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Introduction: The dissemination of antimicrobial resistance (AMR) in critical 
priority pathogens is a significant threat. Non-clinical reservoirs of AMR, such 
as agriculture and food production facilities, may contribute to the transmission 
of clinically relevant pathogens such as multidrug-resistant (MDR) Klebsiella 
pneumoniae. There is currently very limited knowledge regarding the population 
structure and genomic diversity of K. pneumoniae in poultry production in 
Pakistan.

Methods: We explored healthy broilers in a commercial farm from Faisalabad, 
Pakistan, and identified six K. pneumoniae strains from 100 broiler birds. 
We characterized the strains, determining clonality, virulence and antimicrobial 
resistance genes using next generation sequencing.

Results: The evaluation of antimicrobial susceptibility revealed that all the 
strains were MDR. Genomic analysis showed that 3/6 strains belonged to ST152, 
harbouring acquired resistance aminoglycosides [aadA2, aph(4′)-Ia], β-lactams 
(blaSHV-187, blaLAP2), fosfomycin (fosA6), tetracycline (tetA), trimethoprim (dfrA12), 
quinolone (qnrS1), sulphonamides (sul2) and phenicol (floR). All the strains 
harboured the efflux pump genes oqxA, oqxB, emrR, kpnG, kpnH, kpnF, baeR, 
mtdB and mtdC. All six strains encoded identical virulence profiles possessing six 
genes, i.e., ureA, iutA, entB, allS, fimH and mrkD. Phylogenomic analysis of the 
dominant sequence type (ST152) present in our dataset with publicly available 
genomes showed that the isolates clustered to strains mainly from human 
sources and could pose a potential threat to food safety and public health.

Discussion: The combination of these findings with antimicrobial use data would 
allow a better understanding of the selective pressures that may be driving the 
spread of AMR. This is the first report of MDR K. pneumoniae isolated from 
broiler hens in Pakistan, and the finding suggests that routine surveillance of 
WHO critical priority pathogens in such settings would be  beneficial to the 
development of effective control strategies to reduce AMR.
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1 Introduction

Klebsiella pneumoniae, a member of the Enterobacteriaceae, is 
commonly carried in healthy humans and other animals (1) but is also 
an important cause of community- and hospital-acquired infections 
(2). The rise of antimicrobial resistance (AMR) in K. pneumoniae led 
to its inclusion as an ESKAPE pathogen, organisms that are increasing 
threats to public health (3), as well as being on the World Health 
Organisation (WHO) bacterial priority pathogens list (4). In addition, 
a hypervirulent phenotype has emerged, in particular in East and 
Southeast Asia, with increasing reports of convergent strains carrying 
both AMR and hypervirulence (5). With an open pangenome and 
large accessory genome, including many genes likely to have been 
acquired from other bacterial taxa, K. pneumoniae has great genomic 
plasticity and acquisition of resistance and virulence determinants is 
common (6); K. pneumoniae is recognised as an important source of 
AMR globally (7).

The ‘One Health’ approach, which recognises the interconnection 
between human, animal and environmental health, lays bare the links 
between use of antibiotics and the spread of AMR within and between 
the three domains (8). The presence of K. pneumoniae in healthy 
animals, particularly ones in the human food chain, is one possible 
source for the spread to humans. K. pneumoniae has been shown to 
be  common in the intestinal flora of poultry grown for human 
consumption in Norway (9) and Portugal (10). In these countries, 
where the use of antibiotics is low, isolates of K. pneumoniae were 
found that were either hypervirulent or multidrug-resistant (MDR), 
including some in Portugal that were identical to clinical isolates. In 
contrast, in Pakistan there have been high levels of antibiotic use in 
poultry production, for treatment, prophylactic, and growth 
promotion purposes (11, 12). Such overuse of antibiotics can lead to 
an increase in AMR, with a clear risk to human health (13).

MDR K. pneumoniae and isolates carrying virulence genes have 
been documented in human infections in Pakistan (14). However, no 
studies have investigated the presence of AMR in K. pneumoniae in 
poultry produced for human consumption, which is likely to be an 
important reservoir for the spread to humans (15). Since the inception 
of the Pakistan National Action Plan on AMR (11), little effort has 
been made to investigate this WHO critical priority pathogen in food 
animals such as the broiler chicken. In this study we  report the 
presence of K. pneumoniae in broiler chickens on a single farm in 
Faisalabad, Pakistan. Using phenotypic antimicrobial susceptibility 
and whole genome sequencing to characterise the isolates, we focus 
on clinically relevant AMR genes, MLST and serotypes.

