite the improvements brought by tools like the Horse

Grimace Scale (HGS) in pain recognition in horses, their reliance on human

identification of characteristic traits presents drawbacks such as subjectivity,

training requirements, costs, and potential bias. Despite these challenges, the

development of facial expression pain scales for animals has beenmaking strides.

To address these limitations, Automated Pain Recognition (APR) powered by

Artificial Intelligence (AI) o�ers a promising advancement. Notably, computer

vision and machine learning have revolutionized our approach to identifying

and addressing pain in non-verbal patients, including animals, with profound

implications for both veterinary medicine and animal welfare. By leveraging the

capabilities of AI algorithms, we can construct sophisticated models capable

of analyzing diverse data inputs, encompassing not only facial expressions but

also body language, vocalizations, and physiological signals, to provide precise

and objective evaluations of an animal’s pain levels. While the advancement of

APR holds great promise for improving animal welfare by enabling better pain

management, it also brings forth the need to overcome data limitations, ensure

ethical practices, and develop robust ground truth measures. This narrative

review aimed to provide a comprehensive overview, tracing the journey from

the initial application of facial expression recognition for the development of

pain scales in animals to the recent application, evolution, and limitations of APR,

thereby contributing to understanding this rapidly evolving field.

KEYWORDS

AnimalFACS, computer vision, Convolutional Neural Networks (CNNs), deep learning,

facial expressions, machine learning, pain recognition

1 Introduction

In animals and humans, facial expressions play a crucial role as a primary non-verbal
method for managing peer interactions and conveying information about emotional states
(1). Scientific interest in facial expressions was initiated in the 1860s by Duchenne de
Boulogne. However, it is in the last two decades that the utilization of facial expressions
for understanding emotional conditions, such as pain, has expanded in both humans
and non-human species (2). Notably, it was demonstrated that facial expressions of pain
show consistency across ages, genders, cognitive states (e.g., non-communicative patients),
and different types of pain and may correlate with self-report of pain in humans (3, 4).
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Analyzing facial expressions and body language in animals poses
unique challenges absent in human medicine, like data collection,
establishing ground truth—that is, determining whether or not
the animal is experiencing pain or distress, and navigating the
vast array of morphological differences, shapes, and colors present
within and across animal species (5, 6). Various scales for
interpreting facial expressions in animals have been created in
the past decade. The Mouse Grimace Scale (MGS) was the first
facial grimace scale for animal pain assessment, developed from
studies on emotional contagion in mice, and led to the creation
of similar scales for other species, such as the Rat Grimace Scale
(RGS) (7, 8). These scales, now developed for 11 species, have been
used in various pain models, including surgical procedures and
husbandry practices. Despite their usefulness, limitations include
the fact that most of these pain scales were developed based on
a restricted number of action units (AUs) retrieved from picture-
based recognition patterns, as described in more details later.

Computational tools, especially those based on computer
vision (CV), provide an attractive alternative. Automated Pain
Recognition (APR) is an innovative technology that utilizes image
sensors and pain algorithms that employ Artificial Intelligence
(AI) techniques to recognize pain in individuals (9, 10). These
systems are based on machine learning (ML) techniques to
recognize and classify facial expressions associated with pain (11).
Machine learning consists of training an algorithm to discern
various categories or events (classes). Subsequently, this trained
algorithm is utilized to identify categories or events within a new
or unknown data set. The application of AI optimized the research
on classification algorithms of ML, increasing recognition rates,
computing speed and preventing system crashes.

Machine learning and AI can radically change how we
recognize and treat pain in non-verbal patients, including animals,
with an immense impact on veterinary medicine and animal
welfare. By harnessing the power of ML algorithms, we can
create sophisticated models that analyze various data inputs, not
only facial expressions but also body posture and gesture (12),
vocalizations (13), and physiological parameters, to accurately and
objectively assess an animal’s pain level. This approach will enhance
our ability to provide timely and effective pain management, and it
will be pivotal in minimizing suffering and improving the overall
quality of life for animals under our care.

Therefore, this narrative review aims to focus on the impact of
automation in the recognition of animal somatosensory emotions
like pain and to provide an update on APR methodologies tested in
the veterinary medical field, as well as their differences, advantages,
and limitations to date.

2 Facial expression-based (grimace)
scales for animal pain assessment

A grimace pain scale assesses animals’ pain by evaluating
changes in their facial expressions. It is developed through
systematic observation and analysis of facial expressions exhibited
by animals in response to pain-inducing stimuli. Researchers
identify specific facial features associated with pain and create a
coding system to quantify these responses objectively. The scale
then undergoes validation to establish its reliability and sensitivity.

The MGS was the pioneering facial grimace scale for pain
assessment developed for animals, emerging from investigations
exploring the possibility of emotional contagion in mice (14).
These studies exposed the capacity of mice to discern pain
in their counterparts through subtle changes in body language
and facial expressions after they were injected intraperitoneally
with 0.9% acetic acid (7). Within a short span, the RGS
followed suit, its inception marked by experiments conducted
on appendicular inflammatory models and a laparotomy model
(8, 15). Demonstrating features mirroring those of the MGS—such
as orbital tightening, ear changes, and whisker alterations—the
RGS exhibited comparable reliability and accuracy. Moreover, it
showcased sensitivity to morphine and the ability to quantify pain
stemming from inflammatory sources (8). Since their development,
rodent grimace scales have been tested in several preclinical
pain models, including post-laparotomy (16), post-vasectomy (17),
post-thoracotomy (18). Following the initial publications, there has
been a swift expansion in both the conversation and application
of grimace scales. Grimace scales have been developed for 11
distinct species, including rodents, lagomorph (19), feline (20, 21),
equine (22, 23), bovine (24), swine (25, 26), ovine (27, 28), ferrets
(29), harbor seals (30), and donkeys (31, 32). As castration is
considered one of the most common surgical procedures practiced
by veterinarians, it is not surprising that several of these models
were based on difference in behavior and posture before and
after castration (22, 24, 26, 31, 33–35). However, other husbandry
procedures have been used, like tail docking, ear-tagging and
microchipping (25, 28, 30). A complete overview of the facial
grimace scales developed to date and the painful stimulus used has
been reported in Table 1.

These studies collectively share several common limitations.
Primarily, a significant inconsistency exists in developing species-
specific ethograms associated with pain. An ethogram is a
descriptive inventory or catalog of all behaviors or actions exhibited
by a particular species or group of animals under specific
conditions. But many of these investigations were conducted before
establishing a formal codification system for facial expressions
in the relevant species, such as the Facial Action Coding
System (FACS), which will be elaborated upon in the subsequent
paragraph. A wide range of pain models has been employed
across these studies, including experimental models (7, 8, 23, 29),
clinical or husbandry procedures (24, 26, 31, 34, 35, 40) and
observations of spontaneous pain (20, 21, 36–39). Notably, it has
been demonstrated that the duration of the noxious stimulus affects
the facial expression of pain (14). Langford et al. (7) showed that
noxious stimuli lasting between 10min and 4 h were most likely to
elicit a “pain face.” Consequently, this would render most transient
pain models (30) and chronic pain models (39, 41) inadequate
for facial pain detection. Interesting ear notching did not evocate
grimace in mice (42) but it did in rabbits (19). Furthermore,
potential overlap between pain and other states (sleep, grooming,
and illness) has been observed (43, 44). In many cases, animals
were assessed both before and after procedures requiring general
anesthesia (8, 22, 27, 29, 31). However, studies have shown that
the facial expression of pain can remain altered for several hours
after inhalant anesthesia in both experimental mice and rats
(45, 46) and in horses (47). This effect likely holds for other
animal species.
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TABLE 1 Overview of facial expression-based pain scales developed to date.

