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Introduction: Rotaviruses A (RVA) are a major cause of acute viral gastroenteritis in 
humans worldwide and are responsible for about two million hospitalizations per 
year. They can also infect other mammals such as pigs, calves, goats, lambs, and 
horses, in which they are also considered a major cause of viral diarrhea. While RVA 
is well studied in humans and domestic animals, its occurrence in wild ruminants 
is not well known. The RVA genome is a double-stranded RNA consisting of 11 
segments, and genotyping is based on the VP7 (G) and VP4 (P) segments. Currently, 
there are 42G genotypes and 58P genotypes. RVA has a high mutation rate, and 
some combinations of G and P genotypes can infect different animal species, 
leading to speculation about the potential for zoonotic transmission.

Materials and methods: A total of 432 fecal samples were collected from roe 
deer, red deer, chamois, mouflon and Alpine ibex in Slovenia between 2017 and 
2021. To investigate the presence of RVA in wild ruminants, real-time RT-PCR 
was used. Positive samples were subjected to next generation sequencing (NGS) 
using RIP-seq method.

Results and discussion: In total, 7 samples were RVA positive. Complete 
genomes were determined and phylogenetically analyzed for all 7 RVAs. Four 
different genotype constellations were present in 7 positive RVA animals: G8-
P[14]-I2- R2-C2-M2-A3-N2-T6-E2-H3, G6-P [14]-I2-R2-C2-M2-A11-N2-T6-
E2-H3, G10-P [15]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and G10-P [15]-I2-R2-C2-
M2-A11- N2-T6-E2-H3. Genotypes G6P[14] and G10P[15] were found in both 
roe deer and red deer, representing the first confirmed occurrence of RVA in 
red deer. In addition, genotype G8P[14] was found in chamois, representing the 
first known case of positive RVA in this species. Some of these genotypes have 
also been found in humans, indicating the potential for zoonotic transmission.
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1 Introduction

Rotaviruses (RVs) are the most common cause of acute viral gastroenteritis in humans 
worldwide and are responsible for 2 million hospitalizations per year. Symptoms are most 
common in young children and immunocompromised people. In animals, such as pigs (1, 2), 
cattle (2), goats (3), sheep (3), and horses (4), rotaviruses are commonly diagnosed in animals 
with viral diarrhea. Rotaviruses can also infect other mammals and birds (5). The infection is 
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via the fecal-oral route or through direct contact. The zoonotic potential 
of some RVs is suggested by the identification of unusual human RV 
strains with characteristics more commonly found in animals (6). There 
are several types of RVs: Rotavirus A (RVA), Rotavirus B (RVB), 
Rotavirus C (RVC) and Rotavirus H (RVH), which infect humans and 
various animals, while Rotavirus D (RVD), Rotavirus E (RVE), 
Rotavirus F (RVF) and Rotavirus G (RVG) have only been found in 
animals, mainly birds (7). The most important species from an 
epidemiological point of view for infections in humans and animals is 
RVA (8). RV belong to the Reoviridae family with genome that consists 
of 11 dsRNA molecules, with a total length of approximately 18,500 
base pairs. These RNA segments encode six structural proteins (VP1, 
VP2, VP3, VP4, VP6, and VP7) and six non-structural proteins (NSP1 
to NSP6). Each RNA segment is monocistronic, except for segment 11, 
which, in certain strains, contains two overlapping open reading frames 
(ORFs) encoding NSP5 and NSP6 (9, 10). Two outer layer capsid 
proteins (VP7 and VP4) are used for RVA classification into G and P 
genotypes. Currently, 42 G- genotypes and 58P- genotypes are known 
(11). Some combinations of G and P genotypes are typical for certain 
animals; for example, the G8 P[14] genotype is responsible for rotaviral 
infections in cattle, but this genotype has also been found in humans. 
This is one of the reasons why it is suspected that rotaviruses are 
transmitted zoonotically (12). The segmented genome of RV facilitates 
reassortment, i.e., the exchange of gene segments, leading to the 
emergence of unique strains with novel genomic constellations derived 
from two-parent RV strains, as frequently observed in human- animal 
strains. Although RVs generally favor selective hosts, interspecies 
transmission has been observed several times. Recently, new genotypes 
have been identified in different animal species, suggesting an origin in 
multiple hosts (13, 14). The complete genome analysis allows the 
determination of genotypes for all 11 segments using the abbreviations 
Gx-P[x]-Ix- Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx developed by the Rotavirus 
Classification Working Group (RCWG) (15). Based on the constellation 
of all 11 segments, there are 3 main genogroups of RVA found in 
humans and animals, namely Wa-like (Gx-P[x]-I1-R1-C1-M1-A1-N1-
T1-E1-H1) DS-1-like (Gx-P[x]-I2-R2-C2-M2-A2-N2-T2-E2-H2) and 
AU-1-like (Gx-P[x]-I3–R3–C3–M3–A3–N3–T3–E3–H3). Wa-like and 
DS-1-like are the most common genogroups found in humans. 
However, the differences lie not only in the genetic constellation of the 
11 segments, but also which animals can be infected. Wa-like human 
RVAs are very similar to porcine RVAs, DS -1-like to bovine RVAs and 
AU-1-like to canine and feline RVAs. The question therefore arises as 
to whether these RVAs are of animal origin and become zoonotic 
viruses (15–17).

