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Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant 
threat to the poultry industry. It leads to progressive damage to the small 
intestine, reduced performance, increased mortality rates, and substantial 
economic losses. With the removal of antimicrobial agents from chicken feed, 
there is an urgent need to find alternative approaches for NE control. Various 
approaches, including vaccination, prebiotics, probiotics, and plant-derived 
products, have been utilized to address NE in poultry management. To evaluate 
the efficacy of these preventive measures against NE, successful induction of NE 
is crucial to observe effects of these approaches in related studies. This study 
presents a comprehensive overview of the methods and approaches utilized 
for NE reproduction in related studies from 2004 to 2023. These considerations 
are the careful selection of a virulent Clostridium perfringens strain, preparation 
of challenge inoculum, choice of time and the route for challenge inoculum 
administration, and utilization of one or more predisposing factors to increase the 
rate of NE occurrence in birds under experiment. We also reviewed the different 
systems used for lesion scoring of NE-challenged birds. By gaining clarity on 
these fundamental parameters, researchers can make informed decisions 
regarding the selection of the most appropriate NE experimental design in their 
respective studies.
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1 Introduction

Necrotic enteritis (NE) is a highly prevalent clostridial enteropathogenic ailment in 
poultry, with its initial documentation dating back to the 1950s in broiler chickens (1). NE 
poses a substantial challenge to the advancement of the poultry industry, particularly in 
nations with significant poultry production (2). It is widely recognized as a prominent 
limitation hindering the development and expansion of the poultry sector (2, 3). Based on 
estimations, NE disease outbreaks have had a considerable economic impact, reaching 
approximately $2 billion in 2000 and escalating to around $6 billion in 2015, corresponding 
to an approximate cost of $0.0625 per bird (4).
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Necrotic enteritis is primarily caused by Clostridium perfringens 
(C. perfringens), an anaerobic gram-positive bacterium that forms 
spores (5). Clostridium perfringens is widely distributed in the 
environment and is commonly found in the gastrointestinal tract of 
various animal species, including poultry, livestock, and humans, both 
in healthy and diseased individuals (5, 6). Among the toxins associated 
with NE pathogenesis, α-toxin derived from C. perfringens has 
traditionally been identified as the primary toxin (7). However, the 
discovery of a novel toxin called necrotic enteritis toxin-B like (NetB) 
has attracted considerable attention due to its significant role in the 
development of NE (8). According to the established classification 
scheme based on toxin production, C. perfringens type G has emerged 
as a prominent causative agent of NE in poultry (9). This is attributed 
to its ability to produce both α-toxin and the NetB protein (9).

Necrotic enteritis in birds exhibits two distinct manifestations: 
clinical (acute) and subclinical (chronic) (1). The acute form is 
characterized by diarrhea, depression, sternal recumbency, and high 
flock mortality rates, which can reach up to 50% (10, 11). 
Pathologically, this form is associated with inflammation and extensive 
necrosis primarily observed in the small intestines of affected birds. In 
contrast, the chronic form of NE is characterized by mucosal damage 
in the small intestine and is marked by reduced weight gain at 
slaughter, decreased feed intake, and impaired growth performance 
(10, 11). NE typically affects birds in good body condition within the 
2–6-week period, as maternal antibodies only provide protection for 
approximately 3 weeks (12–16). However, there have been reports of 
NE occurring in commercial layers older than 3 months of age (13).

Historically, antimicrobial agents were employed in chicken feed 
to enhance growth, modulate intestinal microbiota, and prevent the 
occurrence of NE (17). However, the use of these antibiotics resulted 
in the emergence of antibiotic resistance and posed risks to public 
health (18). As a response, the European Union implemented a 
prohibition on the inclusion of antibiotics in chicken feed in 2006, 
leading to a subsequent rise in NE cases (17). Consequently, alternative 
strategies have been implemented in poultry management to tackle 
NE, including the utilization of vaccination, prebiotics, probiotics, and 
plant-derived products (19). The reproduction of NE in experimental 
settings is an integral part of vaccine development studies and plays a 
crucial role in evaluating the effectiveness of preventive measures 
against NE. Several critical factors contribute to the successful 
induction of NE, including the careful selection of a virulent strain of 
C. perfringens capable of reproducing NE, precise preparation of the 
challenge inoculum, meticulous timing and route of infectious 
challenge inoculation, and consideration of relevant predisposing 
factors. Hence, it is imperative to thoroughly review the impact of 
these factors on NE reproduction and make informed decisions 
regarding their incorporation in the design of experimental NE 
disease. In the current study, we  conducted a review of the 
methodologies employed for inducing NE disease during challenge 
experiments. Our objective was to provide a comprehensive summary 
of the experimental designs used to reproduce NE in related studies 

conducted between 2004 and 2023. The review highlights the need for 
further investigation and research in areas where ambiguity exists.

2 Selection of virulent challenge 
strains

Being the causative agent of avian NE, C. perfringens is recognized 
for its capacity to generate a diverse array of toxins (20, 21). The 
α-toxin from C. perfringens has traditionally been acknowledged as 
the principal virulence factor that elicits NE in birds (22). In the post-
antibiotic era, extensive endeavors were directed toward developing 
effective vaccines for this particular toxin, with the aim of managing 
NE. Nonetheless, the importance of α-toxin in the development of NE 
was called into question following the revelation that pathogenicity 
persisted in chickens despite the absence of this toxin in a 
C. perfringens mutant (7). According to these findings, it was 
established that there were supplementary elements, apart from the 
α-toxin, that potentially contribute to the initiation of NE in birds. In 
a critical study, a novel protein, NetB, was isolated from a C. perfringens 
strain found in a bird afflicted with NE (22). Subsequently, it was 
discovered that C. perfringens netb knockout mutants were unable to 
induce NE, leading to the hypothesis that NetB may be the primary 
virulence factor involved in the pathogenesis of NE (22).