References Species Number
of animals

Pain stimulus Inputs Image
evaluation

Validation

Yamada et al. (24) Bovine 45 Castration Still images (unspecified
number)

Blind observer No

Orth et al. (31) Donkey 9 Castration 54 still images 12 observers different
experience

No

van Dierendonck
et al. (32)

264 Spontaneous pain Direct observation Six veterinary graduate
students

No

Dalla Costa et al.
(22)

Equine 46 Castration 126 still images Blind experienced
observer

No

Gleerup et al. (23) 6 Tourniquet application
and capsaicin injection

36 still images Professional scientific
illustrator

No

van Loon and Van
Dierendonck (36)

50 Spontaneous colic Direct observation Four unblind students No

VanDierendonck
and van Loon (37)

46 Spontaneous colic Direct observation Unspecified No

Dalla Costa et al.
(38)

10 Spontaneous laminitis 40 still images and videos Four blinded observers No

Holden et al. (20) Feline 87 Spontaneous pain 16 still images 68 observers with
different experience

No

Evangelista et al.
(21)

55 Spontaneous pain 110 still images Four observers different
experience

Yes

Reijgwart et al. (29) Ferret 19 Laparotomy 114 still images 11 observers different
experience

No

MacRae et al. (30) Harbor seal 47 Tagging and
microchipping

98 clips Two observers No

Langford et al. (7) Mouse 8–20 per assay 0.9% acetic acid
abdominal constriction
test and others

64 still images Seven blinded graduate
and undergraduate
students

Partially

McLennan et al.
(39)

Ovine 73 Spontaneous foot root
and mastitis

60 still images Six blinded observers Partially

Häger et al. (27) 14 Unilateral osteotomy 66 still images Six observers various
experience

No

Guesgen et al. (28) (lambs 5–6
weeks old)

7 Tail docking 56 still images Five observers various
experience

No

Keating et al. (19) Rabbit 8 Ear tattooing 64 still images 10 observers various
experience

Partially

Sotocinal et al. (8) Rat 6–8 Various 104 still images Five blinded graduate
students

No

Di Giminiani et al.
(25)

Swine (piglets
3 and 4-day
old)

23 Tail docking and
castration

94 still pictures
(combined)

Unspecified number of
experienced observers

No

Viscardi et al. (26) (piglets 5-day
old)

19 Castration 627 still images One blinded experienced
observer

No

Viscardi and
Turner (35)

(piglets 5-day
old)

60 Castration 511 still images Four blinded observers No

Viscardi and
Turner (34)

(piglets 5-day
old)

120 Castration 1,156 still images Eight blinded observers No

Studies have been categorized by species, number of animals used to create the scale, type of pain stimulus, kind of data input, facial information processing, and whether the scale underwent

full validation.

The collection of images for facial expression scoring lacked
consistency across studies. Despite trained personnel being capable
of regularly recording and evaluating animal pain intensity in
clinical settings, continuous annotation still needs to be attainable

(48). Many studies relied on static images, often arbitrarily
extracted from videos of varying durations, or real-time scoring,
with manual annotation performed by human researchers. This
approach introduced the risk of bias and subjective judgment.
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Furthermore, researchers emphasized the necessity of using high-
definition video cameras or still cameras to ensure optimal image
quality (7, 22, 25, 27, 43) but to avoid the use of bright light
or camera flashes (20). The development of the RGS coincided
with the introduction of the Rodent Face Finder

R©
free software,

designed to streamline the conversion of videos into scorable
photographs by capturing frames with optimal optical quality and
head positioning (8). Similar approaches have been developed
also for horses (49). Typically, images were then pre-processed,
with cropping around the head and removal of the background
being common practices. However, the impact of background on
image interpretation remains untested (43). Subsequently, these
still images were presented to blind observers with varying levels
of experience to assess inter- and intra-rater variabilities. Notably,
observer experience significantly impacted the ability to discern
facial features (7, 28, 31, 39). Given animals’ inability to verbalize
pain and the variability in employed pain models, researchers have
typically identified facial changes occurring in more than 25–50%
of animals following a painful stimulus as indicative of pain (22,
24, 29). Alternatively, they have relied on the coding of pain AUs
recognized by experts in human facial pain expression (7, 23). But it
is known that human observers often categorize facial expressions
based on emotion, which can influence the process of comparing
expressions across different species (50).

Construct validity of the pain scale is typically assessed by
comparing the scores of animals experiencing pain vs. those
undergoing sham procedures and by reassessing the painful animal
before and after treatment. However, in the existing literature
these comparisons were often omitted due to ethical concerns
with performing invasive veterinary procedures without analgesia
(22). Dalla Costa et al. (22) found no differences in the Horse
Grimace Scale (HGS) among horses undergoing castration under
general anesthesia, regardless of receiving one or two doses
of flunixin meglumine. Similarly, there were no differences in
the Piglet Grimace Scale (PGS) scores between piglets castrated
with and without receiving meloxicam (34) or piglets receiving
buprenorphine injections whether undergoing castration or not
(35). Even when PGS was refined through 3D landmark geometric
morphometrics, neither the PGS nor 3D landmark-based geometric
morphometrics were able to identify facial indicators of pain in
piglets undergoing castration (51). These findings raise questions
about the potential confounding effects of drugs and the reliability
of the scale in assessing post-castration pain. While this is not
substantiated by the current literature, it is also possible that
expressions may not always be an accurate indicator of pain in
animals or researchers did not identify the pain ethogram for the
species yet.

While animals cannot communicate their pain perception
directly, the criterion validity of a pain scale can be assessed by
testing it against a gold standard. However, this validation method
was rarely conducted in previous studies (21, 27, 39, 41). A pain
scale’s internal consistency measures its components’ coherence.
In pain assessment, a scale demonstrates internal consistency if
it consistently yields similar scores for the same aspect of pain
across its various items or questions. This ensures that all items
reliably measure the exact dimension of pain. Internal consistency
is typically assessed using statistical methods like Cronbach’s α

coefficient, with higher values indicating more robust agreement
among scale items and more reliable pain measurement. However,
internal consistency has been reported only for the Feline Grimace
Scale (21). Inter- and intra-rater reliability assess the agreement
among different raters (inter-rater reliability) or the same rater
over multiple assessments (intra-rater reliability) when using the
scale to evaluate pain. Inter-rater reliability ensures consistent
results regardless of who administers the scale, ensuring validity
and generalizability across different observers. Intra-rater reliability
confirms the stability and consistency of the scale’s measurements
over time, indicating that a rater’s assessments are not influenced
by variability or bias. The Intraclass Correlation Coefficient (ICC)
is widely used to measure reliability, with values <0.50 indicating
poor agreement, between 0.50 and 0.75 indicating moderate
agreement, between 0.75 and 0.90 indicating good agreement, and
above 0.90 indicating excellent agreement (52). Inter-rater ICC
values for current facial expression pain scales ranged between 0.57
(26) and 0.92 (27), while intra-rater ICC ranged between 0.64 (24)
and 0.90 (21), with considerable variability across facial features.
But presenting good rater agreement on a given behavior does
not mean that the behavior actually measures a given emotion.
Another significant limitation of existing facial pain scales is the
need for a cutoff value for treatment determination. van Loon
and Van Dierendonck (36) reported that the EQUUS FAP had
sensitivity and sensibility for distinguishing colic from no-colic of
87.5 and 88% using a cut-off value of 4 in a scale 0–18, but only
of 30 and 64.3% for distinguishing surgical and medical colic with
a cut-off at 6. Häger et al. (27) and McLennan and Mahmoud
(53) both reported a discrimination accuracy below 70% using
two different facial pain scales developed for sheep, denouncing a
high number of false positive results and highlighting the need for
further refinement and standardization in this area.

