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Here, we report the genetic features and evolutionary mechanisms of two tet 
(M)-bearing plasmids (pTA2 and pTA7) recovered from swine Escherichia coli 
isolates. The genetic profiles of pTA2 and pTA7 and corresponding transconjugants 
were accessed by S1 nuclease pulsed-field gel electrophoresis and Southern 
hybridization, followed by whole genome sequencing and bioinformatics analysis. 
The biological influences of pTA2 and pTA7 were determined by stability and direct 
competition assays. Both pTA7 and pTA2 had the IncR backbone sequences but 
differed in the multidrug resistance region (MDR). The MDR of pTA2 consisted of 
sul3, tet (M), qnrS1, bleO, oqxAB, floR, aadA1, cmlA1, aadA2, and tet (A)-tetR (A) in 
addition to 22 insertion sequences. Notably, pTA2 carried the novel complex Tn7124 
(IS26-ctp-lp-tet (M)-hp-IS406tnp-IntI4-IS26) harboring tet (M). The fragment 
carrying tet (M) (IS26-ctp-lp-tet (M)-IS406 tnp-ctp-aadA1-cmlA1-aadA2-dfrA12-
IntI1), named Tn6942-like, and the two resistance modules ISVsa3-VirD2-floR-lysR 
and tet (A)-tetR (A) were located in the MDR of pTA7. Both pTA2 and pTA7 were 
highly stable in E. coli DH5α cells with no fitness cost to the host or disadvantage 
in growth competition. These results indicate that transposons carrying tet (M) 
continuously integrate via mediation with an insertion sequence, which accelerates 
the transmission of tet (M) in E. coli isolates through integration of other drug-
resistant genes, thereby posing a potential serious threat to the efficacy of clinical 
treatment.
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1 Introduction

The tetracycline resistance gene tet (M), which is widely distributed among Gram-positive 
bacteria, imparts resistance to tetracyclines via a ribosomal protection mechanism. To date, tet 
(M) has been identified in 38 genera of Gram-positive bacteria and 39 genera of Gram-negative 
bacteria (1–3). In most bacteria, tet (M) is associated with other tetracycline resistance genes, 
likely involving conjugative transposons located on the chromosome and conjugative plasmids 
(4–6). In Gram-positive bacteria, tet (M) has been linked to 23 transposons, including Tn916/
Tn1545-like in Enterococcus spp. (7), Tn5801-like in Staphylococcus aureus and Enterococcus 
faecalis (6, 8), and Tn5397-like in Clostridium difficile and Enterococcus faecium (9, 10). Among 
these, Tn916, which was the first conjugative transposon found to covey resistance to antibiotics 
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(1), harbors 24 open reading frames that are organized into functional 
modules involved in conjugation transfer, recombination (excision and 
insertion responses), transcriptional regulation, and auxiliary functions 
(antibiotic resistance) (11, 12). Subsequently, Tn1545, which was 
identified in Streptococcus pneumoniae, is highly homologous to Tn916 
(difference of only one nucleotide), especially between the ~2,000-bp 
integrase and cleavase genes that encode translocation functions. Also, 
Tn1545 harbors three resistant genes [tet (M), ermAM, and aphA-3] (13, 
14), while Tn916 only harbors tet (M). The similarity in the tet (M) 
sequence between Tn1545 and Tn916 is reportedly 94.5% (15), 
demonstrating that tet (M) is evolutionarily conserved across different 
species of bacteria. Tn5801, a member of the Tn916 family, was initially 
isolated from Staphylococcus aureus in 2001 (16). Afterward, different 
types of Tn5801-like gene islands have been identified in Enterococcus, 
Lactobacillus, Lactococcus, Staphylococcus, Streptococcus, and Clostridium 
isolates from humans, animals, and food products in Europe, the 
United States, Asia, and Australia, suggesting that the element carrying 
tet (M) has spread among Gram-positive species worldwide (6, 17–21). 
Transmission of tet (M) is mediated by transposons and plasmids. 
However, the gene environment of tet (M) remains unclear.