To effectively evaluate the efficacy of alternative approaches to 
combat NE in the post antibiotic era, it is imperative to induce the NE 
disease in experimental animal models. This highlights the importance 
of utilizing virulent strains of C. perfringens in infectious challenge studies 
to accurately induce the disease as it occurs in field conditions and to 
facilitate accurate assessments of the efficacy of the preventive measures. 
Since NetB toxin is the primary antigen responsible for causing NE (22), 
it becomes crucial to utilize C. perfringens strains that demonstrate a 
positive presence of the netb gene to reproduce NE in vivo. The 
development of NE-associated gut lesions is unattainable in the absence 
of netb gene. Although the presence of NetB as the major causative agent 
is critical and enough for reproduction of NE, other virulence factors 
from C. perfringens may contribute synergistically to intensify the severity 
of NE. In this regard, the co-presence of TpeL, another toxin from 
C. perfringens, along with NetB, has been demonstrated to potentially 
result in more severe intestinal lesions (23). Additional toxins and 
antigens derived from C. perfringens might potentially influence the 
pathogenesis of NE such as fructose 1, 6-biphosphate aldolase (FBA) (24), 
zinc metallopeptidase (ZMP) (25), perfringolysin O (PFO) (26), and pilin 
structural subunits (Cna, FimA, and FimB) (27, 28) (Figure 1). Despite 
the presence of these toxins and antigens, their involvement is not crucial 
for the experimental induction of NE.

The comprehensive overview of the challenge experiments 
conducted to induce NE in birds is represented in Table 1. Diverse 
virulent strains of C. perfringens have been demonstrated to 
induce NE in broiler chickens during experimental challenge 
studies (Figure 2). Among these strains, C. perfringens strains 
CP56, CP4, and EHE-NE18 are the most commonly used strains 
for NE experimental induction, followed by Del-1, CP58, CP1, 
and CP6. Other less frequently utilized strains include WER-NE36 
and JGS4143. A great number of studies utilized C. perfringens 
type A strains derived from NE-affected flocks to induce NE 
infection in their challenge experiment. However, it is of utmost 
importance to acknowledge that strains exhibiting netb positivity 

Abbreviations: C. perfringens, Clostridium perfringens; NE, Necrotic enteritis; 

NetB, Necrotic enteritis toxin β–like; FTG, Fluid thioglycolate; CMM, Cooked meat 

medium; BHI, Brain heart infusion; TSB, Tryptic soy broth; CFU, Colony forming 

unit; IBD, Infectious bursal disease; FBA, Fructose 1, 6-biphosphate aldolase; ZMP, 

Zinc metallopeptidase; PFO, Perfringolysin O; ND, Not defined; NA, Not assigned.
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were categorized under C. perfringens type A prior to the 
implementation of the novel C. perfringens classification system 
based on toxin types (9). Since numerous vaccine studies were 
conducted prior to the introduction of the current scheme, these 
investigations documented the utilization of C. perfringens type 
A strains in their experimental paradigm. Now we  know that 
these strains belong to C. perfringens type G. The continued 
utilization of type A strains in recent studies is attributed to the 
prevailing absence of reclassification of these netb-positive strains 
within the G type category, as mandated by the updated 
toxinotyping scheme. In addition, several researchers employed 
unidentified strains of C. perfringens type G, which were isolated 
from afflicted birds during an outbreak of NE within a flock.

Consequently, the careful selection of a virulent strain that 
induces more severe NE lesions plays a crucial role in accurately 
assessing the effectiveness and protective capacity of NE vaccines. 
Recent research has provided evidence that the virulent C. perfringens 
strains TpeL17, WER-NE36, Del-1, and CP13 result in more severe 
NE infections, as indicated by higher mean lesion scores observed in 
the small intestine of challenged birds (Figure 3). However, these 
strains have been utilized in only a limited number of vaccine studies. 
In contrast, strains such as CP4 have been found to induce moderate 
to severe lesions in the intestinal tract of challenged birds and have 
also been employed in a greater number of studies. The mean lesion 
scores of the C. perfringens strains used in experimental NE challenge 
investigations are illustrated in Figure 3.

It is important, however, to note that comparing the findings of 
NE infection studies is challenging due to differences in the 

experimental challenge infections. Numerous disparities concerning 
the administration and application of the virulent strains, as well as 
variations in the quantity and frequency of challenge inoculations, 
pose formidable obstacles when attempting to facilitate accurate and 
reliable comparisons among vaccine study results or other preventive 
measure investigations against NE.

3 NE challenge methods

3.1 Choice of culture media

Several culture media have been employed in the propagation of 
virulent strains of C. perfringens during challenge experiments. The 
selection of media has been based on a multitude of considerations, 
encompassing but not restricted to the simplicity of management and 
the efficient utilization of resources. Among the culture media 
employed for inducing NE in vitro through oral inoculation of birds 
or culture-infected feed or water, a fluid thioglycolate (FTG) medium 
is the most commonly used culture media (24, 33, 36, 37, 72, 73, 79, 
87, 102, 105, 115, 116). This medium has the property of culturing 
under aerobic conditions due to the presence of sodium thioglycolate, 
a potent oxygen scavenger, in its composition. Other less commonly 
used media include Cooked Meat Medium (CMM) (24, 34, 38, 52, 80, 
117), Brain Heart Infusion Broth (BHI) (10, 41, 42, 44–47, 53, 75, 78, 
98), Tryptic Soy Broth (TSB) containing sodium thioglycolate (88, 
118–120), and liver broth (85, 101). Many researchers initially 
cultivated C. perfringens in CMM before inoculating this medium into 

FIGURE 1

The role of Clostridium perfringens antigens in NE pathogenesis. Numerous antigens and toxins produced by C. perfringens may play a role in the 
pathogenesis of NE, while their presence is not crucial for the development of NE. NetB serves as the principal toxin responsible for NE by forming 
pores and penetrating the intestinal mucosa. Other toxins, such as α-toxin and PFO, might play distinct roles in the pathogenesis of NE by causing 
mucosal degradation and forming pores in epithelial cells, respectively. Other antigens involved in NE pathogenesis may include those responsible for 
mucus-covered epithelial cell degradation (ZMP), C. perfringens attachment to intestinal lining cells (FBA), collagen interaction (Cna, FimA, and FimB), 
and mucosal damage leading to tissue degradation (TpeL).
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Challenge 
strain