3 Facial Action Coding System

The gold standard for objectively assessing changes in facial
expressions in human emotion research is the FACS, first published
almost half a century ago (54). FACS is a comprehensive,
anatomically based system that taxonomizes all visible human
facial movements (55, 56). In FACS, the authors assign numbers
to refer to the appearance changes associated with 33 facial
muscle contractions to each specific facial movement, termed
AUs. Each AU is linked to mimetic muscles innervated by
the facial nerve and characterized by corresponding changes in
facial appearance. Additionally, the system introduced 25 more
general head/eye movements termed Action Descriptors (AD),
representing broader movements from non-mimetic muscles,
which could impact AU identification. Recognizing the interplay
between AUs and ADs is emphasized, as their concurrent presence
could modify the visual expression of individual movements. The
FACS manual offers guidelines for scoring these AUs, supported
by a collection of photographs and illustrations for reference.
The FACS system revolutionized human research based on
facial expression interpretation, finding extensive application in
psychology, sociology, and communication. It enabled the objective
and systematic recognition of individual facial movements based
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on facial anatomy and steered the field away from subjective
interpretations of visual displays known for their unreliability.
Following the FACS approach, researchers have developed the same
system for non-human primates, including orangutans [Pongo
spp: OrangFACS (55)], chimpanzees chimpanzees [Pan troglodytes:
ChimpFACS (56)], rhesus macaques [Macaca mulatta: MaqFACS
(57, 58)], gibbons [Hylobatids, GibbonFACS (59)], marmosets
(60), and domesticated mammals such as horses [Equus caballlus:
EquiFACS (61, 62)], dogs (Canis familiaris: DogFACS) (63), and
cats (Felis catus: CatFACS) (64).

Developing species-specific AnimalFACS involved identifying
and documenting every potential facial movement of the species
based on observable changes in appearance, consistent with the
FACS terminology. Subsequently, the muscular foundation of each
movement was confirmed through rigorous anatomical studies (56,
61, 63). This extensive work has interestingly unveiled phylogenetic
similarities across species, with those already analyzed for FACS
demonstrating a shared muscular foundation of at least 47%
of their facial muscles (65). While species may share similar
anatomical structures, this correspondence does not invariably
translate into analogous facial movements. Specific muscles may
be implicated in multiple AUs, while others may exhibit infrequent
use, complicating the relationship between anatomy and expression
(65). For a more detailed description of all the AUs identified
in the different species, the reader is referred to Waller et al.
(65). But, while FACS is generally considered reliable for gauging
human perception due to the presumed alignment between facial
expression production and interpretation, its applicability to non-
human animals may be less precise, as third party evaluation is
always required. Therefore, it’s vital to approach its application
cautiously and gather empirical data to ascertain how animals
respond to stimuli.

Despite the growing interest in facial expression analysis
for evaluating pain and emotion, only a few animal studies
applied AnimalFACS. Among small animal species, the FACS
system has been scarcely used. In dogs and cats, FACS has
been used more commonly for emotion interpretation than
specifically for pain determination (66–68). In one study, 932
images from 29 cats undergoing ovariohysterectomywere extracted
and manually annotated using 48 landmarks selected according
to CatFACS criteria (69). A significant relationship was found
between pain-associated Principal Components, which capture
facial shape variations, and the UNESP-BotucatuMultidimensional
Composite Pain Scale tool (69). However, an intrinsic bias of
the study was that the first postoperative assessment, prior
to administration of analgesia, was recorded between 30min
and 1 h after general anesthesia, and the role of general
anesthesia on facial expression cannot be excluded as it has
been previously discussed. A groundbreaking methodology for
investigating the facial expressions of ridden horses, known
as Facial Expressions of Ridden Horses (FEReq) (70, 71), was
developed by integrating species-specific ethograms from previous
studies (22, 23) with components of the EquiFACS codification
system (61). This ethogram represented a pioneering effort in
characterizing changes in facial expressions among ridden horses,
demonstrating reasonable consistency across diverse professional
backgrounds post-adaptation and training. Although initially

limited to analyzing still photographs capturing singular moments,
the ethogram was subsequently enhanced with additional markers
for assessing general body language and behavior in ridden horses
(72). Despite no observed correlation between this improved
Ridden Horse Pain Ethogram (RHpE) score and maximum
lameness grade before diagnostic anesthesia (Spearman’s rho =

0.09, P = 0.262) (73), the scale has proven effective in detecting
musculoskeletal pain in competitively ridden horses (74, 75). These
studies uncovered variations in consistency across horse facial
features, particularly noting the eye and muzzle as displaying the
least reliability. This stands in contrast to findings by Rashid
et al. (62), who repurposed data from Gleerup et al. (23) to
employ EquiFACS in describing facial features in pain-related
videos. The group suggested that inner brow raiser (AU101), half
blink (AU47), chin raiser (AU17), ear rotator (EAD104), eye white
increase (AD1), and nostril dilator (AD38) were frequently linked
with pain. Moreover, these findings were echoed by a recent study
by Ask et al. (76), investigating pain indicators in horses with
experimentally induced orthopedic pain. Employing the Composite
Orthopedic Pain Scale (77) as the gold standard, the group
identified numerous lip and eye-related AUs and ADs as robust
predictors of pain. Noteworthy indicators included frequency and
duration of eye closure (AU143), duration of blink (AU145), upper
lid raiser (AU5), duration of lower jaw thrust (AD29), frequency
and duration of lower lip relax (AD160), frequency of lower lip

depressor (AU16), frequency of upper lip raiser (AU10), frequency
and duration of AU17, duration of lip presser (AU24), frequency
and duration of AD38, and frequency and duration of lips part
(AU25), among others. Additionally, AU16, AU25, AU47, single
ear forward (SEAD101), and EAD104 co-occurred more frequently
in horses experiencing orthopedic pain. The study by Rashid et al.
(62) also noted an interesting discrepancy in pain detection rates.
In still images or video segments lasting 0.04 s, the likelihood of
detecting more than three pain AUs was extremely low, contrasting
with higher detection rates with a 5 s observation window. Thismay
be explained by the fact that 75% of pain-related AUs in horses lasts
between 0.3 and 0.7 s (76). This finding underscores the potential
value of using video footage over randomly selected images for
pain assessment. However, it’s essential to acknowledge limitations
in these studies, such as the small number of experimental horses
used to build the models and the presumption of pain based solely
on evaluations by clinically experienced observers, potentially
overlooking influences of stress, tiredness and malaise (44).

One of the limitations of AnimalFACS consist in the limited
availability across species and the reliance on manual annotation,
necessitating rigorous human training to ensure acceptable inter-
rater reliability (78, 79). Debates arose regarding distinctive
individual differences, encompassing variations inmuscle presence,
size, symmetry, disparities in adipose tissue distribution, and
even inherent facial asymmetry (65, 80). Notably, present studies
using AnimalFACS are limited to quantifying the number of
AUs, their combinations, and their temporal duration within a
confined observation period (62, 72). However, this approach falls
short of capturing the intricate complexity of facial movements.
Another fundamental limitation of FACS-based systems is their
failure to account for the dynamic shifts in movement or posture
that often accompany and enrich facial expressions. So, some
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studies have assessed behavioral indicators such as changes in
consumption behaviors (time activity budgets for eating, drinking,
or sleeping, etc.) (81–83); anticipatory behaviors (84), affiliative
behavior (85), agonistic behaviors, and displacement behaviors,
amongst others (86).