Although various transposons carrying tet (M) have been 
extensively reported in Gram-positive bacteria, the mode of 
transmission in Gram-negative bacteria remains unclear. Our group 
previously reported that tet (M) was linked to Tn6539 in E. coli, 
Tn6709 and Tn6942 in Salmonella (22–24). Here, we report the novel 
tet (M)-bearing Tn7124 and a Tn6942-like fragment carried by pTA2 
and pTA7, respectively, and clarify the molecular, genetic, and 
biological characteristics of pTA2 and pTA7 in E. coli DH5α cells.

2 Materials and methods

2.1 Bacterial strains

Two tet (M)-positive E. coli strains (A2 and A7) isolated from the 
feces of pigs in Henan province, China, in December 2017 were 
identified using the VITEK 2 automated bacterial identification and 
susceptibility testing system (bioMérieux, Marcy-l’Étoile, France). 
E. coli strains J53 (sodium azide resistant), DH5α, and ATCC 25922 
were stored in our laboratory.

2.2 Transformation experiments

Competent E. coli DH5α cells were transformed with the plasmids 
of the donor strains A2 and A7 by electroporation. The transformants 
were screened on Luria–Bertani (LB) agar plates containing doxycycline 
(16 mg/L). The conjugation frequency was calculated as the ratio of the 
number of transconjugants per recipient. Both transformants were 
confirmed by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). 
The presence of tet (M) in the transformants was confirmed by 
polymerase chain reaction analysis and whole genome sequencing.

2.3 Antimicrobial susceptibility testing

The susceptibility of three tet (M)-positive isolates and corresponding 
transformants to 13 antibiotics (i.e., amoxicillin, ceftiofur, cefquinome, 

gentamicin, amikacin, oxytetracycline, doxycycline, florfenicol, colistin, 
trimethoprim-sulfoxazole, enrofloxacin, olaquindox, and mequindox) 
was determined by the broth micro dilution method in accordance with 
the guidelines of the Clinical and Laboratory Standards Institute (25, 26). 
E. coli ATCC 25922 was used for quality control.

2.4 S1-PFGE and southern hybridization

DNA from the donor strains and transformants were treated with 
S1 nuclease and then separated by PFGE. The location of tet (M) was 
determined by Southern hybridization.

2.5 Plasmid sequencing and annotation

Plasmids pTA2 and pTA7 were extracted from the transformants 
ZA2 and ZA7 using the QIAGEN® Plasmid Midi Kit (Qiagen GmbH, 
Hilden, Germany). Whole genome sequencing of A2 and A7 were 
conducted a HiSeq™ Sequencing System (Illumina, Inc., San Diego, 
CA, United  States) and Oxford Nanopore Technologies (ONT) 
MinION platforms (Oxford Nanopore Technologies Ltd., Oxford) 
with 400 bp paired-end reads. The obtained sequences were assembled 
using unicycler 0.5.0 and Flye 2.9.11 software with the hybrid strategy. 
The pTA2 and pTA7 sequences were initially predicted and annotated 
using the RAST (Rapid Annotation using Subsystem Technology) 
server (v2.0),2 and corrected manually using the Basic Local 
Alignment Search Tool (BLAST) algorithm.3 The plasmids replicon 
genotype were identified using PlasmidFinder 2.1.4 Insertion sequence 
elements were recovered using ISfinder.5 Contigs containing resistance 
genes were ascertained using the comprehensive antibiotic resistance 
database (CARD).6 Comparative analysis was conducted and plasmid 
maps were generated using the Easyfig application7 and the BLAST 
Ring Image Generator.8

2.6 Biological characteristics of pTA2 and 
pTA7

The stability of pTA2 and pTA7 in E. coli DH5α cells cultured in 
antibiotic-free LB broth were determined as previously described (27). 
Briefly, a 100-μL aliquot of suspended bacterial cells was diluted in LB 
broth and plated on LB agar. Then, 20 colonies were randomly chosen 
and replica plated onto LB agar plates with 16 μg/mL doxycycline, and 
the presence of the tet(M) gene were confirmed by PCR.