Route of 
administration

(CFU/ml or 
culture/feed 
Ratio (v/w))

Experiment 
program

No. of days (days 
of age / No. of 

daily inoculations)

Lesion 
score 1

Scoring 
system

Predisposing factor(s) Reference

CP56

Oral gavage (4 × 108) 4 CD (17-20 / 3)

2.19

0-6

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

(43)

2.98

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

Heat stress (35 ºC / day 17-35)

Oral gavage (4 × 108) 4 CD (17-20 / 1) 1.07 0-6

Wheat/rye-based diet

Protein-rich diet (to 30%)

IBD vaccine (day 16)

Anticoccidial vaccine (day 18/20)

(44)

Oral gavage (4 × 108)
Mild

4 CD (17-20 / 1)
0.75

0-6

Wheat/rye-based diet

Protein-rich diet (to 30%)

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

(45)

In-feed (3:4)
Severe

4 CD (19-22 / 2)
1.70

Oral gavage (4 × 108) 4 CD (17-20 / 1)

0.45

0-6

Wheat-based diet

Protein-rich diet (to 30%)

IBD vaccine (day 16)

(46)

1.1

Wheat-based diet

Protein-rich diet (to 30%)

IBD vaccine (day 16)

Fusarium mycotoxin deoxynivalenol

Oral gavage (4 × 108) 4 CD (17-20 / 1)

0.65

0-6

Wheat-based diet

Protein-rich diet (to 30%)

IBD vaccine (day 16)

(47)

0.77

Wheat-based diet

Protein-rich diet (to 30%)

IBD vaccine (day 16)

Fumonisins mycotoxins

Oral gavage (4 × 108) 4 CD (17-20 / 3)

2.18

0-6

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

(48)

3.20

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

High Stock density

Oral gavage (4 × 108) 4 CD (17-20 / 3)

2.19

0-6

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

(49)

3.79

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

Cold stress (15 ºC)

(Continued)

TABLE 1 (Continued)
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Challenge 
strain

Route of 
administration

(CFU/ml or 
culture/feed 
Ratio (v/w))

Experiment 
program

No. of days (days 
of age / No. of 

daily inoculations)

Lesion 
score 1

Scoring 
system

Predisposing factor(s) Reference

CP56

Oral gavage (4 × 108) 4 CD (17-20 / 3) 4.6 0-6

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

E. maxima (day 18)

(50)

Oral gavage (4 × 108) 4 CD (17-20 / 3) 2.19 0-6

Wheat/rye-based diet

Protein-rich diet

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

(51)

CP58

1.26 0-5
Protein-rich diet (20% to 40%)

Starvation (18 h)
(52)

Oral gavage (2 × 107-108) 

+ In-feed (1:10)
5 CD (28-32 / 2) 3.33 0-5

Wheat-based diet

Protein-rich diet (20% to 40%)  

Starvation (20 h)

(53)

Oral gavage (109) + In-

feed (1:2)
4 CD (30-33 / 2) 3 0-6

Wheat-based diet

Protein-rich diet (21.5% to 48%)  

Starvation (12 h)

(54)

Oral gavage (109) + In-

feed (1:2)
4 CD (30-33 / 2) 3 0-6

Wheat-based diet

Protein-rich diet (21.5% to 48%)  

Starvation (12 h)

(55)

WER-NE36

In-feed (3:4)
Severe

2 CD (26-27 / 2)
2.8 0-6

Wheat-based diet

Protein-rich diet (20% to 50%)
(56)

In-feed (4:3) 4 CD (19-22 / 1) 4.25 0-6
Wheat-based diet

Protein-rich diet (20% to 50%)
(57)

Oral gavage (108) 2 CD (14-15 / 1) 1 0-4 Eimeria spp. (day 9) (58)

EHE-NE18

In-feed (3:4)
2 CD (21-22 / 2) 2.6

0-6
Wheat-based diet

Protein-rich diet (20% to 50%)
(59)

2 CD (14-15 / 2) 3

Oral gavage (109-1010) + 

In-feed (1:10)

Mild

2 CD (24-25 / 2)
1.9

0-6
Wheat-based diet

Protein-rich diet (20% to 50%)
(56)

In-feed (3:4)
Moderate

2 CD (26-27 / 2)
2

Oral gavage (108) 2 CD (14-15 / 1) 0.83 0-4 Eimeria spp. (day 9) (58)

Oral gavage (108-109) Day 14 / 1 1.25 0-4 Eimeria spp. (day 9) (60)

Oral gavage (108) 2 CD (14-15 / 1)
Exp. 1 1.5 0-4

Anticoccidial vaccine (day 9) (61)
Exp. 2 1.8

Oral gavage (108-109) 2 CD (14-15 / 1)

1.3

0-4

Eimeria spp.

(62)
0.45 Protein-rich diet (to 25%)

1.4
Eimeria spp.

Protein-rich diet (to 25%)

Oral gavage (108-109) 2 CD (14-15 / 1)

1.3

0-4

Eimeria spp. (day 9)

(63)
0.45 Protein-rich diet (to 25%)

1.4
Eimeria spp. (day 9)

Protein-rich diet (to 25%)

Oral gavage (108) 2 CD (14-15 / 1) 0.8 0-6 Eimeria spp. (day 9) (64)

Oral gavage (108) 2 CD (14-15 / 1) 0.8 0-6 Eimeria spp. (day 9) (65)

Oral gavage (108) 2 CD (14-15 / 1) 0.68 0-6 Anticoccidial vaccine (day 9) (66)
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Challenge 
strain

Route of 
administration

(CFU/ml or 
culture/feed 
Ratio (v/w))

Experiment 
program

No. of days (days 
of age / No. of 

daily inoculations)

Lesion 
score 1

Scoring 
system

Predisposing factor(s) Reference

Del-1

Oral gavage (109) Day 18 3 0-4
Protein-rich diet (17% to 24%)

E. maxima strain 41A
(67)

Oral gavage (109) Day 18 2.5 0-4
Protein-rich diet (18% to 24%)

E. maxima (day 14)
(68)

Oral gavage (109)

Day 21 / 1 3.17

0-4

Protein-rich diet (18% to 24%)