4 Automated pain recognition

Automated Pain Recognition is a cutting-edge technology
aiming to develop objective, standardized, and generalizable
instruments for pain assessment in numerous clinical contexts. This
innovative approach has the potential to significantly enhance the
pain recognition process. Automated Pain Recognition leverages
image sensors and pain algorithms, powered by AI techniques,
to identify pain in individuals (9, 10). AI, a field encompassing
a broad range of symbolic and statistical approaches to learning
and reasoning, mimics various aspects of human brain function.
Data-driven AI models, such as those used in APR, can overcome
the limitations of subjective pain evaluation. Machine learning,
CV, fuzzy logic (FL), and natural language processing (NLP) are
commonly considered subsets of AI. However, with technological
advancements and interdisciplinary research, the boundaries
between these subsets often blur. Machine learning, a branch of AI,
enables systems to learn and improve their performance through
experience without explicit programming. It involves training a
computer model on a dataset, allowing it to make predictions
or decisions independently. Automated Pain Recognition research
has focused on discerning pain and pain intensity within clinical
settings (87) and assessing responses to quantitative sensory testing
in preclinical research (88, 89). The following paragraphs will
briefly outline and summarize the steps involved in APR.

4.1 Data collection

The initial step toward implementing APR involves data
collection, a significant challenge in the veterinary field due to
the scarcity of available datasets (90). Animals exhibit considerable
variability even within the same species, influenced by factors
such as breed, age, sex, and neuter status, that may affect the
morphometry of the face, especially in adult males (91). These
variables can impact the pain-related facial information extracted
from images (6, 92, 93). This variability, however, can enhance
the learning process of deep learning (DL) models. Exposure
to diverse examples and scenarios allows models trained on a
broad spectrum of data to generalize well to unseen examples,
improving performance in real-world applications. Additionally,
variability aids in acquiring robust features applicable across
different contexts. With the availability of high-definition cameras
and the relatively low demand for image or video quality in CV,
recording has become less problematic compared to the past (49).
Studies suggest that resolutions of 224× 224 pixels and frame rates
of 25 FPS are sufficient for processing images and videos in modern
CV systems (49). Multicamera setups are ideal, especially for
coding both sides of the face, as required in laterality studies or to
avoid invisibility. Different animal species pose unique challenges.
Laboratory animals are usually confined to a limited environment,

allowing more control over data acquisition and video recording
quality (89, 94, 95). Horses can be manually restrained or confined
in a stall (96). Data acquisition for farm animals often occurs in
open spaces or farms with uncontrolled light conditions (53, 97).

4.2 Data labeling

The absence of verbal communication in veterinary APR
introduces a unique challenge in establishing a ground truth label
of pain or emotional state. Unlike human medicine, where self-
reporting of pain is feasible, veterinary APR requires third-party
assessment of the pain status, preferably utilizing a validated
pain scale, but commonly not (Table 2). This has led to the
categorization of pain labeling methods in animal APR into
behavior-based or stimulus-based annotations (90). The former
relies solely on observed behaviors and is typically assessed by
human experts (5, 6, 97, 99, 104–106). In contrast, the latter
determines the ground truth based on whether the data were
recorded during an ongoing stimulus or not (5, 10, 49, 76, 94–
96, 99, 100, 107–109). Stimulus-based annotations enable recording
the same animal under pain and no pain conditions and offer a
potential solution to the challenge of variability in pain perceptions
across individuals (110). Therefore, CV and ML methods must
acknowledge the inherent bias in their algorithms until a definitive
marker for pain is identified.

4.3 Data analysis

Computer vision-based methods operate using data in the
form of images or image sequences (videos). This suggests
that the system can utilize single frames, aggregate frames (10)
or incorporate spatiotemporal representations to account for
temporality (94, 98, 105). Utilizing single frames offers greater
control and facilitates explainability, although it may result in
information loss. Researchers demonstrated that the likelihood of
observing more than three pain AUs was negligible in still images
extracted from videos of horses undergoing moderate experimental
nociceptive stimulus (62). On the other hand, based on Martvel
et al. (101), different frame extraction rates may affect the accuracy
of the results. Preliminary results in mice (94), horses (98),
sheep (105), and cats (101) suggest that extracting spatiotemporal
patterns from video data may increase the performance of the
model. However, working with videos rather than single-frame
input requires substantial computational resources.

The data processing pipeline is developed after the images are
collected and the input is either images or videos. The output is
typically pain classification, which can be binary pain/no pain or
multi-class degree assessment. Often, outputs based on grimace
pain scale taxonomy encompass at least three scales [pain not
present (0), pain moderately present (1), or pain present (2)]
(10, 103). The pipeline can encompass multiple steps and may
analyze the entire body or face or focus on specific parts. These
two approaches, differing in processing facial information, have
been defined as parts-based and holistic methods. For instance,
Hummel et al. (99) cropped the equine face based on several
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TABLE 2 Overview of datasets featuring facial expressions of pain for automated animal pain assessment to date.

References Species Pain stimulus Data Input Part/holistic Approach Annotation

Broomé et al. (98) Equine Tourniquet application and
capsaicin injection

60 video from
six healthy
horses

Videos Holistic Learned Binary

Broomé et al. (96) Tourniquet application,
capsaicin injection and
lipopolysaccharides induced
lameness

Dataset from
(98) and 90
videos from
eight healthy
horses

Videos and
frames

Holistic Learned Binary

Hummel et al. (99) Induced and unknown 1,854 images
of horse heads
and 531
images of
donkey heads

Frames Parts-based Hand-crafted
and Learned

HGS and
EQUUS-FAP

Lencioni et al. (10) Castration 3,000 frames
from seven
healthy horses

Frames Parts-based Learned HGS

Pessanha et al. (5) Induced or unknown 1,854 images
of horse heads

Frames Parts-based Hand-crafted
and Learned

Adapted from
EQUUS-FAP

Feighelstein et al.
(100)

Feline Ovariohysterectomy 464 images
from 26 cats

Frames Holistic Hand-crafted
and Learned

Binary

Feighelstein et al.
(6)

Unknown 84
client-owned
cats

Frames Holistic Hand-crafted
and Learned

Binary (based
on
CMPS-feline)

Martvel et al. (101) Ovariohysterectomy 54 videos from
27 cats+ 72
videos from
client-owned
cats

Frames Holistic Hand-crafted CMPS-feline

Feighelstein et al.
(102)

Lagomorphs Orthopedic surgery 48 videos from
28 rabbits

Frames Holistic Learned Binary

Tuttle et al. (94) Murine Laparotomy 5,771 frames Frames Holistic Learned Binary

Andresen et al. (95) Castration 18,273 frames Frames Holistic Learned Binary

Lu et al. (103) Ovine Unknown 480 frames Frames Holistic Hand-crafted SPFS

Mahmoud et al.
(104)

Mastitis and pregnancy
toxemia

86 frames Frames Parts-based Hand-crafted SPFS

Noor et al. (97) Unknown 2,350 frames Frames Holistic Learned Binary

Pessanha et al. (105) Mastitis and pregnancy
toxemia

86 frames Frames Parts-based Hand-crafted SPFS

Studies have been categorized by species, kind of pain stimulus, type of data input, facial information processing, whether the approach was hand-crafted or learned and the kind of

pain annotation.