The aim of our study was to detect RVAs in the intestinal tract of 
wild ruminants and to investigate the potential for interspecies 
transmission of RVAs between wild ruminants and other animals and 
humans and whether potentially found RVAs could be  of 
zoonotic origin.

2 Materials and methods

2.1 Sample collection and preparation

Fecal samples from 432 wild ruminants (249 roe deer, 93 red deer, 
78 chamois, 10 mouflon, and 2 ibex) were collected during 2017 and 
2021 in the territory of Slovenia, Europe. Samples were obtained as a 
part of national wildlife passive health surveillance program. Hunters 

and professional game wardens from all over the country were 
encouraged to provide carcasses of wild ruminants through various 
information channels (hunter magazine, administrative services of 
hunter organizations). Wild ruminants were either found dead in the 
wild or legally harvested because animals exhibited clinical signs or the 
animals were harvested during the regular annual culling. Carcasses 
were submitted to the Veterinary Faculty, University of Ljubljana. Fecal 
samples were prepared in a 1:4 ratio (1 part fecal sample and 4 parts 
RPMI medium) followed by centrifugation at 2,500 rpm for 15 min. 
The supernatant was collected and centrifuged at 14,000 rpm for 
10 min. Subsequently, the supernatant was collected and 5 prepared 
samples were pooled proportionally for further analysis.

2.2 RNA extraction and molecular 
detection

Total RNA was extracted with the MagMAX CORE Nucleic 
Acid Purification Kit on the KingFisher Flex System (Thermo Fisher 
Scientific, Carlsbad, United States). The extracted RNA was first 
denatured at 95°C for 5 min, and then real-time RT-PCR analysis 
was performed on isolated pooled RNA samples using the 
commercial kit qScript XLT one step RT -gPCR ToughMix, ROX 
(Quantabio, United  States) with previously used 5 forward, 2 
reverse primers and MGB probe (18). Individual samples from 
positive pools were analyzed with the real-time RT-PCR assay as 
described above.