The bacterial growth kinetics of E. coli ZA2 (ZA7) and DH5α cells 
were observed by culturing overnight in LB medium with and without 
doxycycline. Then, 107 colony-forming units (CFUs) were added 

1 https://github.com/fenderglass/Flye

2 https://rast.nmpdr.org/

3 http://blast.ncbi.nlm.nih.gov/blast

4 https://cge.food.dtu.dk/services/PlasmidFinder/

5 https://isfinder.biotoul.fr/

6 https://card.mcmaster.ca

7 https://mjsull.github.io/Easyfig/

8 https://sourceforge.net/projects/brig/
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independently into 20 mL of fresh LB medium with and without 
doxycycline and cultured at 37°C for 12 h. Absorbance at 600 nm was 
measured every hour.

The fitness costs of pTA2 and pTA7 were determined by 
competition assays of E. coli ZA2 (ZA7) and DH5α cells as previously 
described. Briefly, E. coli ZA2 (ZA7) and DH5α cells were cultured in 
20 mL of LB broth at 37°C for 16 h. Then, 2 × 106 CFUs of E. coli ZA2 
(ZA7) and DH5α cells were cultured in 20 mL of antibiotic-free LB 
broth at 37°C with continuous shaking (120 rpm). Finally, 4 × 106 
CFUs were transferred to 20 mL of fresh LB broth every 24 h. Samples 
were collected every hour during the first 12 h and then every 24 h for 
7 days. The CFUs of each sample on LB agar plates with and without 
doxycycline were quantified.

2.7 Nucleotide sequence accession 
number

The complete sequences of pTA2 and pTA7  in addition to 
chromosome A2 and A7 were submitted to the GenBank database9 
under accession numbers CP069710, CP069708, CP069711, and 
CP069709, respectively.

3 Results and discussion

3.1 Characterization of Escherichia coli 
strains A2 and A7

Although transformation of E. coli strains A2 and A7 by 
conjugation was not possible, E. coli DH5α cells were successfully 
transformed by electroporation at the same frequency of 1 × 10−6. 
Strains A2 and A7, and the corresponding transconjugants ZA2 and 
ZA7, were resistant to tetracycline, oxytetracycline, florfenicol, and 
amoxicillin, while A2 and ZA2 were resistant to sulfamethoxazole-
trimethoprim (Table 1). S1-PFGE showed that a single plasmid was 
obtained from the transconjugants ZA2 and ZA7 (designated as pTA2 
and pTA7, respectively). As shown in Supplementary Figures S1, S2, 
Southern hybridization indicated that tet(M) was located on pTA2 
(~110 kb) and pTA7 (~70 kb).

3.2 Sequence analysis of plasmids in 
Escherichia coli strains A2 and A7

Whole genome sequencing showed that the chromosome of strain 
A2 comprised 4,761,946 bp (4,593 protein-coding regions) and 
harbored one copy of pTA2 (120,379 bp), while the chromosome of 
strain A7 comprised 4,620,143 bp (4,423 protein-coding regions) and 
harbored one copy of pTA7 (77,243 bp). The genome of A2 had more 
than 30 mobile elements, which included IS1A, ISEc17, IS609, IS150, 
and IS1H, while the genome of A7 had more than 90 mobile elements, 
which mainly included ISKpn26 and IS1R (Figure 1).

