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Senecavirus A (SVA) is an emerging virus that causes the vesicular disease in pigs, 
clinically indistinguishable from other high consequence vesicular diseases. This 
virus belongs to the genus Senecavirus in the family Picornaviridae. Its genome 
is a positive-sense, single-stranded RNA, approximately 7,300  nt in length, 
with a 3′ poly(A) tail but without 5′-end capped structure. SVA can efficiently 
propagate in different cells, including some non-pig-derived cell lines. A wild-
type SVA was previously rescued from its cDNA clone using reverse genetics 
in our laboratory. In the present study, the BSR-T7/5 cell line was inoculated 
with the passage-5 SVA. At 12  h post-inoculation, SVA-infected and non-
infected cells were independently collected for the analysis on comparative 
transcriptomics. The results totally showed 628 differentially expressed genes, 
including 565 upregulated and 63 downregulated ones, suggesting that SVA 
infection significantly stimulated the transcription initiation in cells. GO and 
KEGG enrichment analyses demonstrated that SVA exerted multiple effects 
on immunity-related pathways in cells. Furthermore, the RNA sequencing 
data were subjected to other in-depth analyses, such as the single-nucleotide 
polymorphism, transcription factors, and protein–protein interactions. The 
present study, along with our previous proteomics and metabolomics researches, 
provides a multi-omics insight into the interaction between SVA and its hosts.
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1 Introduction

Senecavirus A (SVA), as an emerging virus, has been demonstrated to be a causative agent 
for vesicular disease in swine (1–5). SVA-infected pigs develop vesicular lesions mainly on the 
snout, dewclaw or (and) coronary band. Other signs include lameness, anorexia, lethargy, 
cutaneous hyperemia, and fever (6, 7). The SVA-induced signs are clinically indistinguishable 
from those of other vesicular diseases in pigs (8). The outbreak of SVA infection has been 
recently reported in several countries, including Canada, the United States, Brazil, China, 
Thailand, Vietnam and Chile. The transmission risk of SVA has attracted a great deal of 
attention from the pig industry around the world.

SVA is the only member of the genus Senecavirus in the family Picornaviridae (9). The virion 
is a typical icosahedral particle without envelope. It harbors a positive-sense, single-stranded RNA 
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genome, approximately 7,300 nt in length, composed of 5′ untranslated 
region (UTR), long encoding region and 3’ UTR. Like those of other 
picornaviruses, the 5′ terminus of SVA genome does not contain a cap 
structure. In contrast, a short peptide (VPg) is covalently linked to the 5′ 
terminus, and plays an essential role in synthesizing the SVA genome. 
The 5’ UTR bears a type-IV internal ribosome entry site (10), structurally 
and functionally similar to those of pestiviruses (11), allowing for the 
initiation of polyprotein translation in a cap-independent manner. The 
3’ UTR is approximately 70 nt in length, followed by a variable-length 
poly(A) tail (12). The encoding region of SVA polyprotein follows the 
standard “L–VP4–VP2–VP3–VP1–2A–2B–2C–3A–3B–3C–3D” layout. 
After SVA infection, the viral polyprotein will be translated in cytoplasm, 
and then gradually cleaved into 12 proteins, namely, L, VP4, VP2, VP3, 
VP1, 2A, 2B, 2C, 3A, 3B, 3C and 3D (13). The VP4, VP2, VP3 and VP1 
as structural proteins participate in viral morphogenesis. The others are 
nonstructural proteins, albeit uninvolved in the package of virion, 
playing a crucial role in viral replication (14–16).

RNA sequencing (RNA-seq) is a technique that uses next-
generation sequencing to reveal the presence and quantity of RNA 
molecules in a biological sample, providing a snapshot of gene 
expression in the sample, also known as transcriptome. A transcriptome 
is the full range of mRNA molecules expressed by an organism. The 
RNA-seq technique contributes to identifying a transcriptome in a 
given population, even in a single cell (17). Comparative 
transcriptomics facilitates the elucidation of differentiation between 
two groups (populations, species and so on) in their alternative gene 
spliced transcripts, post-transcriptional modifications, gene fusion, 
single-nucleotide polymorphism (SNP) and changes in gene expression 
over time (18). Large DNA viruses, such as human cytomegalovirus 
and African swine fever virus, contained very long genomes. Each of 
these viruses itself has a complicated transcriptome (19, 20) in virus-
infected cells. In contrast, some small RNA viruses, such as 
picornavirus, only have a simple “transcriptome,” i.e., one single RNA 
genome. Therefore, it is meaningless to uncover a picornaviral 
“transcriptome” only based on a given picornavirus itself.