2.3 NGS, bioinformatic analysis and 
complete genome construction

RNA from 7 rotavirus-positive samples (4 roe deer, 2 red deer 
and 1 chamois) was isolated using Trizol reagent (Invitrogen, 
United States) in combination with MaXtract High Density Tubes 
2 mL (Qiagen, Germany) according to the manufacturer’s 
instructions. The isolated RNA was sent to Novogene Ltd. (United 
Kingdom) for RNA immunoprecipitation sequencing (RIP-seq) (19) 
using Illumina technology. The sequenced reads were trimmed using 
BBduk v.38.84 as a plugin in Geneious Prime software suite v. 
2022.1.1 (Biomatters Ltd., Auckland, New Zealand) and then de novo 
assembled using metaSPAdes v.3.13.1 (20) to generate contigs. These 
contigs were taxonomically classified using Diamond v.0.9.24 (21) 
with integrated Blast database v.2.9.0 and visualized using MEGAN6 
software v.6.17.0 (22). The fasta formats of the contigs belonging to 
the genus RVA were extracted from MEGAN software and imported 
into Geneious Prime software suite v. 2022.1.1 (Biomatters Ltd., 
Auckland, New Zealand), which was used for further downstream 
bioinformatic analyses. The contigs were mapped to the reference 
sequences from GenBank based on blastn search 
(Supplementary Tables S2–S8) and then whole genomes were created. 
To fill in the gaps in the genome sequences, primers were constructed 
for RT-PCR using primer design tool in Geneious Prime software and 
RT-PCR products were sent to Macrogen Europe for Sanger 
sequencing. To finalize the whole genomes and calculate genome 
coverage, trimmed reads and Sanger sequences from RT-PCR 
products were mapped onto the assembled genomes. The genome 
constellation was determined using the Subspecies Classification for 
Rotavirus A tool from the website BV-BRC (23).
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2.4 Phylogenetic analysis and tree 
construction

For phylogenetic analysis, we  selected 35 RVA genomes from 
GenBank relevant to the 7 RVA strains identified in our study, according 

to genotype constellations and including the closest relatives based on 
Blastn search of each segment (Table 1). The alignment of all 11 segments 
was performed using the MAFFT algorithm v.7.490 (24). The nucleotide 
identities were calculated based on the alignment. After alignment, 
phylogenetic trees for all 11 segments were constructed in MEGA11 

TABLE 1 Comparison of the genotype constellation of seven complete RVA genome sequences of Slovenian wild ruminants (bolded in text) with 35 
relevant RVA genome sequences from GenBank.

Description Origin VP7 
G

VP4 
[P]