E. maxima (day 18)
(69)

Day 18 / 1 0.87
Protein-rich diet (21% to 24%)

E. maxima (day 14)

Oral gavage (109) Day 18

Cobb ≈ 3.5

0-4
Protein-rich diet (17% to 24%)

E. maxima (day 14)
(70)Ross ≈ 3.3

Hubbard ≈ 2.8

Oral gavage (109) Day 18 2.9 0-4
Protein-rich diet (17% to 24%)

E. maxima (day 14)
(71)

CP61 Oral gavage (4 × 108) 4 CD (17-20 / 1) ND 0-6

Wheat/rye-based diet

Protein-rich diet (to 30%)

IBD vaccine (day 16)

Anticoccidial vaccine (day 18)

(41)

CP1

In-feed (2:1) 5 CD (29-33 / 1) 1.63 0-5

Wheat-based diet

Protein-rich diet (20% to 28%) 

Starvation (24 h)

(32)

In-feed (2:1)
2 CD (28-29 / 2) 2.87

0-6
Protein-rich diet (20% to 28%) 

Starvation (24 h)
(72)

2 CD (26-27 / 2) 3.66

Oral gavage (2.5 × 108)

3 CD (14-16 / 1) 0.95

0-6

-

(73)

4 CD (15-18 / 1) 1.16
Wheat-based diet

Protein-rich diet (18% to 60%)

4 CD (15-18 / 1) 1.58

Wheat-based diet

Protein-rich diet (18% to 60%)

Anticoccidial vaccine (day 10)

Oral gavage (1-2 × 108) 2 CD (12-13 / 1)
0.83

0-6
-

(74)
2.66 Corticosterone in feed (day 11)

CP6

Oral gavage (108) 3 CD (19-21 / 1) 0.9 0-3 E. maxima (day 14) (37)

Oral gavage (108) 2 CD (19-20 / 1)
Trial 1 1.27

0-3
E. maxima (day 14)

(75)Trial 2 1

In-feed 3 CD (13-15 / 1) Trial 3 0.92 -

Oral gavage (108) 3 CD (18-20 / 1) 0.37 0-3
E. maxima (day 14)

Starvation (2-3 h)
(76)

Oral gavage (108) 3 CD (19-21 / 1) 1.11 0-3 E. maxima (day 14) (77)

CP13

Oral gavage (107) 5 CD (15-19 / 2)

2.89

0-3

Wheat-based diet

Anticoccidial vaccine (day 13)

(78)

3.45
Wheat-based diet

IBD vaccine (day 14)

1.67

Wheat-based diet

Anticoccidial vaccine (day 13)

IBD vaccine (day 14)

CP14

2.78
Wheat-based diet

Anticoccidial vaccine (day 13)

2.56
Wheat-based diet

IBD vaccine (day 14)

1.78

Wheat-based diet

Anticoccidial vaccine (day 13)

IBD vaccine (day 14)
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Challenge 
strain

Route of 
administration

(CFU/ml or 
culture/feed 
Ratio (v/w))

Experiment 
program

No. of days (days 
of age / No. of 

daily inoculations)

Lesion 
score 1

Scoring 
system

Predisposing factor(s) Reference

CP03

3.34
Wheat-based diet

Anticoccidial vaccine (day 13)

2.23
Wheat-based diet

IBD vaccine (day 14)

2.43

Wheat-based diet

Anticoccidial vaccine (day 13)

IBD vaccine (day 14)

Type A

In-feed (2:1)
3 CD (35-37 / 1) ND 0-4 ND (79)

In-drinking water (1:2)

Oral gavage (4 × 108) 2 CD (14-15 / 1) 3 0-6 ND (80)

Oral gavage (108) 2 CD (23-24 / 1) 1.97 0-4
E. maxima (day 18)

Salmonella Typhimurium (day 1)
(81)

Oral gavage (2.2 × 108) 5 CD (18-22 / 1) ND ND Anticoccidial vaccine (day 15) (82)

Oral gavage (108) 3 CD (19-21 / 1) 3.8 4 0-6 Anticoccidial vaccine (day 12) (83)

Oral gavage (2.2 × 107) 3 CD (18-20 / 2) 2.94 0-4
Anticoccidial vaccine (day 14)

IBD vaccine (day 14)
(84)

Oral gavage (108) Day 14 / 1
Exp. 1 2.1

0-4 E. maxima (day 9) (85)
Exp. 2 1.6

Oral gavage (6-8 × 108) 4 CD (18-21 / 3) 3 0-4
IBD vaccine (day 16)

Anticoccidial vaccine (day 19)
(86)

Oral gavage (107) 3 CD (17-19 / 2)

1.25

0-4

Wheat-based diet

(87)

1.50
Wheat-based diet

Anticoccidial vaccine (day 14)

1.60
Wheat-based diet

IBD vaccine (day 14)

1.90

Wheat-based diet

Anticoccidial vaccine (day 14)

IBD vaccine (day 14)

Oral gavage (108) 2 CD (22-23 / 1)

2.10

0-4

E. maxima (day 18)

(88)
3.30

E. maxima (day 18)

Salmonella Typhimurium (day 1)

2.20
E. maxima (day 18)

Salmonella Typhimurium (day 17)

Oral gavage (2.2 × 108) 3 CD (18-20 / 1) 1.33
Eimeria spp. (day 14)

Starvation (8 h)
(89)

Oral gavage (4 × 108) 3 CD (26-28 / 1) 1.86 0-3 Anticoccidial vaccine (day 23) (90)

Oral gavage (109) 7 CD (17-23 / 1) 1.13 0-4 E. maxima (day 12) (91)

Oral gavage (2 × 108) 7 CD (15-21 / 1) 2.25 0-4 ND (92)

Oral gavage (2 × 108) 4 CD (18-21 / 1) 1.67 0-4
Anticoccidial vaccine (day 14)

Starvation (overnight)
(93)

Oral gavage (3 × 108) 3 CD (18-20 / 1) 2.64 0-6 Anticoccidial vaccine (day 14) (94)

Oral gavage (5 × 108) 3 CD (15-17 / 1) 2.80 0-5 E. acervolina (day 7) (95)