SVA can trigger a variety of metabolic and biochemical changes 
in cells through virus-specific or -nonspecific mechanisms (21–23). 
For example, SVA 2C protein can target mitochondria and cause 
release of cytochrome C into cytoplasm, which activates caspase-9 and 
-3 in a series of signaling cascades to induce the onset of apoptosis 
(24). In addition, SVA infection is able to affect the level of 
transcription in hosts. For example, SVA 2C protein can block the 
transcription of interferon-stimulated gene 56 and interferon-β to 
weaken the innate immunity in hosts (21). We have demonstrated that 
SVA infection can lead to significant changes in cellular proteome and 
metabolome, even at an early stage of infection (25, 26). Virus-caused 
differentiation of cellular proteome is closely related to the change in 
cellular transcriptome. Therefore, a comparative transcriptomics 
analysis was conducted here to uncover a profile of SVA-induced 
changes in cellular transcriptome at the early stage of infection.

2 Materials and methods

2.1 Cell line and virus

The BSR-T7/5 cell line, derived from the baby hamster kidney cell, 
was kindly provided by the China Animal Health and Epidemiology 

Center. This cell line was cultured at 37°C with 5% CO2 in Dulbecco’s 
modified Eagle’s medium (DMEM), supplemented with 4% fetal 
bovine serum (VivaCell, Shanghai, China), penicillin (100 U/mL), 
streptomycin (100 μg/mL) and amphotericin B (0.25 μg/mL). The 
wild-type SVA was rescued previously from a full-length cDNA clone 
(27), genetically derived from an SVA isolate, CH-LX-01-2016 (28).

2.2 Sample preparation

BSR-T7/5 cells were seeded into six T25 flasks for culture at 
37°C. When the cells were 90% confluent, three flasks were randomly 
selected for incubation with the passage-5 SVA at an MOI (multiplicity 
of infection) of 2.5. The other flasks, as non-infected controls, were not 
treated. There were three SVA-infected samples (S1, S2 and S3) and 
three non-infected controls (C1, C2 and C3). Supernatants were 
separately removed from the six flasks at 12 h post-inoculation (hpi). 
Cell monolayers were gently washed with PBS three times, followed 
by the extraction of total RNAs using the TRIzol reagent (Thermo 
Fisher, Waltham, MA, United  States), as per the manufacturer’s 
instructions. The concentration, quality and integrity of total RNAs 
were determined using the NanoDrop spectrophotometer (Thermo 
Fisher, Waltham, MA, United States). Three μg of RNA was used as 
input material to prepare RNA sample for each group.

2.3 RNA-seq analysis

The preparation of sequencing libraries was carried out as described 
previously with modifications (29). The mRNAs were purified from 
total RNAs using poly-T oligo-attached magnetic beads, further 
fragmented, and then used as templates to produce cDNAs. The first 
strand cDNA was synthesized using a system with random hexamer 
primers and the reverse transcriptase. The second strand cDNA was 
synthesized via the first strand with dNTP, buffer solution, DNA 
polymerase I and RNase H. Remaining overhangs were converted into 
blunt ends through exonuclease/polymerase activities. After adenylation 
of the 3′ ends of DNA fragments, Illumina paired-end adapter 
oligonucleotides were ligated to prepare for hybridization. The cDNA 
fragments of 400 to 500 bp were preferentially size-selected using the 
AMPure XP system (Beckman Coulter, Beverly, United States). DNA 
fragments with ligated adaptor molecules on both ends were selectively 
enriched using Illumina PCR Primer Cocktail in a 15-cycle PCR 
reaction. Products were purified using the AMPure XP system, and 
then quantified by the Agilent high sensitivity DNA assay on the Agilent 
2,100 Bioanalyzer (Agilent Technologies, CA, United  States). The 
sequencing libraries were subjected to sequencing on the NovaSeq 6,000 
platform (Illumina, CA, United States) for obtaining image files.