CMPS-feline, Glasgow Feline Composite Measure Pain Scale; EQUUS-FAP, Equine Utrecht University scale for facial pain assessment; HGS, Horse Grimace Scale; SPFS, Sheep Pain Facial

Expression Scale.

Regions of Interest (ROIs); the eyes, ears, nostrils, and mouth,
respectively, and analyzed them with HOG (Histogram of Oriented
Gradients), Local Binary Pattern (LBP), Scale Invariant Feature
Transform (SIFT), and DL approach using VGG-16 Convolutional
Neural Network (CNN). Similarly, Lencioni et al. (10) employed
a parts-based approach in annotating 3,000 images from seven
horses of similar breeds and ages undergoing castration. They
utilized the HGS (22), where the six parameters were grouped into
three different facial parts: ears, eyes, and muzzle. Subsequently,
three pain classifier models based on CNN architecture were
developed. The outputs of these models were then fused using a
fully connected network for an overall pain classification. Recent
research employing explainable AI methods to investigate different

regions of cat faces suggested that features related to the ears may
be the least important (111). In contrast, those associated with
the mouth movement were considered the most crucial (6, 49).
Similarly, Lu et al. (103) have developed a multilevel pipeline to
assess pain in sheep, utilizing the Sheep Facial Expression Pain
Scale (39). The authors divided the sheep’s face into regions,
including eyes, ears, and nose, with further subdivision of the
ears into left and right. Symmetric features such as eyes and
ears were scored separately and then averaged, while scores for
all three facial features (ears, eyes, nose) were averaged again to
derive the overall pain score. The task of automatically identifying
and localizing specific points or features on an animal’s face,
such as the eyes, nose, mouth corners, etc., known in CV as
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recognition of key facial points, poses the initial challenge due
to limited datasets in animals (95). Researchers have proposed
adapting animal training data to a pre-trained human key point

detector to address this issue. The approach involved morphing
animal faces into human faces and fine-tuning a CNN developed
for human key point recognition. Surprisingly, this approach has
demonstrated promising performance in both equine and ovine
faces (112).

4.4 Hand-crafted vs. deep learning

Automated Pain Recognition identifies, understands, and
enhances image pain features. Two main approaches have been
used for feature extraction.

4.4.1 Hand-crafted features extraction
Before the advent of DL, classical ML relied on hand-

crafted features (90). The process involves extracting characteristics
from the data using previous knowledge to capture pain-related
patterns with facial or bodily landmarks, grimace scale elements,
or pose representations. For example, Blumrosen et al. (113)
studied four fundamental facial movements to recognize facial
actions in macaques: neutral expression, lip smacking, chewing,
and random mouth opening. They used unsupervised learning,
which does not require manually labeling or annotating the data.
In their approach, they utilized eigenfaces to extract features
from facial images. Eigenfaces use a mathematical method called
Principal Component Analysis (PCA) to capture the statistical
patterns present in facial images. Another standard method is
the landmark-based (LM-based) approach, which identifies pain-
related AUs through manual annotation (7, 10, 94, 103). It
provides a mathematical representation of previous findings by
human experts concerning certain facial expressions. The system
requires preliminary efforts to detect and locate the animal face
in an image or video clip and to detect individual AUs. Face
detection and alignment are achieved by detecting key facial

points, which are then transformed into multi-region vectors
and fed to a multi-layer perceptron neural network (MLP).
For example, Andersen et al. (49) trained individual classifiers
to detect 31 AUs, including ADs and ear EADs, in 20,000
EquiFACS-labeled short video clips after cropping the images
around a pre-defined ROI to help the classifier focus on the
correct anatomical region. But the model did not work for the
ear action descriptors. The authors attributed this discrepancy
to the many different positions possible for ears, suggesting
that ears’ position should be examined in spatiotemporal data
acquisition (49, 90). Similarly, Feighelstein et al. (100) utilized 48
facial landmarks selected based on the CatFACS and manually
annotated for developing their automated model. Landmark-
based approaches are by their nature better able to directly
measure and thus better account for morphological variability.
However, the downside of this route is the resource and effort
needed for landmark annotation, given that this requires manual
completion (114).

4.4.2 Deep learning approach
Deep Learning approaches are gaining popularity in APR

due to their reduced need for annotation and manual feature
crafting. Unlike LM-based methods, DL is less sensitive to facial
alignment (100), although the accuracy of the models improves
with data cleaning (102). Deep learning trains artificial neural
networks with many layers to automatically extract hierarchical
features from vast datasets like video data. Convolutional Neural
Networks (CNNs) are particularly effective for image processing
tasks like classification and object recognition, offering superior
performance by mapping individual inputs to single outputs.
Deep learning relies heavily on large volumes of video data
for training (6). Continual advancements in DL methods for
APR are expanding the possibilities in the field. CNNs, inspired
by the functioning of the retina, consist of various layers,
including convolutional layers for feature detection, non-linearity
layers to introduce non-linearity, and pooling layers for down-
sampling parameters. This architecture culminates in a fully
connected layer for final processing, where each node in the
output layer connects directly to a node in the previous layer.
Among the diverse CNN architectures, the Visual Geometry
Group (VGG) 16 architecture, with its 16 convolutional layers,
each equipped with 3 × 3 filters, is particularly notable for its
extensive utilization in CV applications. Other advanced neural
networks, such as deep residual networks (ResNets), enable the
handling of deeper architectures and improved performance (95,
100, 102). These advancements in DL methods have equipped
researchers and practitioners with more powerful tools for
APR. It is crucial to emphasize the significance of large and
diverse datasets in DL methods for APR. While DL methods
are often effective, they frequently lack interpretability, which
poses a challenge for humans to comprehend their decision-
making process.

Building upon the work of Finka et al. (69), Feighelstein
et al. (100) explored both LM-based and DL methods in APR for
cats, achieving comparable accuracies of around 72%. However,
DL approaches faced challenges with highly homogeneous
datasets, which affected their performance. The model showed
improvement when applied to a more diverse population. A
similar limitation was observed by Lencioni et al. (10), who
extracted 3,000 frames from seven horses of similar breed and
age to classify pain following a painful stimulus and general
anesthesia. Using CNN-based individual training models for each
facial part, they achieved an accuracy of 90.3% for the ears,
65.5% for the eyes, and 74.5% for the mouth and nostrils, and
an overall accuracy of 75.8%. This underscores the need for
diverse datasets to enhance the performance of DL methods
in APR. When Feighelstein et al. (102) used a DL approach
for recognizing pain in 28 rabbits undergoing an orthopedic
procedure, the initial “naïve” model trained on all frames achieved
an accuracy of over 77%. The performance improved to over
87% when a frame selection method was applied to reduce
noise in the dataset (102). Another notable DL model is the
deep recurrent video model used by Broomé et al. (96, 98),
which utilizes a ConvLSTM layer to analyze spatial and temporal
features simultaneously, yielding better results in spatiotemporal
representations. Steagall et al. (106) and Martvel et al. (114)
introduced a landmark detection CNN-based model to predict
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facial landmark positions and pain scores based on the manually
annotated FGS.