Oral gavage (3.5 × 108) 3 CD (14-16 / 1) 3.18 0-4
Eimeria spp. (day 9)

Protein-rich diet
(96)

Oral gavage (107) 3 CD (17-19 / 1) 3.30 0-4 Anticoccidial vaccine (day 14) (97)

TABLE 1 (Continued)

(Continued)

https://doi.org/10.3389/fvets.2024.1429637
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Shamshirgaran and Golchin 10.3389/fvets.2024.1429637

Frontiers in Veterinary Science 09 frontiersin.org

Challenge 
strain

Route of 
administration

(CFU/ml or 
culture/feed 
Ratio (v/w))

Experiment 
program

No. of days (days 
of age / No. of 

daily inoculations)

Lesion 
score 1

Scoring 
system

Predisposing factor(s) Reference

Type C
In-feed (2:1)

3 CD (35-37 / 1) ND 0-4 ND (79)
In-drinking water (1:2)

TpeL17 Oral gavage (109) 4 CD (23-26 / 1) 3 0-4
Protein-rich diet (16% to 24%)

E. maxima
(98)

CP5

Intracloacal (5.8-8 × 108) 4 CD (18-21 / 2)

0.66

0-6 Protein-rich diet (20% to 30%) (99)CP18 1.07

CP26 1.5

JRTK44 Oral gavage (2 × 108) Day 15 / 1

1.97

0-4

Corn-based diet

Anticoccidial vaccine (day 11)

(100)0.57 Wheat-based diet

2.01
Wheat-based diet

Anticoccidial vaccine (day 11)

Other type G 

isolates 6

Oral gavage (2.5 × 108) Day 20 / 1 2.16 0-4 Anticoccidial vaccine (day 15) (101)

Oral gavage (3 × 108) 4 CD (17-20 / 3)

2.07

0-6

Wheat-based diet

Protein-rich diet

(102)

5.07

Wheat-based diet

Protein-rich diet

Anticoccidial vaccine (day 18)

Drinking water (108) 2 CD (19-20 / 1) 0.5

0-3

E. maxima (day 14)

Starvation (4 h)
(103)

In-feed (2:5) 3 CD (18-20 / 1) 1.2 Starvation (4 h)

Oral gavage (108) 3 CD (19-21 / 1) 1.29 E. maxima (day 14)

In-feed (4:3) 3 CD (21-23 / 1) 4.3 0-6
Wheat-based diet

Protein-rich diet (20% to 50%)
(104)

Oral gavage (108) 2 CD (19-20 / 1) 0.8 0-4 E. maxima (day 14) (105)

Oral gavage (109) Day 32 / 1 3 0-4
E. brunetti

E. tenella
(106)

Oral gavage (2.6 × 108) + 

In-feed (1:36)
3 CD (17-19 / 2)

Exp. 1 3.8
0-4

IBD vaccine (day 14)

Protein-rich diet

Starvation (24 h)

(107)
Exp. 2 3.7

Oral gavage (108) 3 CD (19-21 / 1) 1.46 0-3 E. maxima (day 14) (108)

Oral gavage (109) 2 CD (18-19 / 1) 2.04 0-4
E. maxima (day 13)

Salmonella Typhimurium (day 1)
(109)

Oral gavage (108) 3 CD (18-20 / 1) 1.37
0-3

E. maxima (day 13)
(110)

Oral gavage (108) 3 CD (17-19 / 1) 2.31 Used litter (day 4)

Oral gavage (108) 3 CD (19-21 / 1) 3.28 0-3 E. maxima (day 14) (111)

Oral gavage (4 × 108) 3 CD (19-21 / 1) 3.33 0-6 Eimeria spp. (day 14) (112)

Oral gavage (108) 3 CD (19-21 / 1) 4.30 0-3 E. maxima (day 14) (113)

Oral gavage (5 × 108) 3 CD (15-17 / 1) 3 0-5 E. acervolina (day 14) (95)

Oral gavage (108) 2 CD (18-19 / 1) 1.8 0-4 E. maxima (day 14) (114)

1 The highest lesion score observed through gross examination of the small intestine of challenged control birds is considered.
2 CD: consecutive days
3 The first and second values show the percentage of crude protein in the starter and grower diets, respectively.
4 Scoring was carried out based on lesions observed in histopathology.
5 ND: Not defined
6 Undefined strains of C. perfringens type G (netb-positive), mainly isolated from NE-affected flocks.
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FTG medium, which is then employed for the challenge experiment 
by inoculating birds (24, 29, 30, 32, 34, 35, 38, 39, 53–59, 99, 104).

3.2 Preparation of challenge inoculum

The culture medium employed for the inoculation of birds 
undergoes incubation at a temperature of 37°C for a period 
ranging between 15 and 24 h. Research findings indicate that the 
24-h culture of the FTG medium displays increased protease 
activity, leading to the degradation of toxins responsible for NE 
disease (121). Conversely, the 15-h broth cultures are observed 
to produce significantly higher levels of toxins in culture, which 
are considered essential in the formation of NE lesions, as 
opposed to toxins produced by vegetative C. perfringens in the 
intestinal tract post-inoculation (121). Additionally, the cultures 
with shorter incubation times have been shown to result in more 
severe lesions when compared to older cultures (24-h 
cultures) (29).

3.3 Time and route of challenge 
inoculation

The virulent strains utilized in challenge experiments have been 
administered to birds either directly through oral gavage into the crop, 
or indirectly by infecting feed or water with the bacterial culture 

(Table 1). Some researchers have employed a combination of both 
methods, administering the challenge inoculation through the oral 
route followed by an in-feed or-water challenge. In-feed inoculation 
possesses the characteristic of simplicity in application in contrast to 
the oral gavage, which induces stress associated with restraint. On the 
contrary, the amalgamation of broth culture and feed may result in a 
diminished level of the bacterium’s intended concentration (38), 
thereby necessitating a greater volume of broth cultures, consequently 
leading to an escalation in costs.