2.4 Quality control and reads mapping

The image files were transformed by the software of sequencing 
platform. The original data was generated in a FASTQ format (raw data). 
Sequencing data contained a number of connectors and low-quality 
reads. The Cutadapt (v1.15) software was used to filter the sequencing 
data (30), subsequently obtaining high-quality sequences (clean data) 
for further analysis. Two reference genomes were those of the golden 

https://doi.org/10.3389/fvets.2024.1431879
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Li et al. 10.3389/fvets.2024.1431879

Frontiers in Veterinary Science 03 frontiersin.org

hamster (Genbank No.: PRJNA77669) and the SVA CH-LX-01-2016 
(Genbank No.: KX751945). The filtered reads were separately mapped 
to both reference genomes using the HISAT2 (v2.0.5) program (31).

2.5 Analysis of differential expression

The analysis of differentially expressed genes (DEGs) was 
performed as described previously with modifications (32). The 
HTSeq (v0.9.1) was used to compare the Read Count values on each 
gene as the original gene expression (33). Gene expression was 
standardized through the FPKM (Fragments Per Kilobase of 
transcript per Million mapped reads). DEGs were determined by the 
DESeq (v1.30.0) with screening parameters as follows: the fold 
change (FC) > 2 (or <0.5) and the significant p value <0.05 (34). The 
bi-directional clustering analysis of all DEGs was performed by the 
Pheatmap (v1.0.8) package. The heatmap was drawn according to the 
expression level of the same gene in different groups and the 
expression patterns of different genes in the same group, with the 
Euclidean method for calculating the distance, and the complete 
linkage method for clustering.

2.6 Analyses of GO and KEGG enrichments

All genes were mapped to terms in the database of gene ontology 
(GO). Differentially enriched genes were calculated for each term. The 
topGO package was designed to perform the GO enrichment analysis 
on the DEGs. The p value was calculated by the hypergeometric 
distribution method. The p value <0.05 was determined as the 
standard of significant enrichment. The GO terms were found with 
significantly differentially enriched genes, all of which were further 
classified to determine the main biological functions. The 
ClusterProfiler (v3.4.4) software was used to carry out the enrichment 
analysis of DEGs on the KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathways. The p value <0.05 was determined as the 
standard of significant enrichment (35).

2.7 Other analyses on RNA-seq data

2.7.1 Analysis of new transcripts
On the basis of the existing reference genome, the software 

StringTie (http://ccb.jhu.edu/software/stringtie/) was used to assemble 
the mapped reads (36). The assembling results were compared with 
the known transcripts for obtaining unannotated transcripts.

2.7.2 Analysis of alternative splicing events
The rMATS (v3.2.5) software was used to uncover alternative 

splicing events (37). The main types of alternative splicing events 
included skipped exon (SE), retained intron (RI), alternative 5′ splice 
site (A5SS), alternative 3′ splice site (A3SS), and mutually exclusive 
exons (MXE).

2.7.3 Analysis of SNP sites
The Varscan program was used to obtain SNP sites (38). The 

filtering criteria were: (i) SNP site base Q > 20, (ii) the number of reads 

covering the site >8, (iii) the number of reads supporting the mutation 
site >2, and (4) the p value of SNP locus <0.01.

2.7.4 Prediction of transcription factors
Transcription factors and their own families were predicted via 

the comparison with the Animal Transcription Factor Database 
(AnimalTFDB) (39), a comprehensive database including classification 
and annotation of genome-wide transcription factors, transcription 
co-factors and chromatin remodeling factors in numerous 
animal genomes.

2.7.5 Analysis of differential exon usage
The DEXSeq package was used to analyze the RNA-seq data for 

identifying the differential exon usage, as described previously (40).

2.7.6 Interaction analysis in protein network
The STRING database (https://string-db.org/) was used to unveil 

putative protein–protein interactions (PPI) (41), contributing to 
clarifying the relationship among genes of interest.