VP6 
I

VP1 
R

VP2 
C

VP3 
M

NSP1 
A

NSP2 
N

NSP3 
T

NSP4 
E

NSP5 
H

RVA/Cow/−wt/JPN/Tottori-SG/2013/G15P[14] Bo 15 14 2 2 2 2 3 2 6 2 3

RVA/Human-wt/BEL/B4106/2000/G3P[14] Hu 3 14 2 2 2 3 9 2 6 5 3

RVA/Rabbit-tc/ITA/30–96/1996/G3P[14] Rab 3 14 2 2 2 3 9 2 6 5 3

RVA/Human-wt/BEL/B1711/2002/G6P[6] Hu 6 6 2 2 2 2 2 2 2 2 2

RVA/Human-tc/AUS/MG6/1993/G6P[14] Hu 6 14 2 2 2 2 11 2 6 2 3

RVA/Human-wt/HUN/Hun5/1997/G6P[14] Hu 6 14 2 2 2 2 11 2 6 2 3

RVA/Human-wt/BEL/B10925/1997/G6P[14] Hu 6 14 2 2 2 2 3 2 6 2 3

RVA/Human-tc/ITA/PA169/1988/G6P[14] Hu 6 14 2 2 2 2 3 2 6 2 3

RVA/Human-wt/ITA/111–05-27/2005/G6P[14] Hu 6 14 2 2 2 2 3 2 6 2 3

RVA/Sheep-tc/ESP/OVR762/2002/G8P[14] Ov 8 14 2 2 2 2 11 2 6 2 3

RVA/Human-tc/USA/Se584/1998/G6P[9] Hu 6 9 2 2 2 2 3 2 1 2 3

RVA/Guanaco-wt/ARG/Chubut/1999/G8P[14] Gua 8 14 2 5 2 2 3 2 6 12 3

RVA/Cow-wt/ARG/B383/1998/G15P[11] Bo 15 11 2 5 2 2 13 2 6 12 3

RVA/Human-wt/HUN/BP1879/2003/G6P[14] Hu 6 14 2 2 2 2 11 2 6 2 3

RVA/Human-wt/HUN/BP1062/2004/G8P[14] Hu 8 14 2 2 2 2 11 2 6 2 3

RVA/Chamois-wt/SLO/GA471/2019/G8P[14] Cha 8 14 2 2 2 2 3 2 6 2 3

RVA/Human-tc/USA/DS-1/1976/G2P[4] Hu 2 4 2 2 2 2 2 2 2 2 2

RVA/Human-wt/MWI/1473/2001/G8P[4] Hu 8 4 2 2 2 2 2 2 2 2 2

RVA/Red deer-wt/SLO/JE282/2017/G10/P[15] Red 10 15 2 2 2 2 11 2 6 2 3

RVA/Red deer-wt/SLO/JE295/2017/G6/P[14] Red 6 14 2 2 2 2 11 2 6 2 3

RVA/Human-wt/KEN/AK26/2011/G2P[4] Hu 2 4 2 2 2 2 2 1 2 2 2

RVA/Human-wt/JPN/KF17/2010/G6P[9] Hu 6 9 2 2 2 2 3 2 3 3 3

RVA/Rabbit-wt/CHN/N5/1992/G3P[14] Rab 3 14 17 3 3 3 9 1 1 3 2

RVA/Human-wt/AUS/V585/2011/G10P[14] Hu 10 14 2 2 2 2 11 2 6 2 3

RVA/Human-wt/BRB/2012821133/2012/G4P[14] Hu 4 14 1 1 1 1 8 1 1 1 1

RVA/Pig-tc/KOR/174–1/2006/G8P[7] Pi 8 7 15 1 1 2 1 1 1 1 1

RVA/Human-wt/AUS/RCH272/2012/G3P[14] Hu 3 14 2 3 3 3 9 2 6 2 3

RVA/Human-wt/USA/2012841174/2012/G8P[14] Hu 8 14 2 3 2 2 3 2 6 2 3

RVA/Human-wt/USA/Wa/1974/G1P[8] Hu 1 8 1 1 1 1 1 1 1 1 1

RVA/Human-wt/ITA/PR1300/2004/G8P[14] Hu 8 14 2 2 2 2 3 2 6 2 3

RVA/Human-wt/ITA/PR1973/2009/G8P[14] Hu 8 14 2 2 2 2 3 2 6 2 3

RVA/Human-tc/EGY/AS970/2012/G8P[14] Hu 8 14 2 2 2 2 11 2 6 2 3

RVA/Human-wt/HUN/182–02/2002/G8P[14] Hu 8 14 2 2 2 2 11 2 6 2 3

RVA/Roe deer-wt/SLO/D38-14/2014/G6P[15] Roe 6 15 2 2 2 2 3 2 6 2 3

RVA/Roe deer-wt/SLO/D110-15/2015/G8P[14] Roe 8 14 2 2 2 2 3 2 6 2 3

RVA/Human-wt/THA/SKT-27/2012/G6P[14] Hu 6 14 2 2 2 2 3 2 6 2 3

RVA/Bovine/Northern Ireland/R1WTA17/2013/G6P[11] Bo 6 11 2 2 2 2 3 2 6 2 3

RVA/Ovine/Northern Ireland/R2WTA65/2014/G10P[15] Ov 10 15 2 2 2 2 11 2 6 2 3

RVA/Roe deer-wt/SLO/SR100/2017/G6P[14] Roe 6 14 2 2 2 2 11 2 6 2 3

RVA/Roe deer-wt/SLO/SR294/2017/G10P[15] Roe 10 15 2 2 2 2 3 2 6 2 3

RVA/Roe deer-wt/SLO/SR333/2017/G10P[15] Roe 10 15 2 2 2 2 3 2 6 2 3

RVA/Roe deer-wt/SLO/SR338/2017/G10P[15] Roe 10 15 2 2 2 2 3 2 6 2 3
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software v.11.0.13 (25) using the maximum likelihood method based on 
Kimura’s 2-parameter model. One thousand replicates were used in the 
bootstrap analysis to calculate the branch statistics.