In the case of oral gavage, the challenge inoculum was 
composed of whole culture media containing approximately 
108–109 bacteria per dose. The oral inoculation is usually carried 
out twice daily for 1 day or 5 consecutive days. A mixture of 
culture and feed or water at varying ratios has also been utilized 
twice per day for 2–5 consecutive days for the induction of 
NE. The ratios commonly employed for the mixture of culture 
and feed/water are 2:1 (v/w) (29–33, 72, 79), 3:4 (v/w) (39, 45, 
56, 59), 1:1 (v/w) (24, 34, 35, 38), 2:5 (v/w) (103), 4:3 (v/w) (57, 
104), and 1:2 (v/v or v/w) (54, 55, 79) for the challenge method 
involving the mixing of broth cultures with feed or water. 
Additionally, some investigators have utilized a combination of 
the oral route and in-feed challenge, employing cultures 
containing 108–1010 colony forming unit (CFU)/dose and a 
mixture of culture and feed with ratios of 1:10 (v/w) (53, 56), 1:1 
(v/w) (24, 34, 38), and 1:2 (v/w) (54, 55). Birds are commonly 
deprived of food for a duration of 2–24 h prior to the initiation 
of the experimental challenge. This practice serves to facilitate 

FIGURE 2

Virulent strains of Clostridium perfringens employed in experimental challenges to induce NE. Various strains of C. perfringens have been utilized for 
inducing in vivo NE infection in birds, with strains 56, 4, and EHE-NE18 being the most frequently employed in experimental challenges. A total of 93 
studies that included at least one NE challenge experiment were considered in the analysis. The numerical values represent the relative proportion or 
percentage of studies in relation to the overall number of studies conducted. In certain studies, multiple strains were employed in the experimental 
design. The chart was generated using GraphPad Prism 9.0 (Graph-Pad Software, San Diego, CA, United States).
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the process of inoculation and also establishes a state of fasting-
induced stress in broiler chickens.

4 Predisposing factors

Since the experimental induction of NE requires predisposing 
factors, empirical studies have identified a number of factors that can 
increase the likelihood and severity of NE in challenged birds 
(Table  1). Although a few studies induced NE without using any 
predisposing factors (92, 122), such predisposing factors are frequently 
employed in vaccine studies before or during the challenge experiment 
as a means of augmenting the risk of NE occurrence among birds. The 
factors under consideration include coccidial infections, nutritional 
factors such as diets containing high levels of indigestible 
carbohydrates and crude proteins, stress, and immunosuppression 
resulting from vaccination with other poultry vaccines either prior to 
or during the challenge experiment (17, 19, 21, 123, 124). As such, 
these factors have been considered important variables in avian NE 
disease research and management programs. The predisposing factors 
commonly employed in NE experimental infection are illustrated in 
Figure 4.

Of all the potential predisposing factors that have been identified 
for NE in birds, nutritional manipulation in chicken feed (high 

concentration of protein/carbohydrate), coccidiosis infection 
induction, and stress induction through deprivation of feed and water 
(starvation) are the most commonly utilized predisposing factors to 
induce the NE disease (Figure 5).

Coccidial infections have demonstrated a pivotal function 
in promoting the establishment and expansion of C. perfringens 
within the intestinal tract. It is hypothesized that the observed 
occurrence stems from the breakdown of the intestinal 
membrane, resulting in the formation of perforations in the 
epithelial tissue, thereby releasing plasma proteins into the 
intestinal lumen (21, 124). This serves as a copious nutrient 
source for C. perfringens propagation and toxin elaboration (17, 
124). Coccidial infections can also induce mucogenesis, 
promoting the growth of C. perfringens (124). Several Eimeria 
species were indicated to predispose birds to NE in vaccine 
studies, with E. maxima being the most prevalent species (36, 
37, 58, 67–69, 73, 75, 83–85, 98, 100, 102, 103, 105). However, it 
is important to note that coccidial infections are not always 
necessary for the occurrence of NE, as some researchers have 
successfully induced NE without utilizing this factor (24, 35, 
52–55). Moreover, Eimeria infection has the potential to elicit a 
state of immunological stress, which may be  unsuitable for 
conducting a vaccine study (56). This is due to the possibility of 
the infection-induced immune response confounding the 

FIGURE 3

Lesion score ranges for virulent strains of Clostridium perfringens. The lesion scores documented in studies examining the effects of experimental NE 
infection in unvaccinated birds, caused by virulent strains of C. perfringens, have been recorded since 2004 until the present. The plotted values 
represent the mean NE lesion scores observed in unvaccinated birds challenged with virulent strains of C. perfringens. The analysis and visualization of 
the data were performed using GraphPad Prism 9.0 (Graph-Pad Software, San Diego, CA, United States).
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desired immune response to the vaccine, resulting in potentially 
spurious or erroneous findings. As such, it is imperative to 
meticulously assess the immunological profile of the study 
participants and account for any pre-existing infections or 
immune perturbations when devising and executing 
vaccine trials.

The incidence of NE has also been revealed to be directly 
linked to the level of crude protein in the diet, as high protein 
levels can provide an optimal nutrient-rich environment for the 
proliferation of C. perfringens, thereby increasing the 
susceptibility of birds to NE (17, 125, 126). Fishmeal and soybean 
are the prevailing protein sources extensively incorporated into 
the diet of chickens during the challenge experiment. 
Additionally, cereal grains including wheat, rye, and barley could 
lead to an increment in the viscosity of the intestinal digesta, 
ultimately resulting in a prolonged bypass time (124, 127). As a 
result, the substrates produced by these non-starch 
polysaccharides could be  more accessible to support the 
proliferation, growth, and toxin production of C. perfringens 
(100, 123, 126, 128). As such, this factor have been frequently 
utilized by many investigators to experimentally induce NE in 
birds (24, 29–35, 38, 39, 41, 42, 44, 45, 52–57, 59, 67–69, 72, 73, 
98, 99, 104). The sudden implementation of these dietary 
modifications typically occurs during the transition from the 
starter diet to the grower diet, as evidenced by previous studies, 
thereby imposing an additional stressor on the birds involved in 
the experiment.