2 Materials and methods

2.1 Isolation and identification of K. 
pneumoniae

This pilot observational study was conducted to detect MDR 
K. pneumoniae and investigate its phenotypic and genomic features in 
a commercial poultry farm in Faisalabad, Pakistan. During winter 
2023, a total of 100 cloacal swabs from broilers birds were screened. 
In order to selectively isolate and screen K. pneumoniae, cloacal swabs 
were spread onto Simmons citrate agar (SCAI, Oxoid) with amoxicillin 

(10 μg/mL) and myo-inositol (10%) and incubated at 37°C for 48 h. 
Possible K. pneumoniae isolates were streaked on CHROMagar 
orientation plates (Mast Diagnostica GmbH, Reinfeld, Germany) and 
blue coloured pure colonies were subjected to MALDI-TOF 
(microflex, Bruker, Billerica, MA, United States) for confirmation.

2.2 In vitro antimicrobial susceptibility 
testing

The antimicrobial susceptibility was determined using the 
VITEK®2 at the Laboratory Diagnostics and Microbiology of 
Klinikum Niederlausitz GmbH. In case of tigecycline, minimum 
inhibitory concentration (MIC) of six strains was determined on a 
range of concentrations (0–32 μg/mL) using broth microdilution 
method. Three technical and biological repetitions were performed 
for each strain and E. coli strain ATCC 25922 was used as control. 
MDR was defined as resistance to three or more antibiotics of different 
classes (16). Results were interpreted according to the breakpoints of 
Clinical and Laboratory Standards Institute documents and European 
Commission on Antimicrobial Susceptibility Testing (EUCAST) 
documents (17, 18).

2.3 Whole genome sequencing and 
analysis

Genomic DNA was extracted from an overnight culture (2 mL) of 
K. pneumoniae strains with QIAcube automated system (Qiagen). 
DNA concentration was measured using Qubit (ThermoFisher 
Scientific, United States) and sent for commercial sequencing to Azenta 
Life Sciences, Leipzig, Germany. The Illumina NovaSeq platform 
carried out paired-end sequencing, generating 150 bp pair end reads 
and resulting in a genome coverage of 100x. The initial processing of 
the raw reads involved quality trimming and removal of Illumina-
specific adapters with the Trimmomatic (19). For quality assessment, 
the sequences were further analysed using FastQC, and all samples 
exhibited a quality score not less than 30. The genome was assembled 
using SPAdes (20) and further assessed for assembly quality via Quast 
(21). The contigs were annotated using Prokka (22) for the 
identification of virulence genes and factors. Antibiotic resistance genes 
(ARGs) were ascertained by utilizing the Comprehensive Antibiotic 
Resistance Database (CARD) (23) and ABRicate1 (24). Plasmids were 
identified from each of the WGS using Staramr which employs 
PlasmidFinder database (25, 26). Furthermore, Kleborate v2.2 (5) was 
used identify Klebsiealla–specific information on pathogenicity and 
virulence genes and to determine ST. Virulence genes (n = 19) involved 
in formucoviscosity, LPS synthesis, adhesins, allantoin metabolism, 
iron acquisition and siderophores, cytotoxicity and urease (27) were 
analysed using BLAST (28). The phylogenetic analysis was conducted 
by comparing dominant STs to global types found in published 
literature using RAxML version 8.2.12 by 100 bootstrap (29). Moreover, 
pangenome analysis through Roary (30) to identify core genome (4,278 

1 https://github.com/tseemann/abricate
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genes) was performed and a maximum-likelihood phylogenetic tree 
with 100 bootstrap was constructed and visualized using iTOL (31).

3 Results

3.1 Occurrence and antibiotic susceptibility 
profiles of K. pneumoniae

A total of 6  K. pneumoniae isolates were recovered from 100 
chicken cloacal swabs. MICs of 16 antimicrobial agents showed that the 
strains had different resistance profiles, and all were designated as MDR 
(Figure 1). Most of the strains were resistant to second generation 
cephalosporins (cefuroxime and cefuroxime+axetil) and five of them 
were also resistant to penicillin and β-lactam in combination. Two of 
the strains (SAMN37674196 and SAMN3764199) showed resistance 
to third generation cephalosporins (cefotaxime, ceftazidime and 
ceftriaxone). Notably, tigecycline resistance was observed in all six 
strains. All the strains were susceptible to carbapenems (imipenem and 
meropenem) and aminoglycoside (gentamicin).

3.1.1 Genetic divergence of K. pneumoniae 
strains

The genetic diversity of MDR-K. pneumoniae strains in our study 
were examined using MLST (32). Four STs were identified (ST104-3LV, 
ST35, ST4857-1LV and ST152), with ST152 being the predominant 
type, detected in three strains which also possessed the same plasmid 
types, i.e., IncFIB(K) and IncR, as shown in Figure 1.