3 Results

Four hundred and thirty-two fecal samples from different wild 
ruminants from across Slovenia (Figure 1) were tested for RVA. Seven of 
these samples were positive for RVA with real time RT-PCR, detecting 
the VP2 segment, which is known to detect a broad spectrum of 
RVA. Positive samples were sent for NGS sequencing and further 
bioinformatic and phylogenetic analyses were performed. The prevalence 
of RVA in wild ruminants in Slovenia, Europe between 2017 and 2021 
was 2.15% in roe deer and less than 2% in red deer and chamois (Table 2). 
RVA-positive animals were found at different locations in Slovenia, of 
different ages and of both sexes (Figure 1; Table 3).

3.1 NGS analysis and complete genome 
construction

Seven complete RVA genome sequences of all 11 segments were 
generated and deposited in the GenBank under the accession numbers 
listed in Supplementary Table S1. The number of raw reads per sample 
ranged from 22 to 41 million (Supplementary Table S16). The average 
coverage of genome segments varied from 12.78 to 39865.36.

3.2 Rotavirus genome constellation

The Subspecies Classification for Rotavirus A tool analysis 
revealed that 7 RVA strains from this study have 4 different 

genome constellations (Table  1) and all 4 have a DS1-like 
backbone. Based on the whole genome constellation, there were 
four different genotypes circulating among wild ruminants in 
Slovenia between 2017 and 2021: G8-P[14]-I2-R2-C2-M2- 
A3-N2-T6-E2-H3, G6-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3, 
G10-P[15]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and G10-P[15]-I2-R2-C2-M2- 
A11-N2-T6-E2-H3.

3.3 Phylogenetic analysis of the genome 
segments

The genome constellations of the 42 RVA genomes used for 
phylogenetic analysis are listed in Table 1.

Phylogenetic analysis of the VP4 segment shows that the RVA 
strains from wild ruminants from this study have 2 different P 
genotypes, the P[14] and P[15]. Strains with the P[15] genotype 
(JE282, SR294, SR333, and SR338) are most closely related to the 
previously found RVA genome of the Slovenian roe deer strain 
D38-14, with nucleotide identities varying between 88.5 and 99.4%. 
Other RVA strains from this study with P[14] genotype (GA471, 
JE295, and SR100) show a nucleotide identity of 97.4–98.5% with 

FIGURE 1

The geographical location of all sampled wild ruminants in Slovenia.

TABLE 2 Number (%) RVA positive animals among different species.

Roe 
deer

Red 
deer

Chamois Mouflon Alpine 
ibex

Number 

all 249 93 78 10 2

Number 

(%) RVA 

positive

4 

(1.61%)

2 

(2.15%) 1 (1.28%) 0 0
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the Hungarian 182–02 and the Italian 111–05-27 human RVA 
strains (Figure 2).

Based on the phylogenetic analysis of the VP7 segment, 3 
different G genotypes were found in the wild ruminants from this 
study, namely G6 (JE295 and SR100), G8 (GA471) and G10 (JE282, 
SR294, SR333, SR338). Strain JE295 with genotype G6 is most closely 
related to the Hungarian Hun5 human strain with 96.5% nucleotide 
identity. Another strain with G6 genotype is SR100, which is most 
similar to the Italian strain 111–05-27 with 97.8% nucleotide identity. 
The RVA strain GA471 with genotype G8 is most closely related to 
the porcine RVA strain 174–1 with 98.2% nucleotide identity and 

TABLE 3 Age, sex, and location of RVA positive animals.