2.8 Validation of gene expression by 
RT-qPCR

Four representative genes, namely, SVA genome, Nfkbia, Phlda2 and 
Txnip, were selected for validating the profile of gene expression. The 
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene was used 
as an internal reference control. Gene-specific primers were listed in 
Supplementary file 18 for RT-qPCR validation. The RT-qPCR analysis 
was performed with three technical repeats, using the AceQ qPCR SYBR 
Green Master Mix (Vazyme, Nanjing, China) based on the LightCycler 
480® Real-time PCR System (Roche, Rotkreuz, Switzerland), as per the 
manufacturer’s instructions. The RT-qPCR results were analyzed 
through the 2−ΔΔCt method for relatively quantifying the four genes of 
interest (42). The GraphPad Prism (v8.0) was used for statistical analysis 
by two-tailed Student′s t-test with Welch′s correction. Data were shown 
as means ± standard deviations of three independent experiments.

3 Results

3.1 Sequencing for de novo transcriptome 
assembly

The BSR-T7/5 cell monolayers showed no obvious cytopathic 
effect (CPE) at 12 hpi (Figure 1). Cells were separately collected from 
SVA-infected and non-infected groups to extract total RNAs for the 
construction of high-quality cDNA libraries. The primary library-
related data were listed in Supplementary file 1. The cDNA libraries 
were subjected to sequencing to obtain image files, subsequently 
transformed into raw data for statistical classification, as shown in 
Table 1. Because the raw data contained a number of connectors and 
low-quality reads, the Cutadapt (v1.15) software was used to filter the 
raw data for obtaining high-quality clean sequences, as listed in 
Supplementary file 2. There were three key parameters, namely, base 
mass, base content, and average mass of reads. Their distributions 
were independently shown in Supplementary 3, 4 and 5.
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3.2 Transcriptomic mapping

The filtered reads were mapped to both reference genomes, those 
of the golden hamster and the SVA CH-LX-01-2016, using the 
HISAT2 (v2.0.5) program. The results of RNA-seq mapping were 
listed in Table  2. The global profile of reads was subjected to the 
further statistical analysis on the distribution of reads mapped to both 
genomes, in which genetic elements included coding sequence, intron, 
intergenic spacer, and UTR. The mapping results were listed in 
Table 3, and shown in Supplementary file 6. Supplementary file 7 
exhibited the coverage distributions of reads mapped to genes. To sum 
up, a high-quality dataset of RNA-Seq was harvested here, meeting a 
standard for the further bioinformatics analysis.

3.3 Profile of gene expression

A total of 20,374 genes were identified in all six groups 
(Supplementary file 8), but these genes contained more than 3,000 

components with FPKM value = 0. FPKM was a simple method for 
normalizing the read count data, based on gene length and the total 
number of mapped reads. The FPKM-normalized expression level 
was divided into different intervals (Supplementary file 9) for the six 
groups, as shown in Supplementary file 10. The number of genes, 
either co-identified in different groups or recognized in a single 
group, was shown in Figure 2A. The density distribution of FPKM 
values was displayed in Figures  2B,C, as two different forms. To 
validate whether the sequencing depth of RNA-seq was sufficient for 
the analysis of gene expression, the saturation analysis was performed 
for all six groups, as shown in Supplementary file 11. The correlation 
analysis of gene expression, based on calculation of Pearson’s 
correlation coefficients, was carried out among the six groups 
(Figure 2D). The closer to 1.0 the correlation coefficient was, the 
higher the similarity of expression pattern was among the six groups. 
Principal component analysis made it possible to project a high-
dimensional dataset onto two or three dimensions, as shown in 
Figure 2E. The closer the distance was, the higher the similarity was 
among groups.

FIGURE 1

SVA-infected and non-infected cell monolayers at 12 hpi. S1, S2, and S3: SVA-infected groups; C1, C2 and C3: non-infected controls.

TABLE 1 Statistic data of RNA-seq for all six groups.

Sample name Reads No. Bases (bp) No. Q30 (bp) N (%) Q20 (%) Q30 (%)

S1 45,327,558 6,844,461,258 6,647,043,638 0.012777 99.00 97.12

S2 53,263,406 8,042,774,306 7,823,495,397 0.012671 99.06 97.27

S3 39,688,814 5,993,010,914 5,820,866,532 0.012943 99.02 97.13

C1 42,486,048 6,415,393,248 6,235,364,335 0.012489 99.01 97.19

C2 53,252,482 8,041,124,782 7,800,962,620 0.012589 98.95 97.01

C3 57,220,586 8,640,308,486 8,385,089,387 0.013141 98.96 97.05

Reads No.: the total number of reads; Bases (bp) No.: the total number of bases; Q30 (bp): the total number of bases with base recognition accuracy more than 99.9%; N (%): the percentage of 
ambiguous bases; Q20 (%) or Q30 (%): the percentage of Q20 or Q30 bases with base recognition accuracy more than 99%.
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3.4 Analysis of differential expression