9 https://www.ncbi.nlm.nih.gov/genbank/

BLASTn analysis indicated that pTA2 was 99.75% sequence 
similarity with pTA7 at 72% coverage, 99.95% at 73% coverage with 
E. coli p2_BE2-5 (CP032988) isolated from an egret in Chengdu, 
China, 99.76% at 72% coverage with E. coli pN17EC1163–1 (IncR-X1, 
CP043734) isolated from swine in the United States, and 99.20% at 
56% coverage with E. coli p14EC007b (CP024133) isolated from 
clinical patients in Guangdong, China (Figure 2). In addition to the 
three plasmids mentioned above, only 12 strains exhibited higher 
sequence similarity with pTA2 (99.2% at 51–66% coverage), which 
included 11 E. coli strains and 1 Salmonella isolate from swine, and 
there were only three plasmids isolated from E. coli strains obtained 
from animals, including plasmid pYUXJMC1-2, (CP125352, chicken 
meat), plasmid unnamed, (CP038858, feces of pig) and plasmid 
unnamed11 (CP122915, feces of Sus scrofa). Compared to plasmids 
pTA2 and pTA7, they just shared backbone sequences of IncR 
plasmid. While pTA2 shared lower sequence similarity with other 
plasmids in the NCBI database. Although reports of pTA2 and pTA7-
like plasmids are limited, the majority of 17 plasmids isolated in China 
exhibited regional characteristics among various hosts, indicating 
wide circulation.

Comparative sequence analysis demonstrated that pTA2 and 
pTA7 were the IncR type, with GC contents of 51%, and the same 
replication initiator repB, which shared 100% amino acid identity to 
the corresponding region of pK245 of Klebsiella pneumoniae strain 
DQ449578 isolated from a patient in Taiwan, China, in 2002. Both 
pTA2 and pTA7 had typical IncR plasmid backbone genes, including 
repB, parAB, and umuCD, but not resD, and the downstream virulence 
gene silESRCBAP (Figure 1).

The most notable difference between pTA2 and pTA7 was the 
MDR region. The MDR region of pTA7 consisted of three resistance 
modules, ISVsa3-VirD2-floR-lysR, insertion sequence (IS)26-ctp-lp-
tet(M)-IS406tnp-ctp-aadA1-cmlA1-aadA2-dfrA12-IntI1, and tet(A)-
tetR(A), and several insertion sequences. The fragment carrying tet(M) 
was 2,300 kb in length. The tet(M)-bearing structure Tn6942 was 
similar to pS13-3 (CP047092) of Salmonella enterica, but lacked the 
helix-inverse-helix domain, Tn3 family transposase, and IS26, which 
were located downstream of insI1 in pTA7. Therefore, the fragment was 
named Tn6942-like. The MDR region of pTA2 consists of 11 resistance 
genes, including sul3, tet(M), qnrS1, bleO, oqxAB, floR, aadA1, cmlA1, 
aadA2, and tet(A)-tetR(A), and 22 insertion sequences, which included 
IS26, IS1A, IS903B, ISVsa3, ISKpn19, IS4321R, and IS1X. Notably, 
pTA2 contained sul3, qnrS1, bleO, and an oqxAB-bearing resistance 
module along with several insertion sequences upstream of ISVsa3, 
while the other sequences were almost consistent with pTA7 (Figure 1).

In addition, the fragment containing tet(M) slightly differed 
between pTA7 and pTA2. The tet(M) sequence was located at the 
composite Tn7124 between two IS26-bracked composites, as 
determined in reference to the Transposon Nomenclature Database.10 
Tn7124 is 7.2 kb in length and organized as IS26, conjugative transfer 
protein ctp, tet(M) leader peptide gene, tet(M), hypothetical protein 
(hp), integrase (Int)I4, ctp, and IS26 (Figure 1). Comparative sequence 
analysis showed that fragment IS26-ctp-lp-tet(M) was relatively 
conserved and shared 100% sequence identity with the sequences of 
pN17EC1163–1 and pRW8-1_122k (Figure 1), while the downstream 

10 https://transposon.lstmed.ac.uk
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sequence of tet(M) was hp-IS406 tnp-IntI3-hp, which is same 
sequence as Tn7124-like of pN17EC1163–1.