RVA Strain Species Age Sex Location

GA471 Chamois Kid Male Poljane

JE282 Red deer 2 years Female Lukovica

JE295 Red deer 2 years Female Žalec

SR100 Roe deer 1 year Male Solčava

SR294 Roe deer 5 years Male Murska Sobota

SR333 Roe deer 2 years Male Kranjska Gora

SR338 Roe deer 1 year Female Medvedje Brdo

FIGURE 2

The Maximum likelihood phylogenetic tree on VP7 segment. Bootstrap values lower than 70 are not shown. The Slovenian wild ruminants’ strains are 
marked with circle.
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almost as closely related to the human RVA strain PR1973 with 98.1% 
nucleotide identity. Three strains with genotype G10 (SR294, SR333, 
SR338) are most similar to each other with a nucleotide identity of 
96.6–99.4%, while strain JE282, also with genotype G10, is most 
similar to human RVA strain V585 with 86.4% nucleotide identity 
(Figure 3).

We also found different A genotypes (NSP1 segment); strains 
GA471, SR294, SR333, and SR338 have genotype A3 like the other roe 

deer RVAs D11-15 and D38-14. 3 RVA strains (JE282, JE295 and SR100) 
have genotype A11, like some human and sheep strains 
(Supplementary Figure S5). Regarding other genome segments, NSP2-5 
(Supplementary Figures S6–S9), VP1-3 (Supplementary Figures S2–S4) 
and VP6 (Supplementary Figure S1), phylogenetic analysis showed that 
the wild ruminant RVA strains from this study have the same genotype 
with nucleotide identities between 48.9 and 99.6%. These results are 
shown in Supplementary Tables S9–S15.

FIGURE 3

The Maximum likelihood phylogenetic tree on VP4 segment. Bootstrap values lower than 70 are not shown. The Slovenian wild ruminants’ strains are 
marked with circle.
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4 Discussion

In this study, rotaviruses were investigated in wild ruminants 
in Slovenia, Europe from 2017 to 2021. We confirmed RVA for the 
first time in red deer and chamois. We found that the detection 
rate of RVA in roe deer was 1.61%, which corresponds to the result 
of the study from Germany (26). The detection rate of RVA in red 
deer was 2.15% and in chamois 1.28%. However, these results 
could not be compared with other studies as this was the first time 
that detection of RVA was reported in these species. Nevertheless, 
the detection rates in wild ruminants were still relatively low 
compared to domestic animals, possibly due to less contact with 
humans (27).

Two new G and [P] genotype combinations were found in wild 
ruminants (G6P[14] and G10P[15]) and one combination identical to 
a previously reported strain from Slovenia (G8P[14]) (18). All seven 
strains from this study had the same DS-1 like non-G/P genotype 
constellation (I2-R2-C2-M2-(A3/11)-N2-T6-E2-H3) of bovine and 
bovine-like strains, which is commonly found in RVA strains from 
artiodactyls such as cattle (15).

The G8P[14] and G6P[14] RVA genotypes with DS1-like genetic 
backbone are commonly found in animal species of the order Artiodactyla 
and are also known to cause human infections (12, 28–33). The RVA 
genotype G8P[14] has been detected sporadically in cattle, sheep, 
guanaco, vicuna, roe deer and in humans (12, 30–38). In this study, the 
RVA strain GA471 with the genotype G8P[14] was found in chamois. It 
showed high nucleotide identity with various human RVA strains in the 
VP4, VP2, VP6 and NSP3 segments, while in other segments it was more 
closely related to the RVA strains of roe deer, red deer and pigs. This strain 
also belonged to the DS-1-like group and had the same genome 
constellation G8-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3 as the 
previously found Slovenian RVA strain D110-15, whose host was roe 
deer (38).