DEGs were determined by the DESeq (v1.30.0) with screening 
parameters, |log2FC| > 1 and the significant p value <0.05. A total of 
628 DEGs, including 565 upregulated (Supplementary file 12) and 63 
downregulated (Supplementary file 13) components, were identified 
here. The basemean was described as the “mean of normalized counts 
of all samples.” The basemean values of DEGs, corresponding to the 
group C and S, were exhibited in Figures  3A,B, respectively. The 
distributions of sequence length, p value and log2FC were exhibited in 
Figures  3C–H. A single asterisk in Figures  3G,H indicated the 
exclusion of positive or negative infinity (“Inf ” in 

Supplementary files 12, 13), respectively. The distribution and degree 
of differential expression were graphically shown in a volcano plot and 
a heatmap, respectively.

The volcano plot (Figure  3I), drawn by the GraphPad Prism 
software, revealed the p value versus the FC for all identified genes. The 
threshold values were set as |log2FC| > 1 and p value <0.05. The 
upregulated, downregulated and stably-expressed genes were indicated 
by red, green and grey circles, respectively. The R language Pheatmap 
(1.0.8) software package was used for the bi-directional clustering 
analysis to draw the heatmap (Figure  3J), which provided a visual 
depiction for hierarchical clustering of all 628 DEGs from the six 
groups. The red and green labels represented the upregulated and 
downregulated DEGs, respectively. The intensity of color reflected the 
degree of differentiation in gene expression. All 628 DEGs, based on 
their differences in expression patterns, were classified into nine 
different clusters (Figure 3K), in which grey lines indicated expression 
patterns, and each blue line represented the average value in each cluster.

3.5 GO enrichment analysis

The topGO package was used for performing the GO enrichment 
analysis on DEGs. The GO terms were found with significantly 
differentially enriched genes. The numbers of category BP, CC and MF 
were 3,093, 357 and 644, respectively. The complete GO data were 
listed in Supplementary file 14 in detail. Figure 4A displayed the top-10 
statistically significant GO terms for each GO category. The false 
discovery rate (FDR), ranging from 0 to 1, was associated with the 
degree of GO enrichment. The lower the FDR was, the more significant 
the enrichment degree was. The GO terms with the top-20 lowest 
FDRs were shown in a bubble plot (Figure 4B). Each GO category was 
organized further as a directed acyclic graph (Figures 4C–E), in which 
parental terms described more general functional categories than their 
next-generation terms. GO terms with the top-10 lowest FDRs were 
framed with rectangles, and the others were indicated by ellipses. The 
more statistically significant a GO term was, the darker its color was.

3.6 KEGG enrichment analysis

The analysis of KEGG pathway enrichment was performed to 
uncover DEG-related pathways. The result showed that DEGs were 
enriched in a total of 275 KEGG pathways (Supplementary file 15). 
Figure 4F displayed the top-30 statistically significant KEGG pathways 
(p value <0.05), classified into four categories, namely, environmental 
information processing, human diseases, metabolism, and organismal 
systems. According to the result of KEGG enrichment, the degree of 
enrichment was evaluated through the rich factor, FDR, and the number 
of DEGs enriched in a given pathway. The higher the rich factor was, the 
more significant the enrichment degree was. The lower the FDR was, 
the more significant the enrichment degree was. The KEGG pathways 
with the top-20 lowest FDRs were shown in a bubble plot (Figure 4G).

3.7 Other analyses on RNA-seq data

The StringTie was used to assemble the mapped reads. The 
assembling results were compared with the known transcripts to 

TABLE 2 Statistical data of RNA-seq mapping.