4.5 Limitations and downfalls in animal APR

Data imbalance is a significant challenge in both classic ML
and DL methods. This issue, as highlighted by Broomé et al.
(90), occurs when they are fewer instances of one class compared
to another, potentially skewing the model accuracy, especially in
extreme categories. In the case of animal pain recognition, there are
often fewer instances of animals in pain compared to non-painful
animals (97, 98). The use of data augmentation techniques, such
as synthesizing additional data using 3D models and generative
AI (5) has been proposed to address this imbalance. However, the
highly individualized nature of pain perception and expression in
animals may limit the clinical value of these techniques in animal
pain recognition.

Overfitting and underfitting are frequently encountered
problems in ML. Overfitting happens when a model excessively
learns from the training data, resulting in inadequate performance
when applied to new data. On the other hand, underfitting occurs
when a model does not perform well even on the training set.
Cross-validation techniques mitigate these problems by splitting
the data into training, validation, and testing sets. For smaller
sample sizes, ensuring that each subject appears in only one part of
the data (training, validation, or testing) can be beneficial (6, 102).
In DL, it is crucial to reserve a fully held-out test set comprising
data from subjects not seen during training to ensure unbiased
evaluation. Techniques like leave-one-subject-out cross-validation
can help reduce bias by rotating subjects between the training
and testing sets (96, 100). Additionally, when training DL models
from scratch, the initial setup can be influenced by a random
number called a “seed.” Different seeds can lead to slightly different
results each time the model is trained. To ensure robustness,
training and testing are often repeated with different random
seeds, and the outcomes are averaged to minimize the impact of
random variations. Addressing data imbalance, overfitting, and
underfitting is not just a choice but a necessity for improving the
accuracy and robustness of ML and DL models in applications
such as animal pain recognition. It is a crucial step that cannot
be overlooked.

5 Discussion

This narrative review aimed to offer a comprehensive
journey through the progression of research on recognizing
facial expressions of pain in animals. It began with the
rapid advancement of grimace pain scales, moved through the
refinement of FACS for various animal species, and culminated
in APR. Although APR extends beyond facial cues (98, 101),
existing studies’ predominant focus has been analyzing pain
AUs in datasets crafted through prior facial expression research
and annotation.

Pessanha et al. (5) underscored several significant challenges
encountered in detecting APR in animals. The first among these
challenges is the scarcity of available datasets, a notable contrast

to the abundance of databases in the human domain (115). Very
few current datasets have been created specifically for CV and
APR studies. The majority of researchers have out-sourced their
dataset from previous studies (6, 84, 96, 98, 99, 101, 104, 105),
with the significant advantage was that most of these dataset were
already annotated for pain AUs. However, as highlighted, most of
the previously published pain scales based on facial expressions
were based on unspecified or artificially created ethograms and
they did not undergo complete validation, except for Evangelista
et al. (21). Most interestingly, they were developed before or
independently from the development of the AnimalFACS dataset
for the species. While agreement was often found for many AUs
developed before and after AnimalFACS (62, 76), this issue may
introduce inherent bias. One solution proposed for overcoming the
scarcity of data is data augmentation (5, 100). However, one of the
primary ethical concerns is the integrity and representativeness of
the augmented data. Augmented data should accurately represent
real-world variations, and care should be taken to ensure that the
augmented data does not lead to misinterpretations that could
result in harm or unnecessary interventions (116). To address
the issue of small datasets, open access to datasets and sharing
between researchers is crucial. Fairly implementing AI in veterinary
care requires integrating inclusivity, openness, and trust principles
in biomedical datasets by design. The concept of openly sharing
multiple facets of the research process—including data, methods,
and results—under terms that allow reuse, redistribution, and
reproduction of all findings has given birth to open science, a
practice strongly supported by several institutions and funding
agencies (49, 117). Secondly, animals may have much more
significant facial texture and morphology variation than humans.
While initially perceived as a challenge, this may be advantageous
when employing a DL approach. Finally and foremost, a significant
limitation in animal APR is the need for consistent ground truth.
Unlike in humans, where self-reporting of the internal affective
state is commonly used, there is no verbal basis for establishing
a ground truth label of pain or emotional state in animals.
Consequently, animal pain detection heavily relies on third-party
(human expert) interpretation, introducing intrinsic bias that
cannot be bypassed entirely. One possible strategy for establishing
ground truth involves designing or timing the experimental setup
to induce pain. However, since pain is a subjective experience,
this approach may not eliminate bias. Additionally, the type
and duration of pain need to be researched further, as there
are postulations about differences in facial expressions of pain
between acute nociceptive and chronic pain and on the effects
of general anesthesia (14, 47, 95). These hypotheses, for example,
could be tested to improve the understanding and detection
of pain in animals. Currently, the best way to address this
problem is by using fully validated pain scales to discriminate the
pain status.

In conclusion, the advancement of animal APR has
immense potential for assessing and treating animal pain.
However, it requires addressing data scarcity, ensuring the
ethical use of augmented data, and developing consistent and
validated ground truth assessments. Open science practices and
collaboration will be crucial in overcoming these challenges,
ultimately improving the welfare of animals in research and
clinical settings.
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68. Vojtkovská V, Voslárová E, Večerek V. Methods of assessment of the
welfare of shelter cats: a review. Animals. (2020) 10:1–34. doi: 10.3390/ani10
091527

69. Finka LR, Luna SP, Brondani JT, Tzimiropoulos Y, McDonagh J, Farnworth
MJ, et al. Geometric morphometrics for the study of facial expressions in
non-human animals, using the domestic cat as an exemplar. Sci Rep. (2019)
9:9883. doi: 10.1038/s41598-019-46330-5

70. Mullard J, Berger JM, Ellis AD, Dyson S. Development of an ethogram to
describe facial expressions in ridden horses (Fereq). J Vet Behav. (2017) 18:7–
12. doi: 10.1016/j.jveb.2016.11.005

71. Dyson S, Berger JM, Ellis AD, Mullard J. Can the presence of musculoskeletal
pain be determined from the facial expressions of ridden horses (Fereq)? J Vet Behav.
(2017) 19:78–89. doi: 10.1016/j.jveb.2017.03.005

72. Dyson S, Berger J, Ellis AD, Mullard J. Development of an ethogram for a
pain scoring system in ridden horses and its application to determine the presence of
musculoskeletal pain. J Vet Behav. (2018) 23:47–57. doi: 10.1016/j.jveb.2017.10.008

73. Dyson S, Pollard D. Application of the ridden horse pain ethogram to 150 horses
with musculoskeletal pain before and after diagnostic anaesthesia. Animals. (2023)
13:1940. doi: 10.3390/ani13121940

74. Dyson S, Pollard D. Application of the ridden horse pain ethogram to horses
competing in British eventing 90, 100 and novice one-day events and comparison with
performance. Animals. (2022) 12:590. doi: 10.3390/ani12050590

75. Dyson S, Pollard D. Application of the ridden horse pain ethogram to elite
dressage horses competing in world cup grand prix competitions. Animals. (2021)
11:1187. doi: 10.3390/ani11051187

76. Ask K, Rhodin M, Rashid-Engström M, Hernlund E, Andersen PH. Changes in
the equine facial repertoire during different orthopedic pain intensities. Sci Rep. (2024)
14:129. doi: 10.1038/s41598-023-50383-y

77. Bussières G, Jacques C, Lainay O, Beauchamp G, Leblond A, Cadoré JL, et al.
Development of a composite orthopaedic pain scale in horses. Res Vet Sci. (2008)
85:294–306. doi: 10.1016/j.rvsc.2007.10.011