In addition to the factors mentioned above, some studies 
induced stress through the withdrawal of feed and water prior to 
the experimental infection to predispose birds to NE. The duration 
of the deprivation varies from a minimum of 2 h to a maximum of 

24 h before the infectious challenge. Furthermore, apart from 
inducing stress, the state of starvation renders the process of 
conducting a challenge experiment more manageable, owing to the 
tendency of birds to consume contaminated feed post an extended 
period of fasting. Nonetheless, subjecting birds to intermittent 
periods of feed deprivation during the NE infection over 
consecutive days has shown the potential to mitigate the severity of 
gut lesions (51).

Several investigators have also employed immunosuppression 
induced by vaccination against several poultry diseases such as 
coccidiosis and infectious bursal disease (IBD) prior to the challenge 
experiment to predispose birds to NE (41, 42, 44, 45, 84) or inducing 
physiological stress using corticosterone in feed and water (74, 129, 
130). Employing anticoccidial vaccines has exhibited divergent 
outcomes concerning NE incidence. The administration of 
commercial anticoccidial vaccines either immediately before or 
during in vivo NE infection for the purpose of immunosuppression 
may predispose birds to more pronounced NE lesions in the small 
intestine (78, 84, 87, 102). Conversely, the application of such vaccines 
during the initial day of life in chicks could potentially reduce the 
severity of NE lesions (50, 101, 106).

Other less common stressors demonstrated to contribute to 
NE-associated lesion severity. Heat and cold stresses, as 
environmental conditions, could play significant roles in the 
suppression of cellular and humoral immunity, leading to more 
severe gut lesions in birds (43, 49). Furthermore, elevated levels of 
glucocorticoids in the blood may arise as a result of heat stress and 
collaboratively add to the immunosuppressive impacts on heat-
stressed birds (43). High body weights and fast growth also 
predispose birds to more severe NE disease (131). The rapid 
growth of birds has been elucidated to cause a transformation in 

FIGURE 4

Requirements and key predisposing factors for induction of NE in birds. Successful in vivo induction of NE in birds necessitates careful consideration of 
various factors, such as the choice of virulent strains, the age and sex of the birds, and additional predisposing factors commonly associated with 
increased susceptibility to NE infection.
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the microbiota of the gastrointestinal tract and additionally 
resulted in the accumulation of a greater quantity of indigested or 
inadequately digested proteins within the gut, which consequently 
makes the gut a favorable environment for C. perfringens growth 
and proliferation (131, 132). This hypothesis aligns with the 
observation that NE typically manifests in birds exhibiting 
excellent body condition (11). Moreover, rearing birds in 
enclosures with a population that exceeds the normal stocking 
density (15 birds/m2 or 0.066 m2/bird) could induce stress, which 
suppresses the humoral immune responses, thereby increasing the 
likelihood of NE infection (48). Another concern that threatens 
overcrowded poultry farms is the elevated concentration of 
moisture and nitrogen emitted by the avian population, thereby 
diminishing the quality of the litter and creating a conducive 
habitat for microbial and coccidial proliferation (48). Additionally, 
the rivalry among birds raised in densely inhabited areas might 
potentially trigger heightened anxiety levels concerning 
nourishment intake, thus, concurrently intensifying the chances 
of occurring and spreading the NE infection throughout the 
group. Fungi may also contribute to the NE experimental model 
due to their ability to produce mycotoxins such as fumonisins and 
deoxynivalenol from Fusarium fungi (46, 47) or aflatoxin B1 from 

Aspergillus flavus (133). Oral administration of S. typhimurium 
strain in neonates is recognized as an additional contributing 
factor for the dependable NE induction as elucidated in some 
studies (81, 88, 109). The findings from these studies underscore 
the complex and multifaceted nature of NE pathogenesis. It is 
imperative to take this critical aspect into account when 
developing effective strategies for the prevention and control of 
the disease. The schematic outline of predisposing factors 
employed for inducing NE challenge is illustrated in Figure 5.

5 Other considerations

A few studies have shown the relationship between sex and 
breed with NE occurrence. Male birds, owing to their elevated 
degree of dietary intake and accelerated rate of growth, manifest a 
greater predisposition to NE when juxtaposed with their female 
counterparts (46, 134). Similarly, there have been reported breed-
specific divergences in susceptibility to NE. Cobb chickens exhibit 
greater susceptibility to NE when contrasted with Ross and Hubbard 
chickens, thus manifesting more severe NE intestinal lesions 
subsequent to the infectious challenge experiment (70). Although 

FIGURE 5

Schematic outline of common predisposing factors used for NE induction in experimental studies. A total of 120 challenge experiments were reviewed 
to evaluate the predisposing factors employed to induce NE in the respective infection experiments. Commonly utilized factors that predispose birds 
to NE include dietary factors (such as wheat-based and protein-rich diets), stress-induced starvation, and coccidiosis. In addition, several other less 
frequently encountered factors could also contribute to bird susceptibility, including, thermal stress variations, elevated stocking density, mycotoxin 
exposure, corticosterone levels, Salmonella species inoculation, and administration of anticoccidial and IBD vaccines in close temporal proximity to the 
challenge period. Each small letter includes at least one of the less frequent factors as follows: a: anticoccidial vaccines, IBD vaccines, and in-feed 
corticosterone; b: anticoccidial vaccines, IBD vaccines; c: anticoccidial vaccines, IBD vaccines, heat or cold stress, high stocking density, and 
mycotoxins; d: IBD vaccines, e: Salmonella typhimurium inoculation; f: IBD vaccines; and g: anticoccidial vaccines.
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TABLE 2 Common scoring systems used in NE studies.