Sample 
name

Clean 
reads

Total 
mapped 

(Rate)

Multiple 
mapped 

(Rate)

Uniquely 
mapped 

(Rate)

S1 44,738,448
40,444,421 

(90.40%)

770,019 

(1.90%)

39,674,402 

(98.10%)

S2 52,647,920
47,570,136 

(90.36%)

904,976 

(1.90%)

46,665,160 

(98.10%)

S3 39,219,782
35,252,668 

(89.88%)

643,266 

(1.82%)

34,609,402 

(98.18%)

C1 41,942,238
36,798,807 

(87.74%)

902,042 

(2.45%)

35,896,765 

(97.55%)

C2 52,501,164
45,940,744 

(87.50%)

1,092,548 

(2.38%)

44,848,196 

(97.62%)

C3 56,437,286
49,541,887 

(87.78%)

1,183,403 

(2.39%)

48,358,484 

(97.61%)

Clean reads: the number of sequences used for mapping; Total mapped (Rate): the number 
of sequences successfully mapped (Total mapped/Clean reads); Multiple Mapped (Rate): the 
number of sequences mapped to multiple regions (Multiple mapped/Total mapped); 
Uniquely Mapped (Rate): the number of sequences mapped to a single region (Uniquely 
mapped/Total mapped).

TABLE 3 Distribution of read-mapped regions.

Sample 
name

Map 
events

Mapped 
to gene 
(Rate)

Mapped 
to 

intergene 
(Rate)

Mapped 
to exon 
(Rate)

S1 39,674,402
36,731,507 

(92.58%)

2,942,895 

(7.42%)

34,599,182 

(94.19%)

S2 46,665,160
42,794,501 

(91.71%)

3,870,659 

(8.29%)

39,814,657 

(93.04%)

S3 34,609,402
31,712,144 

(91.63%)

2,897,258 

(8.37%)

29,532,363 

(93.13%)

C1 35,896,765
32,161,772 

(89.60%)

3,734,993 

(10.40%)

29,444,837 

(91.55%)

C2 44,848,196
39,799,780 

(88.74%)

5,048,416 

(11.26%)

35,909,925 

(90.23%)

C3 48,358,484
43,583,502 

(90.13%)

4,774,982 

(9.87%)

40,133,590 

(92.08%)

Map events: the number of mapping events; Mapped to gene (Rate): the number of reads 
mapped to genetic regions (Mapped to gene/Map events); Mapped to InterGene: the number 
of reads mapped to intergenic spacers (Mapped to intergene/Map events); Mapped to exon 
(Rate): the number of reads mapped to exons (Mapped to exon/Mapped to gene).
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obtain unannotated transcripts. The transcripts from class codes j, i, 
u, and x, regarded as new transcripts, were functionally annotated and 
listed in Supplementary file 16. The proportion of each class code was 
shown in Figure 5A. Five types of alternative splicing events were 
analyzed by the rMATS (v3.2.5) software. The SE and RI exhibited the 
most and the least alternative splicing events, respectively (Figure 5B). 
The SNP sites were analyzed by the Varscan program. The numbers of 
heterozygous and homozygous variants were shown in 
Figure 5C. Transcription factors and their own families were predicted 
through the comparison with those in the AnimalTFDB. Figure 5D 
showed the number of transcription factors in each family. Out of the 
identified families, 20 were demonstrated to contain upregulated, 
downregulated or both components (Figure 5E). The DEXSeq package 
was used to analyze the RNA-seq data for identifying the differential 
exon usage, as shown in Supplementary file 17. Figure 5F revealed a 
representative gene with differential exon usage. DEGs were 
comprehensively analyzed in the STRING database to unveil potential 
PPIs (Score > 0.95) for constructing a PPI network, which including 
26 nodes and 17 edges (Figure 5G). Red and green nodes indicated 
upregulated and downregulated genes, respectively.

3.8 Validation of gene expression by 
RT-qPCR

Three upregulated and one downregulated DEGs were selected for 
validating the profile of gene expression through RT-qPCR. The three 
upregulated genes included SVA genome, Nfkbia and Phlda2 
(Supplementary file 12); the downregulated gene was Txnip 
(Supplementary file 13). The RT-qPCR detection demonstrated that 
the expression trend of DEGs was consistent with the result of 
RNA-seq analysis (Figure  6). Due to the group C without SVA 
inoculation, the expression differentiation of SVA genome was 

extremely significant between both groups (Figure 6, Left upper). 
There was no need for the statistical analysis on it.