Frontiers in Veterinary Science 11 frontiersin.org

https://doi.org/10.3389/fvets.2024.1436795
https://doi.org/10.3390/ani10020354
https://doi.org/10.1002/vetr.82
https://doi.org/10.3389/fvets.2018.00299
https://doi.org/10.1186/s12917-018-1643-5
https://doi.org/10.1016/j.tvjl.2015.08.023
https://doi.org/10.1016/j.tvjl.2016.08.004
https://doi.org/10.1016/j.jevs.2017.03.221
https://doi.org/10.1016/j.applanim.2016.01.007
https://doi.org/10.1186/s12917-014-0200-0
https://doi.org/10.3390/ani6080047
https://doi.org/10.1177/0023677214559084
https://doi.org/10.1016/j.applanim.2019.06.001
https://doi.org/10.1371/journal.pone.0228130
https://doi.org/10.1371/journal.pone.0166652
https://doi.org/10.1016/j.applanim.2015.08.038
https://doi.org/10.3389/fpain.2023.1217034
https://doi.org/10.1016/j.cmpb.2023.107365
https://doi.org/10.3390/ani11061643
https://doi.org/10.1037/0735-7036.121.4.398
https://doi.org/10.3390/ani12151944
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.3390/ani9040196
https://doi.org/10.1007/s10764-012-9652-x
https://doi.org/10.1037/1528-3542.7.1.172
https://doi.org/10.1371/journal.pone.0245117
https://doi.org/10.1002/ajpa.24129
https://doi.org/10.1007/s10764-012-9611-6
https://doi.org/10.1371/journal.pone.0266442
https://doi.org/10.1371/journal.pone.0131738
https://doi.org/10.1371/journal.pone.0231608
https://doi.org/10.1371/journal.pone.0082686
https://doi.org/10.1016/j.applanim.2017.01.005
https://doi.org/10.1016/j.neubiorev.2020.02.031
https://doi.org/10.3390/ani11113334
https://doi.org/10.1016/j.beproc.2017.03.011
https://doi.org/10.3390/ani10091527
https://doi.org/10.1038/s41598-019-46330-5
https://doi.org/10.1016/j.jveb.2016.11.005
https://doi.org/10.1016/j.jveb.2017.03.005
https://doi.org/10.1016/j.jveb.2017.10.008
https://doi.org/10.3390/ani13121940
https://doi.org/10.3390/ani12050590
https://doi.org/10.3390/ani11051187
https://doi.org/10.1038/s41598-023-50383-y
https://doi.org/10.1016/j.rvsc.2007.10.011
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Chiavaccini et al. 10.3389/fvets.2024.1436795

78. Christov-Moore L, Simpson EA, Coudé G, Grigaityte K, Iacoboni M, Ferrari PF.
Empathy: gender effects in brain and behavior. Neurosci Biobehav Rev. (2014) 46 (Pt
4):604–27. doi: 10.1016/j.neubiorev.2014.09.001

79. Zhang EQ, Leung VS, Pang DS. Influence of rater training on inter-and intrarater
reliability when using the Rat Grimace Scale. J Am Assoc Lab Anim Sci. (2019)
58:178–83. doi: 10.30802/AALAS-JAALAS-18-000044

80. Schanz L, Krueger K, Hintze S. Sex and age don’t matter, but breed type
does-factors influencing eye wrinkle expression in horses. Front Vet Sci. (2019)
6:154. doi: 10.3389/fvets.2019.00154

81. de Oliveira AR, Gozalo-Marcilla M, Ringer SK, Schauvliege S, Fonseca MW,
Trindade PHE, et al. Development, validation, and reliability of a sedation scale in
horses (Equised). Front Vet Sci. (2021) 8:611729. doi: 10.3389/fvets.2021.611729

82. Kelemen Z, Grimm H, Long M, Auer U, Jenner F. Recumbency as an equine
welfare indicator in geriatric horses and horses with chronic orthopaedic disease.
Animals. (2021) 11:3189. doi: 10.3390/ani11113189

83. Maisonpierre IN, Sutton MA, Harris P, Menzies-Gow N, Weller R, Pfau T.
Accelerometer activity tracking in horses and the effect of pasture management on time
budget. Equine Vet J. (2019) 51:840–5. doi: 10.1111/evj.13130

84. Podturkin AA, Krebs BL, Watters JV, A. Quantitative approach for using
anticipatory behavior as a graded welfare assessment. J Appl Anim Welf Sci. (2023)
26:463–77. doi: 10.1080/10888705.2021.2012783

85. Clegg IL, Rödel HG, Delfour F. Bottlenose dolphins engaging in more social
affiliative behaviour judge ambiguous cues more optimistically. Behav Brain Res. (2017)
322(Pt A):115–22. doi: 10.1016/j.bbr.2017.01.026

86. Foris B, Thompson AJ, von Keyserlingk MAG, Melzer N, Weary DM. Automatic
detection of feeding- and drinking-related agonistic behavior and dominance in dairy
cows. J Dairy Sci. (2019) 102:9176–86. doi: 10.3168/jds.2019-16697

87. Fontaine D, Vielzeuf V, Genestier P, Limeux P, Santucci-Sivilotto S, Mory E,
et al. Artificial intelligence to evaluate postoperative pain based on facial expression
recognition. Eur J Pain. (2022) 26:1282–91. doi: 10.1002/ejp.1948

88. Werner P, Lopez-Martinez D, Walter S, Al-Hamadi A, Gruss S, Picard RW.
Automatic recognition methods supporting pain assessment: a survey. IEEE Transact
Affect Comp. (2022) 13:530–52. doi: 10.1109/TAFFC.2019.2946774

89. Dedek C, Azadgoleh MA, Prescott SA. Reproducible and fully
automated testing of nocifensive behavior in mice. Cell Rep Methods. (2023)
3:100650. doi: 10.1016/j.crmeth.2023.100650

90. Broomé S, Feighelstein M, Zamansky A, Carreira Lencioni G, Haubro Andersen
P, Pessanha F, et al. Going deeper than tracking: a survey of computer-vision
based recognition of animal pain and emotions. Int J Comput Vis. (2023) 131:572–
90. doi: 10.1007/s11263-022-01716-3

91. Quinn PC, Palmer V, Slater AM. Identification of gender in domestic-cat
faces with and without training: perceptual learning of a natural categorization task.
Perception. (1999) 28:749–63. doi: 10.1068/p2884

92. Pompermayer E, Hoey S, Ryan J, David F, Johnson JP. Straight Egyptian Arabian
skull morphology presents unique surgical challenges compared to the thoroughbred:
a computed tomography morphometric anatomical study. Am J Vet Res. (2023)
84:191. doi: 10.2460/ajvr.22.11.0191

93. Southerden P, Haydock RM, Barnes DM. Three dimensional osteometric analysis
of mandibular symmetry and morphological consistency in cats. Front Vet Sci. (2018)
5:157. doi: 10.3389/fvets.2018.00157

94. Tuttle AH, Molinaro MJ, Jethwa JF, Sotocinal SG, Prieto JC, Styner MA, et al. A
deep neural network to assess spontaneous pain from mouse facial expressions. Mol
Pain. (2018) 14:1744806918763658. doi: 10.1177/1744806918763658

95. Andresen N, Wöllhaf M, Hohlbaum K, Lewejohann L, Hellwich O, Thöne-
Reineke C, et al. Towards a fully automated surveillance of well-being status in
laboratorymice using deep learning: starting with facial expression analysis. PLoS ONE.
(2020) 15:e0228059. doi: 10.1371/journal.pone.0228059

96. Broomé S, Ask K, Rashid-Engström M, Haubro Andersen P, Kjellström H.
Sharing pain: using pain domain transfer for video recognition of low grade orthopedic
pain in horses. PLoS ONE. (2022) 17:e0263854. doi: 10.1371/journal.pone.02
63854

97. Noor A, Zhao Y, Koubaa A,Wu L, Khan R, Abdalla FYO. Automated sheep facial
expression classification using deep transfer learning. Comp Electron Agric. (2020)
175:105528. doi: 10.1016/j.compag.2020.105528

98. Broomé S, Gleerup KB, Andersen PH, Kjellstrom H, editors. Dynamics are
important for the recognition of equine pain in video. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2019).