Lesion 
score

0–6 0–5 0–4 0–3

Reference (7) (121) (30) (144) (85) (149) (150) (12) (10) (151)

0 No gross lesions

1

Thin or friable walls Thin or friable 

wall or very mild 

and superficial 

generalized 

inflammation

Thin or  

friable  

walls

1 to 5 small white lesions 

(spots <1 mm in diameter)

Mild  

(slight mucus 

covering and loss of 

tone, thin wall, or 

friable)

1 to 5 small (<1- 

mm diameter) 

lesions

< 10 focal gross lesions 

(Focal lesion definition: 

their maximum extension is 

less than the circumference 

of the gut mucosa)

Focal necrosis 

and ulceration

Slight mucus 

covering and loss 

of tone, thin wall 

or friable

Also diffuse  

superficial but  

removable fibrin

2

Focal necrosis or  

ulceration  

(1–5 foci)

Focal necrosis or ulceration

> 5 small white lesions 

(spots of <1 mm in 

diameter) or 1 to 5 larger 

lesions (spots of 1 to 2 mm 

in diameter)

Moderate (focal 

necrosis or 

ulceration)

> 5 small lesions 

but fewer than 5 

larger (1 to 

2-mm diameter) 

lesions

≥ 10 focal gross lesions

Patches of 

necrosis 2 to 

3 cm long

Focal necrosis or 

ulceration
Also  

non-removable  

fibrin deposit  

(1–5 foci)

3

Focal necrosis or  

ulceration  

(6–15 foci)

Large patches of necrosis

> 5 larger lesions (1 to 

2 mm in diameter) or 

erosive zones

Marked (severe, 

sloughed mucosa 

with presence of 

blood in the lumen)

> 5 larger lesions 

and erosive 

zones

≥ one lesion with a 

maximum extension 

larger than the 

circumference of the gut 

mucosa

Diffuse 

necrosis typical 

of field cases

Severe, sloughed 

mucosa with 

presence of blood 

in the lumen

Also  

non-removable  

fibrin deposit  

(6–15 foci)

4

Focal necrosis or  

ulceration  

(16 or more foci)
Severe or extensive necrosis 

typical of field cases

Death with positive NE 

diagnoses postmortem
NA1Also  

non-removable  

fibrin deposit  

(16 or more foci)

5
Patches of necrosis 2– 

3 cm long

Death during the 

experiment with 

lesion scores of 4

NA NA

6
Diffuse necrosis  

typical of field cases
NA NA NA

1Not assigned.
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the oral inoculation and/or in-feed administration of a virulent 
strain of C. perfringens is essential for the purpose of experimental 
NE infection, it is also feasible to induce NE without resorting to any 
form of inoculation through the utilization of previously 
contaminated/used bedding material that had been employed for 
NE-infected birds (110, 133, 135).

6 Scoring systems for NE lesions

After conducting the challenge experiment, the birds are humanely 
euthanized using approved methods, and subsequently undergo necropsy 
for additional pathological examination. For this purposes, birds are 
euthanized ethically through the utilization of CO2 inhalation, cervical 
dislocation, and electrical stunning, either on the last day of/or the day 
after the challenge experiment. A thorough inspection of the entire 
length of the small intestine is essential, and the gross pathological lesions 
should be evaluated using a scoring system formerly represented in the 
literature. The jejunum is considered to be the most impacted portion of 
the small intestine (58, 62, 66, 78, 84, 112, 136–140), whereas the 
duodenum has exhibited more pronounced lesions in certain research 
investigations (65, 90, 91, 141). Gross abnormalities were also apparent 
in the ileum and cecum, albeit to a lesser extent of involvement (2, 61–63, 
65, 66, 84, 90, 91, 96, 136–138, 141). Various scoring systems have been 
developed to assess gross lesions associated with NE, with scales ranging 
from 0 to 3 (10, 12, 37, 75, 103, 142, 143), 0 to 4 (16, 29, 39, 40, 58, 67–71, 
79, 85, 87, 98, 100, 101, 105, 144, 145), 0 to 5 (30–33, 38, 52, 53), and 0 to 
6 (7, 22, 24, 34–36, 41, 42, 44, 45, 54–56, 59, 72, 80, 83, 102, 104, 146, 147). 
Although the scoring methodologies are derived from the visible lesions 
observed in the small intestines of birds, there have been instances where 
certain investigations employed scoring systems to assess the condition 
of the footpads in birds affected by NE (148). However, this methodology 
may not be  entirely dependable owing to the enteropathogenic 
characteristics of the NE ailment. The systems that are extensively utilized 
for scoring NE lesions in experimental infection are depicted in Table 2.

Owing to the variability of the systems employed for scoring NE 
lesions, there exists a challenge in comparing studies that adopt different 
scoring methods. Therefore, a standardized system for scoring NE lesions 
is imperative, enabling the convenient comparison of distinct groups of 
vaccinated birds concerning their protection against the challenge 
experiment. This standardized system should encompass a 
comprehensive range to facilitate statistical analysis, exhibit simplicity to 
permit the assessment of a large number of birds within a feasible time 
frame, maintain reproducibility among diverse observers, and also 
consider the severity of the disease generated under experimental 
conditions (121). Although it is necessary to select a broad system 
covering all NE lesions, the use of various antigens in immunization 
studies and different strains of C. perfringens in challenge experiments 
leads to variations in the gross lesions developed in NE disease (121).

7 Conclusion

The growing concern over restricted antibiotic usage in 
poultry production necessitates urgent evaluation of preventive 

strategies against NE. Experimental induction of NE in such 
studies becomes crucial for assessing the efficacy of these 
measures, ultimately benefiting the overall health and welfare of 
poultry. The development of NE is a consequence of the interplay 
of numerous contributing factors. These involve selecting a 
virulent C. perfringens strain, predisposing birds to NE through 
one or more predisposing factors, and choosing the most effective 
route of inoculation for optimal induction of NE disease in the 
challenge procedures. Selecting the ideal virulent strain 
containing the netb gene and developing an infection similar to 
field cases of NE is the first crucial step for experimental NE 
induction. Moreover, choosing among a variety of factors such as 
inducing coccidiosis infection, manipulating dietary protein or 
carbohydrates, and inducing stress conditions could raise the 
possibility of the NE occurrence in experimental challenges. 
When evaluating these factors, it is crucial to consider the 
potential drawbacks linked to these factors. For example, using 
coccidiosis infection as a predisposing factor to NE may 
introduce immunological alterations that could negatively impact 
vaccine research outcomes. Additionally, the ethical aspect of 
subjecting birds to stress must be  considered throughout the 
research process. In conclusion, this review underscores the 
pivotal factors indispensable for the successful induction of 
NE. By elucidating these critical parameters, researchers can 
make well-informed choices when opting for the most appropriate 
NE experimental design.
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