Although usually coded by the bacterial chromosome, tet(M) 
was also located on the conjugative plasmids IncHI2, IncFII, 
IncFI, IncN1-IncHI2, and IncX1-FI isolated from Campylobacter 
jejuni, Neisseria meningitidis, Kingella denitrificans, Aikenella 
erosus, Clostridium percapsulatus, Salmonella, and E. coli (28, 29). 
Hence, conjugation plasmids can facilitate horizontal transfer of 
tet(M) genes between species. IncR plasmids were initially 
identified as a novel group of incompatible plasmids in 2009 (30). 
Subsequent studies have reported that conjugation plasmids are 
broadly distributed in clinically relevant strains of 
Enterobacteriaceae and Klebsiella pneumoniae, which intensified 
the fitness of the host cell by conferring resistance to 
fluoroquinolones (qnrS1 and qnrB4), aminoglycosides (armA), 
and beta-lactams (blaKPC-2, blaDHA-1, blaNDM-1, and blaVIM-1) and 
carbapenems (31–34). In addition, IncR plasmids often coexist 
with other replicants, such as IncC, IncN, IncHI, and IncFII. Thus, 

the resistance reservoir carried by IncR plasmids may spread to 
transferable plasmids through translocation or plasmid 
recombination events, thereby contributing to the high plasticity 
of multiple replicant plasmids (35). The complex class 1 integrons 
and ISs located on pTA2 and pTA7 are formidable gene-capturing 
tools that can mobilize extremely large sections of DNA encoding 
a variety of antibiotic resistance genes (36). Therefore, tet(M)-
bearing pTA2 and pTA7 may have spread between different 
species of bacteria and conferred resistance to tetracycline.

In this study, the tet(M)-bearing complex Tn7124 had two 
IS26 elements in opposite directions at boundaries. IS26, a 
member of the IS6 insertion sequence family, transmits antibiotic 
resistance genes in Gram-negative bacteria primarily through the 
formation of complex transposons, of which most contain a 
central region containing the resistance gene and two IS26 
elements at the boundaries in the same or opposite directions 
(37). In Gram-negative bacteria, IS26 elements are usually found 
at the boundary of the transposon, but there is no marker of IS26 

FIGURE 1

Comparative analysis of pTA2, pTA7 with other plasmids including pN17EC1163–1, pS13-3, pRW8_122k. Replicon genes are in blue; resistance genes in 
red; mobile elements in green; the loci of virulence-associated genes (silESRCBAP) in teal; and hypothetical proteins in gray.

TABLE 1 The MICs of A2, A7 and their transconjugants ZA2, ZA7.

Isolates AMC FFC AN COL CEF CEQ GM ST EN DOX OXY TET

A2 >512 >512 1 <0.5 <0.5 <0.5 1 >512 0.5 32 128 64

ZA2 >512 256 1 <0.5 <0.5 <0.5 1 >512 0.5 16 128 64

A7 >512 256 <0.5 <0.5 <0.5 <0.5 2 2 <0.5 32 128 256

ZA7 >512 128 <0.5 <0.5 <0.5 <0.5 1 2 <0.5 16 16 4

DH5α 1 <0.5 <0.5 <0.5 1 1 1 0.5 1 <0.5 1 <0.5
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integration on either side of the 8-bp target point repeat (38, 39). 
Therefore, complex transposons are not formed by metastasis, but 
rather homologous recombination. In 2014, Harmer et  al. 
proposed a new resistance gene mechanism model mediated by 
IS26, which considered IS26 and resistance genes as mobile units 
(TU), a new family of mobile genetic (40). The TU released from 
the gene sequence can recognize another adjacent IS26 as a target 
site in the same direction, which resulted in tandem arrangement 
of IS26 elements and the formation of complex transposons.

The frequency of TU-mediated co-integration formation was 60 
times higher than that of single IS26-mediated co-integration 
formation, indicating that intact IS26 elements in the gene sequence 
can recruit IS26-mediated resistance genes. TU integration can 
occur through reactions catalyzed by Tnp (transposase of IS26) or 
by recA-dependent homologous recombination. However, the 
reaction catalyzed by tnp is 100 times more efficient than recA-
dependent homologous recombination. In addition, analysis of 
different patterns of the flanking sequences of 70 IS26 copies in 8 
genomes of carbapenemase-producing Enterobacteriaceae found 
that IS26 promoted rearrangement of drug-resistant plasmids 
through inter-and intramolecular replication translocations (41). 
Despite repeated attempts, the closed circular intermediate 

IS26-ctp-lp-tet(M)-hp-IS406 tnp-IntI3-hp of Tn7124 was not 
detected in the A2 strain and no direct repeats were found flanking 
the IS26 element in Tn7124, suggesting that Tn7124 may have 
occurred by recombination, rather than transposition, which was 
likely controlled by the IS26 element.