99. Hummel H, Pessanha F, Salah AA, van Loon JP, Veltkamp R, editors. Automatic
pain detection on horse and donkey faces. In: 15th IEEE International Conference on
Automatic Face and Gesture Recognition. Buenos Aires (2020).

100. Feighelstein M, Shimshoni I, Finka LR, Luna SPL, Mills DS,
Zamansky A. Automated recognition of pain in cats. Sci Rep. (2022)
12:9575. doi: 10.1038/s41598-022-13348-1

101. Martvel G, Lazebnik T, Feighelstein M, Henze L, Meller S, Shimshoni I, et al.
Automated pain recognition in cats using facial landmarks: dynamics matter. Sci
Rep. (2023). Available online at: https://www.researchsquare.com/article/rs-3754559/
v1

102. Feighelstein M, Ehrlich Y, Naftaly L, Alpin M, Nadir S, Shimshoni I, et al.
Deep learning for video-based automated pain recognition in rabbits. Sci Rep. (2023)
13:14679. doi: 10.1038/s41598-023-41774-2

103. Lu Y, MahmoudM, Robinson P, editors. Estimating sheep pain level using facial
action unit detection. In: 2017 12th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2017). Washington, DC: IEEE (2017).

104. Mahmoud M, Lu Y, Hou X, McLennan K, Robinson P. Estimation of pain in
sheep using computer vision. In: Moore RJ, editor. Handbook of Pain and Palliative
Care: Biopsychosocial and Environmental Approaches for the Life Course. Cham:
Springer International Publishing (2018). p. 145–57.

105. Pessanha F, McLennan K, Mahmoud MM. Towards automatic monitoring of
disease progression in sheep: a hierarchical model for sheep facial expressions analysis
from video. In: 2020 15th IEEE International Conference on Automatic Face and Gesture
Recognition (FG 2020). Buenos Aires (2002). p. 387–93.

106. Steagall PV, Monteiro BP, Marangoni S, Moussa M, Sautié M. Fully automated
deep learning models with smartphone applicability for prediction of pain using the
Feline Grimace Scale. Sci Rep. (2023) 13:21584. doi: 10.1038/s41598-023-49031-2

107. Rashid M, Broomé S, Ask K, Hernlund E, Andersen PH, Kjellström H,
et al., editors. Equine pain behavior classification via self-supervised disentangled
pose representation. In: IEEE/CVF Winter Conference on Applications of Computer
Vision (2021).

108. Reulke R, Rueß D, Deckers N, Barnewitz D, Wieckert A, Kienapfel K, editors.
Analysis of motion patterns for pain estimation of horses. In: 15th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS). Auckland (2018).

109. ZhuH, Salgirli Y, Can P, Atilgan D, Salah AA, editors. Video-based estimation of
pain indicators in dogs. In: 2023 11th International Conference on Affective Computing
and Intelligent Interaction (ACII). IEEE (2023).

110. Mischkowski D, Palacios-Barrios EE, Banker L, Dildine TC,
Atlas LY. Pain or nociception? Subjective experience mediates the
effects of acute noxious heat on autonomic responses. Pain. (2018)
159:699–711. doi: 10.1097/j.pain.0000000000001132

111. Minh D, Wang HX Li YF, Nguyen TN. Explainable artificial
intelligence: a comprehensive review. Artif Intell Rev. (2022) 55:3503–
68. doi: 10.1007/s10462-021-10088-y

112. Rashid M, Gu X, Lee YJ, editors. Interspecies knowledge transfer for facial
keypoint detection. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, HI (2017).

113. Blumrosen G, Hawellek D, Pesaran B, editors. Towards automated recognition
of facial expressions in animal models. In: IEEE International Conference on Computer
Vision Workshops.Washington, DC (2017).

114. Martvel G, Shimshoni I, Zamansky A. Automated detection of cat facial
landmarks. Int J Comput Vis. (2024). doi: 10.1007/s11263-024-02006-w

115. Hassan T, Seus D, Wollenberg J, Weitz K, Kunz M, Lautenbacher S, et al.
Automatic detection of pain from facial expressions: a survey. IEEE Trans Pattern Anal
Mach Intell. (2021) 43:1815–31. doi: 10.1109/TPAMI.2019.2958341

116. McLennan S, Fiske A, Tigard D, Müller R, Haddadin S, Buyx A. Embedded
ethics: a proposal for integrating ethics into the development of medical AI. BMCMed
Ethics. (2022) 23:6. doi: 10.1186/s12910-022-00746-3

117. Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias
in big data and AI for health care: a call for open science. Patterns. (2021)
2:100347. doi: 10.1016/j.patter.2021.100347

Frontiers in Veterinary Science 12 frontiersin.org

https://doi.org/10.3389/fvets.2024.1436795
https://doi.org/10.1016/j.neubiorev.2014.09.001
https://doi.org/10.30802/AALAS-JAALAS-18-000044
https://doi.org/10.3389/fvets.2019.00154
https://doi.org/10.3389/fvets.2021.611729
https://doi.org/10.3390/ani11113189
https://doi.org/10.1111/evj.13130
https://doi.org/10.1080/10888705.2021.2012783
https://doi.org/10.1016/j.bbr.2017.01.026
https://doi.org/10.3168/jds.2019-16697
https://doi.org/10.1002/ejp.1948
https://doi.org/10.1109/TAFFC.2019.2946774
https://doi.org/10.1016/j.crmeth.2023.100650
https://doi.org/10.1007/s11263-022-01716-3
https://doi.org/10.1068/p2884
https://doi.org/10.2460/ajvr.22.11.0191
https://doi.org/10.3389/fvets.2018.00157
https://doi.org/10.1177/1744806918763658
https://doi.org/10.1371/journal.pone.0228059
https://doi.org/10.1371/journal.pone.0263854
https://doi.org/10.1016/j.compag.2020.105528
https://doi.org/10.1038/s41598-022-13348-1
https://www.researchsquare.com/article/rs-3754559/v1
https://www.researchsquare.com/article/rs-3754559/v1
https://doi.org/10.1038/s41598-023-41774-2
https://doi.org/10.1038/s41598-023-49031-2
https://doi.org/10.1097/j.pain.0000000000001132
https://doi.org/10.1007/s10462-021-10088-y
https://doi.org/10.1007/s11263-024-02006-w
https://doi.org/10.1109/TPAMI.2019.2958341
https://doi.org/10.1186/s12910-022-00746-3
https://doi.org/10.1016/j.patter.2021.100347
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

	From facial expressions to algorithms: a narrative review of animal pain recognition technologies
	1 Introduction
	2 Facial expression-based (grimace) scales for animal pain assessment
	3 Facial Action Coding System
	4 Automated pain recognition
	4.1 Data collection
	4.2 Data labeling
	4.3 Data analysis
	4.4 Hand-crafted vs. deep learning
	4.4.1 Hand-crafted features extraction
	4.4.2 Deep learning approach

	4.5 Limitations and downfalls in animal APR

	5 Discussion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