3.2 Drug-resistance genes and virulence 
genes

Analysis of ARGs showed that the K. pneumoniae strains 
possessed a variety of genes conferring resistance to multiple 
antimicrobials (Figure 1). The number of ARGs detected in the strains 
ranged from 21 to 30. We  did not detect any isolate harbouring 

resistance to carbapenems or colistin. Strains belonging to ST152 were 
found to encode resistance to aminoglycosides [aadA2, aph(4′)-Ia], 
β-lactams (blaSHV-187, blaLAP2), fosfomycin (fosA6), tetracycline (tetA), 
trimethoprim (dfrA12), quinolone (qnrS1), sulphonamides (sul2) and 
phenicols (floR). All the strains encoded the efflux pump genes, i.e., 
oqxA, oqxB, emrR, kpnG, kpnH, kpnF, baeR, mtdB and mtdC.

The strains were also analysed for major virulence encoding 
factors, resulting in identical profile as shown in Figure 2. A total of 
19 factors were examined, only six genes were found. Notably, none of 
the strains possessed formucoviscosity genes (i.e., rmpA, rmpA2, 
magA) and LPS biosynthesis genes (i.e., uge and wabG). However, all 
strains encoded allantoin metabolism gene allS and urease encoding 
ureA gene. Only two of the genes encoding siderophores, which are 
also important virulence factors, were detected (i.e., iutA and entB). 
Similarly, only two out of three important adhesins (fimH and mrkD) 
were found among all six K. pneumoniae strains.

3.3 Global genomic epidemiology of ST152

In order to analyse global genomic epidemiology of ST152, 
we  conducted a single nucleotide polymorphism (SNP)-based 
phylogenetic analysis to compare the genetic similarities and 
evolutionary relationships among the three ST152 K. pneumoniae 
isolates in our study and 39 other publicly available ST152 isolates. 
According to Pathogenwatch database, 196 strains have been reported 
belonging to ST152 with only one strain isolated from bovine and the 
rest were isolated from humans (33). We selected the 39 ST152 isolates 
used based on their location (Pakistan), K type or O type from the 
Pathogenwatch database. All 39 strains (Supplementary Table S1) were 
derived from humans, with 29 of them originating in United States 
(Figure  3). As a result, the strains investigated in our study were 
primarily classified into four clusters. This is the first report of ST152 
being isolated from poultry, specifically chicken. All the isolates 
included in this analysis had O-type of O3b except one other human 
isolate reported from Pakistan with O-type of O4. In case of K-types 
of ST152, most of them were unknown but there were six strains of 

FIGURE 1

Maximum likelihood tree representing the phylogenetic relationship between 6 K. pneumoniae strains from this study. Associated metadata shown 
here represents the STs, KL and O-type identified using Kleborate, ARGs are determined through CARD database using Abricate. The phenotypic 
antimicrobial profiling for all antimicrobials except tigecycline is done by VITEK®2 illustrated as (R  =  Resistant, I  =  Intermediate, S  =  Sensitive). AMC, 
Amoxicillin + Clavulanic acid; SAM, Ampicillin + sulbactam; TZP, Piperacillin + Tazobactam; CXM, Cefuroxime; CXM*, Cefuroxime + Axetil; CPD, 
Cefpodoxime; CTX, Cefotaxime; CAZ, Ceftazidime; CRO, Ceftriaxone; IMI, Imipenem; MEM, Meropenem; GEN, Gentamicin; CIP, Ciprofloxacin; TIG, 
Tigecycline; FOS Fosfomycin; SXT, Trimethoprim + Sulfamethoxazol. All the metadata is illustrated using iTOL.
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KL105 (three strains from the present study), four strains of KL46 and 
only one strain from Senegal typed as KL74. Isolates from this study 
were all categorized as KL105 (Figure 3).

4 Discussion

This study explores the occurrence, antimicrobial resistance, and 
genetic diversity of K. pneumoniae in healthy broiler chickens in 
Faisalabad, Pakistan. We isolated six K. pneumoniae strains from a total 
of 100 healthy broiler chicken. Two studies at poultry farms in China 
and Bangladesh reported recovery rates of K. pneumoniae of 4.67 and 
43.9%, respectively, (34, 35), but both included environmental samples 
from the poultry farms and so are not directly comparable. A study of 
veterinary and agricultural waste in Pakistan found two isolates of 
MDR K. pneumoniae in sludge and wastewater from poultry farms (36).