The RVA genotype G6P[14] has been detected in some animal 
species, such as antelope, goat, cattle and also in humans (28, 29, 
34, 39–43). In the present study, the RVA G6P[14] strain was 
detected for the first time in red deer and roe deer species. The 
RVA strain JE295 was found in red deer and was most closely 
related to human RVA strains according to whole genome 
phylogenetic analysis in all segments except VP2, VP3 and NSP1, 
in which it was most closely related to red deer and chamois RVA 
strain. Similarly, RVA strain SR100 found in roe deer had the 
highest nucleotide identity with human RVA strains except in 
segments VP6, VP3 and NSP1, in which the closest relatives were 
RVA strains isolated from red deer and sheep. Both strains, JE295 
and SR100, had the same genotype constellation G6P[14] I2-R2-
C2-M2-A11-N2-T6-E2-H3, which had also been found in 
humans, more specifically in children with diarrheal diseases in 
several countries (40–42). RVA strains with G6P[14] found in 
other studies (40–42) had similar characteristics to those 
from Slovenia.

Matthijnssens et al. (34) suggest that human P[14] (G6 and G8) 
rotaviruses may have originated in a ruminant (cattle, goat, sheep or 
antelope) or camelid (guanaco), based on the conserved overall genetic 
constellation found in a large number of these animals. In this respect, 
sheep, goats or cattle are probably the main reservoir of P[14] rotaviruses 
for humans worldwide, as these animals live close to humans. Since 

rotaviruses are frequently transmitted among members of the order 
Artiodactyla, human P[14] rotaviruses probably do not have a single 
common animal source. Based on the evolutionary relationships 
observed in the study by Matthijnssens et al. (34) and later studies 
reporting P[14] strains (30, 32, 35–37, 43, 44), these strains are complex 
and likely involve multiple animal-to-animal transmissions, 
reassortments, and subsequent transmissions from an animal to a 
human. Similar results were also obtained in our study, supporting 
this hypothesis.

Another G-P combination of RVA was found in this study, 
G10P[15], which was detected in 4 samples from red deer and roe 
deer (RVA strains JE282, SR294, SR333 and SR338). The G10P[15] 
genotypes were predominantly bovine strains, but had also been 
found in sheep and camels (3, 45–48). The RVA strain JE282 
detected in red deer was found to be most closely related to roe 
deer, red deer and chamois RVA strains in most segments, and to 
the human RVA strains in segments VP7, VP6, NSP4, and NSP5. 
Another RVA strain SR294, which was found in roe deer, showed 
the greatest similarities in the nucleotide sequence in most segments 
with roe deer, bovine and porcine RVA strains, and only in two 
segments (NSP2 and NSP4) with human RVA strains. The RVA 
strains SR333 and SR338, both isolated from roe deer, showed the 
greatest similarities in nucleotide sequence to RVA strains found in 
animals of the order Artiodactyla. Although there have been no 
reports of the G10P[15] genotype in humans, other P combinations 
with G10 have been found in humans (49, 50). However, the 
genome constellation of the roe deer RVA strains (SR294, SR333, 
and SR338) differed in the non-structural NSP1 segment from that 
of the red deer strain (JE282). The red deer strain had genotype 
A11, whereas the roe deer strains had genotype A3. The 
phylogenetic tree of the NSP1 segment in this study showed two 
different A genotypes among wild ruminants, A3 and A11, which 
were detected in cows (51), roe deer (38) and humans (34, 40). It is 
not known what effect the differences between the A genotypes have 
on the host or virus transmission (52).

5 Conclusion

In this study, new genotype combinations (G6P[14] and 
G10P[15]) were discovered alongside a known one (G8P[14, 12]) 
in wild ruminants in Slovenia from 2017 to 2021. G6P[14] was 
found in red deer and roe deer, G8P[14] in chamois and G10P[15] 
in red deer and roe deer. The genotypes G6P[14] and G8P[14] 
showed zoonotic potential as they have similarities with human 
RVA strains. On the other hand, different RVA genotypes can infect 
different hosts and possibly cross species, so the question of the 
zoonotic origin of RVA remains open. Currently, there is insufficient 
evidence to determine whether humans or animals are the primary 
reservoir for RVA. Further research is needed to decipher the 
transmission dynamics.
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