3.3 Biological characteristics of pTA2 and 
pTA7

pTA2 and pTA7 were highly stable (100%) for 14 days in E. coli 
DH5α cells cultured in antibiotic-free medium, indicating that both 
carried the resistance genes tet(M), tet(A), floR, aadA1, cmlA1, aadA2, 
and sul2. As shown in Figure 3A, ZA2 and ZA7 exhibited similar 
growth as E. coli strain DH5α in LB broth without doxycycline, while 
the growth rates of ZA2 and ZA7 were slightly increased in LB broth 
without doxycycline than with doxycycline. E. coli strain DH5α failed 
to grow in the presence of doxycycline. The growth kinetics obtained 
over 12 h showed no evidence of any fitness cost exacted by pTA2 
and pTA7.

Further studies on the fitness cost of plasmids carrying tet(M) 
will be of great interest to determine the importance of these plasmids 

FIGURE 2

Structural comparisons of pTA2, pTA7 and the similar plasmids. The outer ring represents the CDSs of the reference sequence pTA2. The similar 
plasmids including the E.coli plasmids pN17EC1163-1 (IncR-X1, CP043734), p14EC007b (CP024133) and p2_BE2-5 (CP032988).
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in tetracycline resistance of E. coli. As shown in Figures 3B,C, equal 
numbers of bacteria with and without plasmids were mixed and 
subcultured every 24 h for 7 days, and the proportion of bacteria 
carrying plasmids was monitored every hour for the first 12 h. During 
this period, the ratio was almost 1:1 at every time point, whereas ZA2 
outnumbered E. coli DH5α after co-culture for 2 days and ZA7 after 
3 days. Afterward, the number of E. coli DH5α cells in the mixed 
culture continuously decreased. At 7 days, the proportions of ZA2 
and ZA7 decreased to less than 1%. The transconjugants ZA2 and 

ZA7 showed competitive advantages relative to E. coli DH5α 
throughout the entire experiment.

4 Conclusion

The novel tet(M)-bearing resistance modules Tn7124 and 
Tn6942-like were found in pTA2 and pTA7 isolated from E. coli 
strains A2 and A7. Transfer of tet(M) occurred with the resistant 
genes sul3, qnrS1, bleO, oqxAB, floR, aadA1, cmlA1, aadA2, and 
tet(A)-tetR(A) in the novel self-transmissible pTA2, and with floR, 
aadA1, cmlA1, aadA2, and tet(A)-tetR(A) in pTA7, suggesting 
that pTA2 and pTA7 may act as reservoirs for these genes. Hence, 
these IncR plasmids likely facilitate the dissemination of tet(M) 
and other resistance genes. Therefore, there is an urgent need to 
strengthen surveillance and efforts to limit the spread of this MDR 
plasmid among Enterobacteriaceae, as well as to enhance 
surveillance of antibiotic resistance outwards the hospital settings, 
because studying resistance into the hospital setting had no result 
on fighting resistance, all these years. Typing of clones, plasmids 
and transposons derived from food producing animals could 
reveal MDR origins and their circulation between humans 
and animals.
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SUPPLEMENTARY FIGURE S1

(a) S1-PFGE of E. coli A2 and its transconjugant ZA2. (b) Southern 
hybridization of E. coli A2 and ZA2 with the tet(M) gene as the probe. Marker, 
Salmonella Braenderup H9812.

SUPPLEMENTARY FIGURE S2

(a) S1-PFGE of E. coli A7 and its transconjugant ZA7. (b) Southern 
hybridization of E. coli A7 and ZA7 with the tet(M) gene as the probe. Marker, 
Salmonella Braenderup H9812.
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