4 Discussion

The Picornaviridae is a well-characterized family within the plus-
strand RNA viruses. SVA is a typical picornavirus. Its genome is only 
a positive-sense, single-stranded mRNA, harboring a 3′ poly(A) tail 
but no 5′ capped structure. In other words, an SVA virion has a single 
mRNA, which however is not the viral transcript. Picornaviruses, 
albeit structurally simple, possibly have significant effects on 
physiological functions in their hosts. After entrance of virion into a 
cell, a picornaviral genome will be released into cytosol. This genome 
either relies on the host translation machinery to initiate the 
translation of polyprotein, or serves as a template to synthesize an 
antigenome, which will be used as a template for synthesizing another 
genome. The nascent genome can be used as a template for the next 
round of translation or replication, and alternatively is packaged into 
a virion (43). Therefore, although SVA as such has no concept of viral 
transcriptome, its infection may exert a significant impact on the 
cellular transcriptome. This prompted us to conduct the present study 
for uncovering the transcriptomic change in SVA-infected cells.

A replication-competent SVA was previously rescued from its 
cDNA clone in our laboratory (27). The passage-5 SVA was used here 
as a model virus. Despite SVA inoculation with MOI of 2.5, three cell 
monolayers showed no visible CPE at 12 hpi (Figure  1). Because 
we  demonstrated previously that SVA infection led to significant 
cellular changes both in proteomic and in metabolomic profiles at 12 
hpi, it could be  postulated that the cellular transcriptome would 
be also affected at 12 hpi to some extent. The RNA-seq recognized 
totally 20,374 genes in the six groups, but containing more than 3,000 
genes with FPKM value = 0. The correlation of gene expression is an 

FIGURE 2

Profile of gene expression in all groups. The numbers of genes that are either co-identified in different groups or recognized in a single group (A). 
Violin plot of FPKM distributions in all groups (B). Distributions of FPKM densities in all groups (C). The correlation analysis of gene expression via the 
calculation of Pearson’s correlation coefficients (D). Principal component analysis on all groups (E). PC1: principal component 1. PC2: principal 
component 2.
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important indicator to demonstrate the reliability of experiment, and 
the reasonability of samples. A certain correlation coefficient, if 
between 0.8 and 1.0, would indicate the extremely strong correlation 

between two groups. The current correlation analysis displayed the 
extremely strong intra-group correlation, but the weak inter-group 
correlation (Figure 2D), implying the RNA-seq data that were reliable.

FIGURE 3

Profile and analysis of DEGs. Distribution of basemean values in group C (A) and S (B). Distributions of sequence lengths of upregulated (C) and 
downregulated (D) DEGs. Distributions of p values of upregulated (E) and downregulated (F) DEGs. Distributions of log2FC values of upregulated 
(G) and downregulated (H) DEGs. *Excluding the SVA-related data. Volcano plot of p value versus FC for all identified genes but excluding outliers (I). 
The threshold values are set as |log2FC|  >  1 and p value <0.05. Heatmap based on bi-directional clustering analysis of all DEGs (J). Clustering analysis on 
expression patterns of DEGs (K). Grey lines indicate expression patterns. Each blue line represents the average value in each cluster.
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FIGURE 4

GO and KEGG enrichment analyses of DEGs. Top-10 statistically significant GO terms of three categories (A). Bubble plot of top-20 statistically 
significant GO terms (B). Directed acyclic graphs of top-10 statistically significant GO categories (C–E). GO terms with the top-10 lowest FDRs are 
framed with rectangles, and the others are indicated by ellipses. The more statistically significant a GO term is, the darker its color is. Top-30 
statistically significant KEGG pathways, classified into four categories (F). Bubble plot of top-20 statistically significant KEGG pathways (G).
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RNA-seq data were subjected to the further analysis on the 
differentiation expression. The result totally recognized 565 
upregulated and 63 downregulated DEGs here. Out of these DEGs, 
five representative genes (three upregulated and two downregulated 
genes) were selected out for RT-qPCR analysis to validate preliminarily 
the profile of DEGs. Except the downregulated DEG, Tcta gene (data 
not shown), the other four showed their expression trends consistent 
with the result of RNA-seq analysis (Figure 6). In our previous study 

on comparative proteomics between SVA-infected and non-infected 
cells, we  identified totally 305 upregulated and 56 downregulated 
DEPs (differentially expressed proteins) (25). Regardless of the present 
or the previous study, the number of upregulated components was 
much higher than that of downregulated ones. Such a result was 
consistent with our postulation that DEGs shared a similar regulation 
trend with DEPs between SVA-infected and non-infected groups. Out 
of the identified DEGs in group S, the SVA genome was most 