All six of the K. pneumoniae isolates in this study are 
MDR. We observed high rates of resistance to multiple classes of 
antimicrobials including second generation cephalosporin (C CXM 
and CXM*) (83.3%), third generation cephalosporin (CTX, CAZ 
AND CRO) (33.3%) penicillin and β-lactam combination (66.6%), 
fluoroquinolone (83.3%), sulphonamide (50%) and tetracycline 
(100%). Resistance to all of these antimicrobials is of concern for 
human health (7). Resistance to third generation cephalosporins is a 
global problem; in Europe third-generation cephalosporin-resistant 
K. pneumoniae has been reported as the third largest cause of 
infections and attributable deaths (37). Assessing the health burden of 
infections with antibiotic-resistant bacteria in the EU/EEA (37). 
Piperacillin/tazobactam (TZP) is prescribed to immune-compromised 

and critically ill patients (38). Fluoroquinolones are used in clinical 
settings due to their broad-spectrum of activity, and resistance is 
increasing rapidly in K. pneumoniae (39). Tigecycline resistant strains 
of K. pneumoniae were first isolated in hospitals and have been 
increasingly reported since its introduction (7). Thus all of these 
resistance phenotypes are potentially a threat to human health.

We employed WGS to identify potential resistance mechanisms of 
MDR the K. pneumoniae isolates. The six isolates in this study encoded 
multiple MDR efflux pumps, which can reduce susceptibility in clinically 
significant pathogenic bacteria (40). One of the most important 
multidrug efflux systems, detected in five out six K. pneumoniae isolates, 
was acriflavine resistance B (AcrB) encoded by acrAB. This pump, 
belonging to resistance nodulation cell diving (RND) superfamily of 
efflux transporters, allows bacteria to exhibit resistance to various 
antimicrobial classes of antibiotics, i.e., quinolones, beta-lactams, 
tetracyclines, macrolides, aminoglycosides, and chloramphenicol (40, 
41). kpnEFGH operon, also detected across six strains, with the exception 
of kpnE in SAMN37674197, encodes for a small multidrug resistant 
(SMR) type efflux pump (42). The KpnEF efflux pump confers resistance 
to a variety of antibiotics; antimicrobial susceptibility testing of the kpnEF 
deletion mutant of different K. pneumoniae serotypes established its role 
in broad-spectrum AMR (42). Another antibiotic efflux pump encoded 
by all the six strains was OqxAB. The overexpression of oqxAB confers 
resistance against not only multiple drugs such as quinoxalines, 
quinolones, tigecycline, nitrofurantoin and chloramphenicol but also 
detergents and disinfectants (43). mdtBC, encoding a RND-type drug 
exporter, stimulated by response regulator BaeR in Escherichia coli (44), 
were detected in all six K. pneumoniae isolates. MdtBC contains two 
different transporter proteins, MdtB and MdtC, and appears to function 
only as a B2C heterotrimer. When overexpressed, it pumps out 
norfloxacin, novobiocin, cloxacillin, and deoxycholate (45).

The isolates in this study were not hypervirulent, carrying only a 
small number of virulence determinants. Although all of the isolates 
had one gene from the locus encoding the siderophore aerobactin, the 
other genes were absent. The K and O loci in these isolates are not 
associated with clones known to pose a threat to human health (46).

Against a background of other ST152 isolates from Pakistan and 
with the same K- and O- loci, the two isolates SAMN37674195 and 
SAMN37674198 appear to be very similar to each other, and to other 
isolates from Pakistan and United States. SAMN37674194 is more 
distinct, being less closely related to the other ST152 isolates selected. 
It would be interesting to compare this isolate with a wider selection 
of K. pneumoniae isolates, perhaps including other, related, STs.

The other three STs represented in this study were ST104-3LV, 
ST35 and ST4857-1LV. For ST35, there have been reports of MDR 
isolates which are also hypervirulent, have acquired yersiniabactin 
(47, 48). None of the isolates in this study carry yersiniabactin, but 
has been identified in agricultural sources in Pakistan in recent years. 
In a study of dairy cows in three states in Pakistan, our group isolated 
K pneumoniae with otherwise low virulence profiles but from two 
sites some isolates did carry yersiniabactin (49).

Overall, we detected a variety of MDR K. pneumoniae strains 
harbouring important AMR genes in broiler hens in a single 
commercial farm in Faisalabad, Pakistan. Some of these strains 
were very similar to strains that have been found to cause disease 
in humans, highlighting the potential risk of spread of such strains 
from commercially produced poultry to humans. A useful addition 
to this investigation would be antimicrobial usage data from the 
farm, which could allow a better understanding of the drivers of the 

FIGURE 2

Virulence gene profiles of the six MDR K. pneumoniae strains. The 
blue tile in the figure shows presence and white tile exhibits the 
absence of the gene.
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spread of the resistance genes. In addition, the use of short read 
sequencing did not allow a complete study of the plasmids found to 
be present in the strains, particularly the ST152 isolates. As AMR 
genes and virulence factors are often harboured on plasmids (6) 
better characterisation of them would be  beneficial to our 
understanding of the risk of their spread. Despite these limitations, 
this study has provided a useful addition to our knowledge of this 
important pathogen in the poultry industry in Pakistan, further 
highlighting the need for a one-health approach to control of the 
spread of AMR.
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