FIGURE 5

In-depth analysis of RNA-seq data. Pie chart of new transcripts (A). All new transcripts are classified into four categories, x, u, j and i. Analysis of 
alternative splicing events (B). X and Y axes indicate the types of alternative splicing events, and the number of new transcripts, respectively. S.D.: 
significant differentiation. The numbers of SNP sites in all groups (C). Profile of transcription factor families (D). The Y axis indicates the number of 
transcription factors in each family. Transcription factor families with significantly differential transcription factors (E). A representative gene with 
differential exon usage (F). The differential exon usage is marked with a purple rectangle. PPI network with 26 nodes and 17 edges (G). The score of PPI 
is set to be more than 0.95. Red and green nodes indicate upregulated and downregulated genes, respectively.
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statistically significant in the expression level (Supplementary file 12). 
Due to the group C without SVA inoculation, both GO and KEGG 
enrichment analyses excluded the data of SVA genome, and others 
with positive or negative infinity (Supplementary files 12, 13). The 
KEGG enrichment analysis showed that several DEGs were 
significantly enriched in many immunity-related pathways, such as 
TNF signaling pathway, IL-17 signaling pathway, Toll-like receptor 
signaling pathway, and B cell receptor signaling pathway (Figure 4F). 
The GO enrichment analysis also revealed a few statistically significant 
terms associated with immune responses, e.g., the response to 
interleukin-1 and the cellular response to tumor necrosis factor 
(Figure 4A). Like the conclusion drawn in a previous report (44), the 
current results also suggest that SVA infection may be able to induce 
significantly immune responses, especially the innate immune 
response, in hosts at an early stage of infection.

Further, RNA-seq data were subjected to the in-depth analyses, 
concerning SNPs, transcription factors, PPI and so on. The analysis of 
SNP events indicated that there was no significant differentiation in 
the number of SNP events between group C and S (Figure  5C), 
implying that SVA infection had no ability of inducing the occurrence 
of SNP events in the host genome. It is worth noting that out of the 20 
statistically significant families of transcription factors, most of them 
only contain upregulated components (Figure 5E). This result implies 

that SVA infection can notably stimulate multiple transcriptional 
pathways, resulting in upregulated DEGs far more than downregulated 
DEGs. The STRING database was used here to unravel putative PPIs 
in SVA-infected cells. The result revealed no formation of complicated 
interaction network among 26 putative DEPs (Figure 5G). Although 
the 26 DEPs include no SVA-related protein, the possibility that 
SVA-related proteins interact with cellular proteins cannot be ruled 
out, because the information of SVA proteins has not been deposited 
in the STRING database.

SVA emerged in many countries and regions over the past 
20 years. It has been still considered as an emerging virus. Natural 
selection has been a primary evolutionary force affecting SVA codon 
usage bias (45). Multi-omics analysis provides an integrated approach 
to facilitate in-depth studies on the virology, especially on the 
interaction of viruses with their hosts. Based on our previous 
researches on proteomics and metabolomics, it was demonstrated that 
SVA infection could lead to significant changes in cellular intrinsic 
components even at an early stage of infection (25, 26). In order to 
comparatively analyze transcritpomic profiles between SVA-infected 
and non-infected cells, we conducted the present study. To sum up, 
the current results revealed that most of the DEGs were upregulated 
genes, indicating that SVA infection positively stimulated the 
transcription initiation in cells. GO and KEGG enrichment analyses 

FIGURE 6

RT-qPCR validation of gene expression. The 2-ΔΔCt method is used for relative quantification. The GAPDH gene is an internal control for normalization. 
Data are shown as means ± standard deviations of three independent experiments. Statistical significance is determined by two-tailed Student′s  t-test 
with Welch′s correction. *p<0.05.
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demonstrated that SVA could markedly affect immunity-related 
pathways in cells, whereas the mechanism remained to be elucidated.
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